2,888 research outputs found

    Electrical impedance spectroscopy-based nondestructive testing for imaging defects in concrete structures

    Full text link
    An electrical impedance spectroscopy-based nondestructive testing (NDT) method is proposed to image both cracks and reinforcing bars in concrete structures. The method utilizes the frequency-dependent behavior of thin insulating cracks: low-frequency electrical currents are blocked by insulating cracks, whereas high-frequency currents can pass through the conducting bars without being blocked by thin cracks. Rigorous mathematical analysis relates the geometric structures of the cracks and bars to the frequency-dependent Neumann-to-Dirichlet data. Various numerical simulations support the feasibility of the proposed method

    Ultrasonically stimulated thermography for crack detection of turbine blades

    Get PDF
    The hot gas components in a gas turbine have to withstand extreme loads. As failure of turbine blades could have catastrophic consequences, the integrity of the entire engine must always be guaranteed, hence quick and reliable structural health monitoring (SHM) or nondestructive testing techniques (NDT) are essential. In this work, an ultrasonic stimulated thermographic test system was developed to efficiently detect cracks in turbine blades. The used technique is based on the ultrasound excitation with a piezo actuator, where the contact surfaces of the crack are excited and generate frictional heat, which is captured by a thermal imaging camera. A method was developed, where the temperature increase is measured as a function of the electrical energy supply to the actuator. This allows understanding crack topology and the prediction of preloads in the crack. Numerical analysis were conducted for optimising the frequency to be excited for the type of damage experienced by the blade and for understanding the basic physics of the coupling between cracks configuration, local crack velocity and temperature increase. The procedure presented helps to efficiently detect cracks and to optimize the inspection cycles of these components.</p

    Non-destructive evaluation of concrete using a capacitive imaging technique : preliminary modelling and experiments

    Get PDF
    This paper describes the application of capacitive imaging to the inspection of concrete. A two-dimensional finite-element method was employed to model the electric field distribution from capacitive imaging probe, and how it interacts with concrete samples. Physical experiments with prototype capacitive imaging probes were also carried out. The proof-of-concept results indicated that the capacitive imaging technique could be used to detect cracks on the surface of concrete samples, as well as sub-surface air voids and steel reinforcement bars

    Space shuttle: Structural integrity and assessment study

    Get PDF
    A study program was conducted to determine the nondestructive evaluation (NDE) requirements and to develop a preliminary nondestructive evaluation manual for the entire space shuttle vehicle. The rationale and guidelines for structural analysis and NDE requirements development are discussed. Recommendations for development of NDE technology for the orbiter thermal protection system and certain structural components are included. Recommendations to accomplish additional goals toward space shuttle inspection are presented

    A probabilistic approach for the optimisation of ultrasonic array inspection techniques

    Get PDF
    AbstractUltrasonic arrays are now used routinely for the inspection of engineering structures in order to maintain their integrity and assess their performance. Such inspections are usually optimised manually using empirical measurements and parametric studies which are laborious, time-consuming, and may not result in an optimal approach. In this paper, a general framework for the optimisation of ultrasonic array inspection techniques in NDE is presented. Defect detection rate is set as the main inspection objective and used to assess the performance of the optimisation framework. Statistical modelling of the inspection is used to form the optimisation problem and incorporate inspection uncertainty such as crack type and location, material properties and geometry, etc. A genetic algorithm is used to solve the global optimisation problem. As a demonstration, the optimisation framework is used with two objective functions based on array signal amplitude and signal-to-noise ratio (SNR). The optimal use of plane B-scan and total focusing method imaging algorithms is also investigated. The performance of the optimisation scheme is explored in simulation and then validated experimentally. It has been found that, for the inspection scenarios considered, TFM provides better detectability in a statistical sense than plane B-scan imaging in scenarios where uncertainty in the inspection is expected

    Combined use of GPR and Other NDTs for road pavement assessment: an overview

    Get PDF
    Roads are the main transportation system in any country and, therefore, must be maintained in good physical condition to provide a safe and seamless flow to transport people and goods. However, road pavements are subjected to various defects because of construction errors, aging, environmental conditions, changing traffic load, and poor maintenance. Regular inspections are therefore recommended to ensure serviceability and minimize maintenance costs. Ground-penetrating radar (GPR) is a non-destructive testing (NDT) technique widely used to inspect the subsurface condition of road pavements. Furthermore, the integral use of NDTs has received more attention in recent years since it provides a more comprehensive and reliable assessment of the road network. Accordingly, GPR has been integrated with complementary NDTs to extend its capabilities and to detect potential pavement surface and subsurface distresses and features. In this paper, the non-destructive methods commonly combined with GPR to monitor both flexible and rigid pavements are briefly described. In addition, published work combining GPR with other NDT methods is reviewed, emphasizing the main findings and limitations of the most practical combination methods. Further, challenges, trends, and future perspectives of the reviewed combination works are highlighted, including the use of intelligent data analysis.Xunta de Galicia | Ref. ED431F 2021/08Ministerio de Ciencia e Innovación | Ref. RYC2019–026604-

    Autonomous robotic system for thermographic detection of defects in upper layers of carbon fiber reinforced polymers

    Get PDF
    Carbon Fiber Reinforced Polymers (CFRPs) are composites whose interesting properties, like high strength-to-weight ratio and rigidity, are of interest in many industrial fields. Many defects affecting their production process are due to the wrong distribution of the thermosetting polymer in the upper layers. In this work, they are effectively and efficiently detected by automatically analyzing the thermographic images obtained by Pulsed Phase Thermography (PPT) and comparing them with a defect-free reference. The flash lamp and infrared camera needed by PPT are mounted on an industrial robot so that surfaces of CFRP automotive components, car side blades in our case, can be inspected in a series of static tests. The thermographic image analysis is based on local contrast adjustment via UnSharp Masking (USM) and takes also advantage of the high level of knowledge of the entire system provided by the calibration procedures. This system could replace manual inspection leading to a substantial increase in efficiency
    • …
    corecore