130 research outputs found

    Enabling Technology and Algorithm Design for Location-Aware Communications

    Get PDF
    Location-awareness is emerging as a promising technique for future-generation wire­ less network to adaptively enhance and optimize its overall performance through location-enabled technologies such as location-assisted transceiver reconfiguration and routing. The availability of accurate location information of mobile users becomes the essential prerequisite for the design of such location-aware networks. Motivated by the low locationing accuracy of the Global Positioning System (GPS) in dense multipath environments, which is commonly used for acquiring location information in most of the existing wireless networks, wireless communication system-based po­sitioning systems have been investigated as alternatives to fill the gap of the GPS in coverage. Distance-based location techniques using time-of-arrival (TOA) mea­surements are commonly preferred by broadband wireless communications where the arrival time of the signal component of the First Arriving Path (FAP) can be con­verted to the distance between the receiver and the transmitter with known location. With at least three transmitters, the location of the receiver can be determined via trilatération method. However, identification of the FAP’s signal component in dense multipath scenarios is quite challenging due to the significantly weaker power of the FAP as compared with the Later Arriving Paths (LAPs) from scattering, reflection and refraction, and the superposition of these random arrival LAPs’ signal compo­ nents will become large interference to detect the FAP. In this thesis, a robust FAP detection scheme based on multipath interference cancellation is proposed to im­ prove the accuracy of location estimation in dense multipath environments. In the proposed algorithm, the signal components of LAPs is reconstructed based on the estimated channel and data with the assist of the communication receiver, and sub­ sequently removed from the received signal. Accurate FAP detection results are then achieved with the cross-correlation between the interference-suppressed signal and an augmented preamble which is the combination of the original preamble for com­ munications and the demodulated data sequences. Therefore, more precise distance estimation (hence location estimation) can be obtained with the proposed algorithm for further reliable network optimization strategy design. On the other hand, multiceli cooperative communication is another emerging technique to substantially improve the coverage and throughput of traditional cellular networks. Location-awareness also plays an important role in the design and imple­mentation of multiceli cooperation technique. With accurate location information of mobile users, the complexity of multiceli cooperation algorithm design can be dra­matically reduced by location-assisted applications, e.g., automatic cooperative base station (BS) determination and signal synchronization. Therefore, potential latency aroused by cooperative processing will be minimized. Furthermore, the cooperative BSs require the sharing of certain information, e.g., channel state information (CSI), user data and transmission parameters to perform coordination in their signaling strategies. The BSs need to have the capabilities to exchange available information with each other to follow up with the time-varying communication environment. As most of broadband wireless communication systems are already orthogonal frequency division multiplexing (OFDM)-based, a Multi-Layered OFDM System, which is spe­cially tailored for multiceli cooperation is investigated to provide parallel robust, efficient and flexible signaling links for BS coordination purposes. These layers are overlaid with data-carrying OFDM signals in both time and frequency domains and therefore, no dedicated radio resources are required for multiceli cooperative networks. In the final aspect of this thesis, an enhanced channel estimation through itera­ tive decision-directed method is investigated for OFDM system, which aims to provide more accurate estimation results with the aid of the demodulated OFDM data. The performance of traditional training sequence-based channel estimation is often lim­ ited by the length of the training. To achieve acceptable estimation performance, a long sequence has to be used which dramatically reduces the transmission efficiency of data communication. In this proposed method, the restriction of the training se­quence length can be removed and high channel estimation accuracy can be achieved with high transmission efficiency, and therefore it particular fits in multiceli coopera­tive networks. On the other hand, as the performance of the proposed FAP detection scheme also relies on the accuracy of channel estimation and data detection results, the proposed method can be combined with the FAP detection scheme to further optimize the accuracy of multipath interference cancellation and FAP detection

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Cooperative Communications with Partial Channel State Information in Mobile Radio Systems

    Get PDF
    Future 4G mobile radio cellular networks are considered OFDM-MIMO systems. Cooperative communication based on coordinated base stations is a very promising concept to perform inter-cell interference management. This thesis deals with the concept of cooperative communication from its information-theoretic background to its practical system design. The main focus is a practical design of the joint detection scheme in the uplink and the joint transmission scheme in the downlink with partial channel-state information (CSI), i.e., significant CSI and imperfect CSI.Zukünftige zellulare 4G-Mobilfunksysteme können als OFDM-MIMO-Systeme betrachtet werden. In solchen zukünftigen Mobilfunksystemen ist kooperative Kommunikation, basierend auf koordinierten Basisstationen, ein sehr vielversprechendes Konzept zum Interzellinterferenzmanagement. Die vorliegende Arbeit behandelt das Konzept der kooperativen Kommunikation vom informationstheoretischen Hintergrund bis hin zum praktischen Systemdesign. Der Schwerpunkt der vorliegenden Arbeit liegt auf dem praktischen Design kooperativer Kommunikationssysteme mit partieller Kanalkenntnis

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Spectral-energy efficiency trade-off of relay-aided cellular networks

    Get PDF
    Wireless communication networks are traditionally designed to operate at high spectral e ciency with less emphasis on power consumption as it is assumed that endless power supply is available through the power grid where the cells are connected to. As new generations of mobile networks exhibit decreasing gains in spectral e ciency, the mobile industry is forced to consider energy reform policies in order to sustain the economic growth of itself and other industries relying on it. Consequently, the energy e ciency of conventional direct transmission cellular networks is being examined while alternative green network architectures are also explored. The relay-aided cellular network is being considered as one of the potential network architecture for energy e cient transmission. However, relaying transmission incurs multiplexing loss due to its multi-hop protocol. This, in turn, reduces network spectral e ciency. Furthermore, interference is also expected to increase with the deployment of Relay Stations (RSs) in the network. This thesis examines the power consumption of the conventional direct transmission cellular network and contributes to the development of the relay-aided cellular network. Firstly, the power consumption of the direct transmission cellular network is investigated. While most work considered transmitter side strategies, the impact of the receiver on the Base Station (BS) total power consumption is investigated here. Both the zero-forcing and minimum mean square error weight optimisation approaches are considered for both the conventional linear and successive interference cancellation receivers. The power consumption model which includes both the radio frequency transmit power and circuit power is described. The in uence of the receiver interference cancellation techniques, the number of transceiver antennas, circuit power consumption and inter-cell interference on the BS total power consumption is investigated. Secondly, the spectral-energy e ciency trade-o in the relay-aided cellular network is investigated. The signal forwarding and interference forwarding relaying paradigms are considered with the direct transmission cellular network taken as the baseline. This investigation serves to understand the dynamics in the performance trade-o . To select a suitable balance point in the trade-o , the economic e ciency metric is proposed whereby the spectral-energy e ciency pair which maximises the economic pro tability is found. Thus, the economic e ciency metric can be utilised as an alternative means to optimise the relay-aided cellular network while taking into account the inherent spectral-energy e ciency trade-o . Finally, the method of mitigating interference in the relay-aided cellular network is demonstrated by means of the proposed relay cooperation scheme. In the proposed scheme, both joint RS decoding and independent RS decoding approaches are considered during the broadcast phase while joint relay transmission is employed in the relay phase. Two user selection schemes requiring global Channel State Information (CSI) are considered. The partial semi-orthogonal user selection method with reduced CSI requirement is then proposed. As the cooperative cost limits the practicality of cooperative schemes, the cost incurred at the cooperative links between the RSs is investigated for varying degrees of RS cooperation. The performance of the relay cooperation scheme with di erent relay frequency reuse patterns is considered as well. In a nutshell, the research presented in this thesis reveals the impact of the receiver on the BS total power consumption in direct transmission cellular networks. The relayaided cellular network is then presented as an alternative architecture for energy e cient transmission. The economic e ciency metric is proposed to maximise the economic pro tability of the relay network while taking into account the existing spectral-energy e ciency trade-o . To mitigate the interference from the RSs, the relay cooperation scheme for advanced relay-aided cellular networks is proposed
    corecore