137 research outputs found

    A Novel Fusion Framework Based on Adaptive PCNN in NSCT Domain for Whole-Body PET and CT Images

    Get PDF
    The PET and CT fusion images, combining the anatomical and functional information, have important clinical meaning. This paper proposes a novel fusion framework based on adaptive pulse-coupled neural networks (PCNNs) in nonsubsampled contourlet transform (NSCT) domain for fusing whole-body PET and CT images. Firstly, the gradient average of each pixel is chosen as the linking strength of PCNN model to implement self-adaptability. Secondly, to improve the fusion performance, the novel sum-modified Laplacian (NSML) and energy of edge (EOE) are extracted as the external inputs of the PCNN models for low- and high-pass subbands, respectively. Lastly, the rule of max region energy is adopted as the fusion rule and different energy templates are employed in the low- and high-pass subbands. The experimental results on whole-body PET and CT data (239 slices contained by each modality) show that the proposed framework outperforms the other six methods in terms of the seven commonly used fusion performance metrics

    Solar Power Plant Detection on Multi-Spectral Satellite Imagery using Weakly-Supervised CNN with Feedback Features and m-PCNN Fusion

    Full text link
    Most of the traditional convolutional neural networks (CNNs) implements bottom-up approach (feed-forward) for image classifications. However, many scientific studies demonstrate that visual perception in primates rely on both bottom-up and top-down connections. Therefore, in this work, we propose a CNN network with feedback structure for Solar power plant detection on middle-resolution satellite images. To express the strength of the top-down connections, we introduce feedback CNN network (FB-Net) to a baseline CNN model used for solar power plant classification on multi-spectral satellite data. Moreover, we introduce a method to improve class activation mapping (CAM) to our FB-Net, which takes advantage of multi-channel pulse coupled neural network (m-PCNN) for weakly-supervised localization of the solar power plants from the features of proposed FB-Net. For the proposed FB-Net CAM with m-PCNN, experimental results demonstrated promising results on both solar-power plant image classification and detection task.Comment: 9 pages, 9 figures, 4 table

    Survey on wavelet based image fusion techniques

    Get PDF
    Image fusion is the process of combining multiple images into a single image without distortion or loss of information. The techniques related to image fusion are broadly classified as spatial and transform domain methods. In which, the transform domain based wavelet fusion techniques are widely used in different domains like medical, space and military for the fusion of multimodality or multi-focus images. In this paper, an overview of different wavelet transform based methods and its applications for image fusion are discussed and analysed

    Physiologically-Based Vision Modeling Applications and Gradient Descent-Based Parameter Adaptation of Pulse Coupled Neural Networks

    Get PDF
    In this research, pulse coupled neural networks (PCNNs) are analyzed and evaluated for use in primate vision modeling. An adaptive PCNN is developed that automatically sets near-optimal parameter values to achieve a desired output. For vision modeling, a physiologically motivated vision model is developed from current theoretical and experimental biological data. The biological vision processing principles used in this model, such as spatial frequency filtering, competitive feature selection, multiple processing paths, and state dependent modulation are analyzed and implemented to create a PCNN based feature extraction network. This network extracts luminance, orientation, pitch, wavelength, and motion, and can be cascaded to extract texture, acceleration and other higher order visual features. Theorized and experimentally confirmed cortical information linking schemes, such as state dependent modulation and temporal synchronization are used to develop a PCNN-based visual information fusion network. The network is used to fuse the results of several object detection systems for the purpose of enhanced object detection accuracy. On actual mammograms and FLIR images, the network achieves an accuracy superior to any of the individual object detection systems it fused. Last, this research develops the first fully adaptive PCNN. Given only an input and a desired output, the adaptive PCNN will find all parameter values necessary to approximate that desired output
    • …
    corecore