505 research outputs found

    A Novel Method for Adaptive Control of Manufacturing Equipment in Cloud Environments

    Get PDF
    The ability to adaptively control manufacturing equipment, both in local and distributed environments, is becoming increasingly more important for many manufacturing companies. One important reason for this is that manufacturing companies are facing increasing levels of changes, variations and uncertainty, caused by both internal and external factors, which can negatively impact their performance. Frequently changing consumer requirements and market demands usually lead to variations in manufacturing quantities, product design and shorter product life-cycles. Variations in manufacturing capability and functionality, such as equipment breakdowns, missing/worn/broken tools and delays, also contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Events which are difficult for traditional planning and control systems to satisfactorily manage. For manufacturing scenarios such as these, the use of real-time manufacturing information and intelligence is necessary to enable manufacturing activities to be performed according to actual manufacturing conditions and requirements, and not according to a pre-determined process plan. Therefore, there is a need for an event-driven control approach to facilitate adaptive decision-making and dynamic control capabilities. Another reason driving the move for adaptive control of manufacturing equipment is the trend of increasing globalization, which forces manufacturing industry to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. One of the crucial objectives for Cloud Manufacturing is the coordinated planning, control and execution of discrete manufacturing operations in collaborative and networked environments. Therefore, there is also a need that such an event-driven control approach supports the control of distributed manufacturing equipment. The aim of this research study is to define and verify a novel and comprehensive method for adaptive control of manufacturing equipment in cloud environments. The presented research follows the Design Science Research methodology. From a review of research literature, problems regarding adaptive manufacturing equipment control have been identified. A control approach, building on a structure of event-driven Manufacturing Feature Function Blocks, supported by an Information Framework, has been formulated. The Function Block structure is constructed to generate real-time control instructions, triggered by events from the manufacturing environment. The Information Framework uses the concept of Ontologies and The Semantic Web to enable description and matching of manufacturing resource capabilities and manufacturing task requests in distributed environments, e.g. within Cloud Manufacturing. The suggested control approach has been designed and instantiated, implemented as prototype systems for both local and distributed manufacturing scenarios, in both real and virtual applications. In these systems, event-driven Assembly Feature Function Blocks for adaptive control of robotic assembly tasks have been used to demonstrate the applicability of the control approach. The utility and performance of these prototype systems have been tested, verified and evaluated for different assembly scenarios. The proposed control approach has many promising characteristics for use within both local and distributed environments, such as cloud environments. The biggest advantage compared to traditional control is that the required control is created at run-time according to actual manufacturing conditions. The biggest obstacle for being applicable to its full extent is manufacturing equipment controlled by proprietary control systems, with native control languages. To take the full advantage of the IEC Function Block control approach, controllers which can interface, interpret and execute these Function Blocks directly, are necessary

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    Knowledge-based Modelling of Additive Manufacturing for Sustainability Performance Analysis and Decision Making

    Get PDF
    Additiivista valmistusta on pidetty käyttökelpoisena monimutkaisissa geometrioissa, topologisesti optimoiduissa kappaleissa ja kappaleissa joita on muuten vaikea valmistaa perinteisillä valmistusprosesseilla. Eduista huolimatta, yksi additiivisen valmistuksen vallitsevista haasteista on ollut heikko kyky tuottaa toimivia osia kilpailukykyisillä tuotantomäärillä perinteisen valmistuksen kanssa. Mallintaminen ja simulointi ovat tehokkaita työkaluja, jotka voivat auttaa lyhentämään suunnittelun, rakentamisen ja testauksen sykliä mahdollistamalla erilaisten tuotesuunnitelmien ja prosessiskenaarioiden nopean analyysin. Perinteisten ja edistyneiden valmistusteknologioiden mahdollisuudet ja rajoitukset määrittelevät kuitenkin rajat uusille tuotekehityksille. Siksi on tärkeää, että suunnittelijoilla on käytettävissään menetelmät ja työkalut, joiden avulla he voivat mallintaa ja simuloida tuotteen suorituskykyä ja siihen liittyvän valmistusprosessin suorituskykyä, toimivien korkea arvoisten tuotteiden toteuttamiseksi. Motivaation tämän väitöstutkimuksen tekemiselle on, meneillään oleva kehitystyö uudenlaisen korkean lämpötilan suprajohtavan (high temperature superconducting (HTS)) magneettikokoonpanon kehittämisessä, joka toimii kryogeenisissä lämpötiloissa. Sen monimutkaisuus edellyttää monitieteisen asiantuntemuksen lähentymistä suunnittelun ja prototyyppien valmistuksen aikana. Tutkimus hyödyntää tietopohjaista mallinnusta valmistusprosessin analysoinnin ja päätöksenteon apuna HTS-magneettien mekaanisten komponenttien suunnittelussa. Tämän lisäksi, tutkimus etsii mahdollisuuksia additiivisen valmistuksen toteutettavuuteen HTS-magneettikokoonpanon tuotannossa. Kehitetty lähestymistapa käyttää fysikaalisiin kokeisiin perustuvaa tuote-prosessi-integroitua mallinnusta tuottamaan kvantitatiivista ja laadullista tietoa, joka määrittelee prosessi-rakenne-ominaisuus-suorituskyky-vuorovaikutuksia tietyille materiaali-prosessi-yhdistelmille. Tuloksina saadut vuorovaikutukset integroidaan kaaviopohjaiseen malliin, joka voi auttaa suunnittelutilan tutkimisessa ja täten auttaa varhaisessa suunnittelu- ja valmistuspäätöksenteossa. Tätä varten testikomponentit valmistetaan käyttämällä kahta metallin additiivista valmistus prosessia: lankakaarihitsaus additiivista valmistusta (wire arc additive manufacturing) ja selektiivistä lasersulatusta (selective laser melting). Rakenteellisissa sovelluksissa yleisesti käytetyistä metalliseoksista (ruostumaton teräs, pehmeä teräs, luja niukkaseosteinen teräs, alumiini ja kupariseokset) testataan niiden mekaaniset, lämpö- ja sähköiset ominaisuudet. Lisäksi tehdään metalliseosten mikrorakenteen karakterisointi, jotta voidaan ymmärtää paremmin valmistusprosessin parametrien vaikutusta materiaalin ominaisuuksiin. Integroitu mallinnustapa yhdistää kerätyn kokeellisen tiedon, olemassa olevat analyyttiset ja empiiriset vuorovaikutus suhteet, sekä muut tietopohjaiset mallit (esim. elementtimallit, koneoppimismallit) päätöksenteon tukijärjestelmän muodossa, joka mahdollistaa optimaalisen materiaalin, valmistustekniikan, prosessiparametrien ja muitten ohjausmuuttujien valinnan, lopullisen 3d-tulosteun komponentin halutun rakenteen, ominaisuuksien ja suorituskyvyn saavuttamiseksi. Valmistuspäätöksenteko tapahtuu todennäköisyysmallin, eli Bayesin verkkomallin toteuttamisen kautta, joka on vankka, modulaarinen ja sovellettavissa muihin valmistusjärjestelmiin ja tuotesuunnitelmiin. Väitöstyössä esitetyn mallin kyky parantaa additiivisien valmistusprosessien suorituskykyä ja laatua, täten edistää kestävän tuotannon tavoitteita.Additive manufacturing (AM) has been considered viable for complex geometries, topology optimized parts, and parts that are otherwise difficult to produce using conventional manufacturing processes. Despite the advantages, one of the prevalent challenges in AM has been the poor capability of producing functional parts at production volumes that are competitive with traditional manufacturing. Modelling and simulation are powerful tools that can help shorten the design-build-test cycle by enabling rapid analysis of various product designs and process scenarios. Nevertheless, the capabilities and limitations of traditional and advanced manufacturing technologies do define the bounds for new product development. Thus, it is important that the designers have access to methods and tools that enable them to model and simulate product performance and associated manufacturing process performance to realize functional high value products. The motivation for this dissertation research stems from ongoing development of a novel high temperature superconducting (HTS) magnet assembly, which operates in cryogenic environment. Its complexity requires the convergence of multidisciplinary expertise during design and prototyping. The research applies knowledge-based modelling to aid manufacturing process analysis and decision making in the design of mechanical components of the HTS magnet. Further, it explores the feasibility of using AM in the production of the HTS magnet assembly. The developed approach uses product-process integrated modelling based on physical experiments to generate quantitative and qualitative information that define process-structure-property-performance interactions for given material-process combinations. The resulting interactions are then integrated into a graph-based model that can aid in design space exploration to assist early design and manufacturing decision-making. To do so, test components are fabricated using two metal AM processes: wire and arc additive manufacturing and selective laser melting. Metal alloys (stainless steel, mild steel, high-strength low-alloyed steel, aluminium, and copper alloys) commonly used in structural applications are tested for their mechanical-, thermal-, and electrical properties. In addition, microstructural characterization of the alloys is performed to further understand the impact of manufacturing process parameters on material properties. The integrated modelling approach combines the collected experimental data, existing analytical and empirical relationships, and other data-driven models (e.g., finite element models, machine learning models) in the form of a decision support system that enables optimal selection of material, manufacturing technology, process parameters, and other control variables for attaining desired structure, property, and performance characteristics of the final printed component. The manufacturing decision making is performed through implementation of a probabilistic model i.e., a Bayesian network model, which is robust, modular, and can be adapted for other manufacturing systems and product designs. The ability of the model to improve throughput and quality of additive manufacturing processes will boost sustainable manufacturing goals

    Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process

    Full text link
    The increasing challenges to the grid stability posed by the penetration of renewable energy resources urge a more active role for demand response programs as viable alternatives to a further expansion of peak power generators. This work presents a methodology to exploit the demand flexibility of energy-intensive industries under Demand-Side Management programs in the energy and reserve markets. To this end, we propose a novel scheduling model for a multi-stage multi-line process, which incorporates both the critical manufacturing constraints and the technical requirements imposed by the market. Using mixed integer programming approach, two optimization problems are formulated to sequentially minimize the cost in a day-ahead energy market and maximize the reserve provision when participating in the ancillary market. The effectiveness of day-ahead scheduling model has been verified for the case of a real metal casting plant in the Nordic market, where a significant reduction of energy cost is obtained. Furthermore, the reserve provision is shown to be a potential tool for capitalizing on the reserve market as a secondary revenue stream

    Process Comprehension for Interoperable CNC Manufacturing

    Get PDF
    Over the last 40 years manufacturing industry has enjoyed a rapid growth with the support of various computer-aided systems (CAD, CAPP, CAM etc.) known as CAx. Since the first Numerically Controlled (NC) machine appeared in 1952, there have been many advances in CAx resource capabilities. The information integration and interoperability between different manufacturing resources has become an important and popular research area over the last decade. Computer Numerically Controlled (CNC) machines are an important link in the manufacturing chain and the major contributor to the production capacity of manufacturing industry today. However, most of the research has focused on the information integration of upper systems in the CAD/CAPP /CAM/CNC manufacturing chain, leaving the shop floor as an isolated information island. In particular, there is limited opportunity to capture and feed shopfloor knowledge back to the upper systems. Furthermore, the part programs for the machines are not exchangeable due to the. machine specific postprocessors. Thus there is a further need to consider information interoperability between different CNC machine and other systems. This research investigates the reverse transformation of the CNC part programmes into higher level of process information, entitled process comprehension, to enable the shopfloor interoperability. A novel framework of universal process comprehension is specified and designed. The framework provides a reverse direction of information flow from the CNC machine to upper CAx systems, enabling the interoperability and recycling of the shopfloor knowledge. A prototype implementation of the framework is realised and utilised to demonstrate the functionalities through three industrially inspired test components. The major contribution of this research to knowledge is the new vision of the shopfloor interoperability associated with process knowledge capture and reuse. The research shows that process comprehension of part programmes can provide an effective solution to the issues of the shopfloor interoperability and knowledge reuse in manufacturing industries.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computing tool accessibility of polyhedral models for toolpath planning in multi-axis machining

    Get PDF
    This dissertation focuses on three new methods for calculating visibility and accessibility, which contribute directly to the precise planning of setup and toolpaths in a Computer Numerical Control (CNC) machining process. They include 1) an approximate visibility determination method; 2) an approximate accessibility determination method and 3) a hybrid visibility determination method with an innovative computation time reduction strategy. All three methods are intended for polyhedral models. First, visibility defines the directions of rays from which a surface of a 3D model is visible. Such can be used to guide machine tools that reach part surfaces in material removal processes. In this work, we present a new method that calculates visibility based on 2D slices of a polyhedron. Then we show how visibility results determine a set of feasible axes of rotation for a part. This method effectively reduces a 3D problem to a 2D one and is embarrassingly parallelizable in nature. It is an approximate method with controllable accuracy and resolution. The method’s time complexity is linear to both the number of polyhedron’s facets and number of slices. Lastly, due to representing visibility as geodesics, this method enables a quick visible region identification technique which can be used to locate the rough boundary of true visibility. Second, tool accessibility defines the directions of rays from which a surface of a 3D model is accessible by a machine tool (a tool’s body is included for collision avoidance). In this work, we present a method that computes a ball-end tool’s accessibility as visibility on the offset surface. The results contain all feasible orientations for a surface instead of a Boolean answer. Such visibility-to-accessibility conversion is also compatible with various kinds of facet-based visibility methods. Third, we introduce a hybrid method for near-exact visibility. It incorporates an exact visibility method and an approximate visibility method aiming to balance computation time and accuracy. The approximate method is used to divide the visibility space into three subspaces; the visibility of two of them are fully determined. The exact method is then used to determine the exact visibility boundary in the subspace whose visibility is undetermined. Since the exact method can be used alone to determine visibility, this method can be viewed as an efficiency improvement for it. Essentially, this method reduces the processing time for exact computation at the cost of introducing approximate computation overhead. It also provides control over the ratio of exact-approximate computation

    MEG Upgrade Proposal

    Full text link
    We propose the continuation of the MEG experiment to search for the charged lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of the experiment, which aims for a sensitivity enhancement of one order of magnitude compared to the final MEG result, down to the 6×10146 \times 10^{-14} level. The key features of this new MEG upgrade are an increased rate capability of all detectors to enable running at the intensity frontier and improved energy, angular and timing resolutions, for both the positron and photon arms of the detector. On the positron-side a new low-mass, single volume, high granularity tracker is envisaged, in combination with a new highly segmented, fast timing counter array, to track positron from a thinner stopping target. The photon-arm, with the largest liquid xenon (LXe) detector in the world, totalling 900 l, will also be improved by increasing the granularity at the incident face, by replacing the current photomultiplier tubes (PMTs) with a larger number of smaller photosensors and optimizing the photosensor layout also on the lateral faces. A new DAQ scheme involving the implementation of a new combined readout board capable of integrating the diverse functions of digitization, trigger capability and splitter functionality into one condensed unit, is also under development. We describe here the status of the MEG experiment, the scientific merits of the upgrade and the experimental methods we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted to the Paul Scherrer Institute Research Committee for Particle Physics at the Ring Cyclotron. 131 Page
    corecore