133 research outputs found

    Dual-Branch U-Net Architecture for Retinal Lesions Segmentation on Fundus Image

    Get PDF
    Deep learning has found widespread application in diabetic retinopathy (DR) screening, primarily for lesion detection. However, this approach encounters challenges such as information loss due to convolutional operations, shape uncertainty, and the high similarity between different lesions types. These factors collectively hinder the accurate segmentation of lesions. In this research paper, we introduce a novel dual-branch U-Net architecture, referred to as Dual-Branch (DB)-U-Net, tailored to address the intricacies of small-scale lesion segmentation. Our approach involves two branches: one employs a U-Net to capture the shared characteristics of lesions, while the other utilizes a modified U-Net, known as U2Net, equipped with two decoders that share a common encoder. U2Net is responsible for generating probability maps for lesion segmentation as well as corresponding boundary segmentation. DB U-Net combines the outputs of U2Net and U-Net as a dual branch, concatenating their segmentation maps to produce the final result. To mitigate the challenge of imbalanced data, we employ the Dice loss as a loss function. We evaluate the effectiveness of our approach on publicly available datasets, including DDR, IDRiD, and E-Ophtha. Our results demonstrate that DB U-Net achieves AUPR values of 0.5254 and 0.7297 for Microaneurysms and soft exudates segmentation, respectively, on the IDRiD dataset. These results outperform other models, highlighting the potential clinical utility of our method in identifying retinal lesions from retinal fundus images

    Deep learning for diabetic retinopathy detection and classification based on fundus images: A review.

    Get PDF
    Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are widely used by the research community, the preprocessing techniques employed and how these accelerate and improve the models' performance, to the development of such deep learning models for the diagnosis and grading of the disease as well as the localization of the disease's lesions. We also discuss certain models that have been applied in real clinical settings. Finally, we conclude with some important insights and provide future research directions

    Deep learning analysis of eye fundus images to support medical diagnosis

    Get PDF
    Machine learning techniques have been successfully applied to support medical decision making of cancer, heart diseases and degenerative diseases of the brain. In particular, deep learning methods have been used for early detection of abnormalities in the eye that could improve the diagnosis of different ocular diseases, especially in developing countries, where there are major limitations to access to specialized medical treatment. However, the early detection of clinical signs such as blood vessel, optic disc alterations, exudates, hemorrhages, drusen, and microaneurysms presents three main challenges: the ocular images can be affected by noise artifact, the features of the clinical signs depend specifically on the acquisition source, and the combination of local signs and grading disease label is not an easy task. This research approaches the problem of combining local signs and global labels of different acquisition sources of medical information as a valuable tool to support medical decision making in ocular diseases. Different models for different eye diseases were developed. Four models were developed using eye fundus images: for DME, it was designed a two-stages model that uses a shallow model to predict an exudate binary mask. Then, the binary mask is stacked with the raw fundus image into a 4-channel array as an input of a deep convolutional neural network for diabetic macular edema diagnosis; for glaucoma, it was developed three deep learning models. First, it was defined a deep learning model based on three-stages that contains an initial stage for automatically segment two binary masks containing optic disc and physiological cup segmentation, followed by an automatic morphometric features extraction stage from previous segmentations, and a final classification stage that supports the glaucoma diagnosis with intermediate medical information. Two late-data-fusion methods that fused morphometric features from cartesian and polar segmentation of the optic disc and physiological cup with features extracted from raw eye fundus images. On the other hand, two models were defined using optical coherence tomography. First, a customized convolutional neural network termed as OCT-NET to extract features from OCT volumes to classify DME, DR-DME and AMD conditions. In addition, this model generates images with highlighted local information about the clinical signs, and it estimates the number of slides inside a volume with local abnormalities. Finally, a 3D-Deep learning model that uses OCT volumes as an input to estimate the retinal thickness map useful to grade AMD. The methods were systematically evaluated using ten free public datasets. The methods were compared and validated against other state-of-the-art algorithms and the results were also qualitatively evaluated by ophthalmology experts from Fundación Oftalmológica Nacional. In addition, the proposed methods were tested as a diagnosis support tool of diabetic macular edema, glaucoma, diabetic retinopathy and age-related macular degeneration using two different ocular imaging representations. Thus, we consider that this research could be potentially a big step in building telemedicine tools that could support medical personnel for detecting ocular diseases using eye fundus images and optical coherence tomography.Las técnicas de aprendizaje automático se han aplicado con éxito para apoyar la toma de decisiones médicas sobre el cáncer, las enfermedades cardíacas y las enfermedades degenerativas del cerebro. En particular, se han utilizado métodos de aprendizaje profundo para la detección temprana de anormalidades en el ojo que podrían mejorar el diagnóstico de diferentes enfermedades oculares, especialmente en países en desarrollo, donde existen grandes limitaciones para acceder a tratamiento médico especializado. Sin embargo, la detección temprana de signos clínicos como vasos sanguíneos, alteraciones del disco óptico, exudados, hemorragias, drusas y microaneurismas presenta tres desafíos principales: las imágenes oculares pueden verse afectadas por artefactos de ruido, las características de los signos clínicos dependen específicamente de fuente de adquisición, y la combinación de signos locales y clasificación de la enfermedad no es una tarea fácil. Esta investigación aborda el problema de combinar signos locales y etiquetas globales de diferentes fuentes de adquisición de información médica como una herramienta valiosa para apoyar la toma de decisiones médicas en enfermedades oculares. Se desarrollaron diferentes modelos para diferentes enfermedades oculares. Se desarrollaron cuatro modelos utilizando imágenes de fondo de ojo: para DME, se diseñó un modelo de dos etapas que utiliza un modelo superficial para predecir una máscara binaria de exudados. Luego, la máscara binaria se apila con la imagen de fondo de ojo original en una matriz de 4 canales como entrada de una red neuronal convolucional profunda para el diagnóstico de edema macular diabético; para el glaucoma, se desarrollaron tres modelos de aprendizaje profundo. Primero, se definió un modelo de aprendizaje profundo basado en tres etapas que contiene una etapa inicial para segmentar automáticamente dos máscaras binarias que contienen disco óptico y segmentación fisiológica de la copa, seguido de una etapa de extracción de características morfométricas automáticas de segmentaciones anteriores y una etapa de clasificación final que respalda el diagnóstico de glaucoma con información médica intermedia. Dos métodos de fusión de datos tardíos que fusionaron características morfométricas de la segmentación cartesiana y polar del disco óptico y la copa fisiológica con características extraídas de imágenes de fondo de ojo crudo. Por otro lado, se definieron dos modelos mediante tomografía de coherencia óptica. Primero, una red neuronal convolucional personalizada denominada OCT-NET para extraer características de los volúmenes OCT para clasificar las condiciones DME, DR-DME y AMD. Además, este modelo genera imágenes con información local resaltada sobre los signos clínicos, y estima el número de diapositivas dentro de un volumen con anomalías locales. Finalmente, un modelo de aprendizaje 3D-Deep que utiliza volúmenes OCT como entrada para estimar el mapa de espesor retiniano útil para calificar AMD. Los métodos se evaluaron sistemáticamente utilizando diez conjuntos de datos públicos gratuitos. Los métodos se compararon y validaron con otros algoritmos de vanguardia y los resultados también fueron evaluados cualitativamente por expertos en oftalmología de la Fundación Oftalmológica Nacional. Además, los métodos propuestos se probaron como una herramienta de diagnóstico de edema macular diabético, glaucoma, retinopatía diabética y degeneración macular relacionada con la edad utilizando dos representaciones de imágenes oculares diferentes. Por lo tanto, consideramos que esta investigación podría ser potencialmente un gran paso en la construcción de herramientas de telemedicina que podrían ayudar al personal médico a detectar enfermedades oculares utilizando imágenes de fondo de ojo y tomografía de coherencia óptica.Doctorad

    Detection and Classification of Diabetic Retinopathy using Deep Learning Algorithms for Segmentation to Facilitate Referral Recommendation for Test and Treatment Prediction

    Full text link
    This research paper addresses the critical challenge of diabetic retinopathy (DR), a severe complication of diabetes leading to potential blindness. The proposed methodology leverages transfer learning with convolutional neural networks (CNNs) for automatic DR detection using a single fundus photograph, demonstrating high effectiveness with a quadratic weighted kappa score of 0.92546 in the APTOS 2019 Blindness Detection Competition. The paper reviews existing literature on DR detection, spanning classical computer vision methods to deep learning approaches, particularly focusing on CNNs. It identifies gaps in the research, emphasizing the lack of exploration in integrating pretrained large language models with segmented image inputs for generating recommendations and understanding dynamic interactions within a web application context.Objectives include developing a comprehensive DR detection methodology, exploring model integration, evaluating performance through competition ranking, contributing significantly to DR detection methodologies, and identifying research gaps.The methodology involves data preprocessing, data augmentation, and the use of a U-Net neural network architecture for segmentation. The U-Net model efficiently segments retinal structures, including blood vessels, hard and soft exudates, haemorrhages, microaneurysms, and the optical disc. High evaluation scores in Jaccard, F1, recall, precision, and accuracy underscore the model's potential for enhancing diagnostic capabilities in retinal pathology assessment.The outcomes of this research hold promise for improving patient outcomes through timely diagnosis and intervention in the fight against diabetic retinopathy, marking a significant contribution to the field of medical image analysis

    A Global and Patch-wise Contrastive Loss for Accurate Automated Exudate Detection

    Full text link
    Diabetic retinopathy (DR) is a leading global cause of blindness. Early detection of hard exudates plays a crucial role in identifying DR, which aids in treating diabetes and preventing vision loss. However, the unique characteristics of hard exudates, ranging from their inconsistent shapes to indistinct boundaries, pose significant challenges to existing segmentation techniques. To address these issues, we present a novel supervised contrastive learning framework to optimize hard exudate segmentation. Specifically, we introduce a patch-wise density contrasting scheme to distinguish between areas with varying lesion concentrations, and therefore improve the model's proficiency in segmenting small lesions. To handle the ambiguous boundaries, we develop a discriminative edge inspection module to dynamically analyze the pixels that lie around the boundaries and accurately delineate the exudates. Upon evaluation using the IDRiD dataset and comparison with state-of-the-art frameworks, our method exhibits its effectiveness and shows potential for computer-assisted hard exudate detection. The code to replicate experiments is available at github.com/wetang7/HECL/.Comment: 8 pages, 3 figures, 2 tables. To appear in ISBI 202

    Segmentation and texture analysis with multimodel inference for the automatic detection of exudates in early diabetic retinopathy

    Get PDF
    published_or_final_versio

    Learning Two-Stream CNN for Multi-Modal Age-related Macular Degeneration Categorization

    Full text link
    This paper tackles automated categorization of Age-related Macular Degeneration (AMD), a common macular disease among people over 50. Previous research efforts mainly focus on AMD categorization with a single-modal input, let it be a color fundus image or an OCT image. By contrast, we consider AMD categorization given a multi-modal input, a direction that is clinically meaningful yet mostly unexplored. Contrary to the prior art that takes a traditional approach of feature extraction plus classifier training that cannot be jointly optimized, we opt for end-to-end multi-modal Convolutional Neural Networks (MM-CNN). Our MM-CNN is instantiated by a two-stream CNN, with spatially-invariant fusion to combine information from the fundus and OCT streams. In order to visually interpret the contribution of the individual modalities to the final prediction, we extend the class activation mapping (CAM) technique to the multi-modal scenario. For effective training of MM-CNN, we develop two data augmentation methods. One is GAN-based fundus / OCT image synthesis, with our novel use of CAMs as conditional input of a high-resolution image-to-image translation GAN. The other method is Loose Pairing, which pairs a fundus image and an OCT image on the basis of their classes instead of eye identities. Experiments on a clinical dataset consisting of 1,099 color fundus images and 1,290 OCT images acquired from 1,099 distinct eyes verify the effectiveness of the proposed solution for multi-modal AMD categorization
    corecore