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Abstract

In this research, pulse coupled neural networks (PCNNs) are analyzed and evaluated for use

in primate vision modeling. An adaptive PCNN is developed that automatically sets near-optimal

parameter values to achieve a desired output. For vision modeling, a physiologically motivated

vision model is developed from current theoretical and experimental biological data. The biological

vision processing principles used in this model, such as spatial frequency filtering, competitive

feature selection, multiple processing paths, and state dependent modulation are analyzed and

implemented to create a PCNN based feature extraction network. This network extracts luminance,

orientation, pitch, wavelength, and motion, and can be cascaded to extract texture, acceleration and

other higher order visual features. Theorized and experimentally confirmed cortical information

linking schemes, such as state dependent modulation and temporal synchronization are used to

develop a PCNN-based visual information fusion network. The network is used to fuse the results

of several object detection systems for the purpose of enhanced object detection accuracy. On actual

mammograms and FLIR images, the network achieves an accuracy superior to any of the individual

object detection systems it fused. Last, this research develops the first fully adaptive PCNN. Given

only an input and a desired output, the adaptive PCNN will find all parameter values necessary

to approximate that desired output. A simplified, mathematically equivalent, persistent signal

PCNN neuron model is developed and gradient descent is applied to derive parameter adaptation

equations (training rules) for all parameters. Implementing these equations forms a fully adaptive

PCNN that minimizes squared error between the actual and desired output. All equations can be

applied after PCNN execution is complete allowing adaptation to be added to an existing PCNN

without any internal modifications.

xi



PHYSIOLOGICALLY-BASED VISION MODELING APPLICATIONS AND

GRADIENT DESCENT-BASED PARAMETER ADAPTATION OF PULSE

COUPLED NEURAL NETWORKS

L Introduction

1.1 Historical Background

Computer vision is a large and growing area of research within both the civilian and military

communities. Advances in computer vision would allow many tasks to be performed with a quality

and precision currently unachievable. One area of computer vision that is still in its infancy is

object detection. Three fundamental questions that arise in object detection research are: 1) which

characteristics do we extract, 2) how do we extract these characteristics, and 3) how do we combine

the features for use in a decision making process? In an attempt to answer these questions, this

research examines the methods the biological vision system uses for object detection.

The biological vision system is the best general object detection/recognition system known

to exist. Solutions to many of the problems man wishes to solve currently exist in nature. Nature

has already found a solution to the problem of object detection. The biological vision system can

perform object detection feats that are beyond the capability of current technology. Our vision

system filters unwanted information and combines features in a way that allows us to detect and

identify objects in our surroundings. It combines many types of visual information to construct our

view of the external world. Size, form, motion, color, and texture are identified and combined in a

way which allows us to detect and recognize objects. Understanding and simulating the methods

the biological vision system uses to extract, select, and combine visual features for object detection

is one focus of this research.



In an attempt to discover the secrets of the biological vision system, many physiologically

motivated object detection/recognition models have been designed and applied with varying suc-

cess (25, 12, 35, 36, 37, 38, 39, 40, 60, 66). A tool often used in these object detection/recognition

systems is the artificial neural network (77, 66, 86, 57, 67, 66, 12, 11, 28, 79, 18, 74, 1, 17, 78). These

networks are biologically inspired combinations of artificial neurons used to simulate theorized neu-

ronal processing. Several neural networks, such as the multi-layer perceptron (back propagation

network), adaptive resonance theory network (ART), and Hopfield network, have dominated the

vision system modeling area of research (77, 93, 80).

A new neural network called the pulse coupled neural network (PCNN) has shown great

promise in the areas of image processing, scene segmentation, pattern recognition, auditory recog-

nition, object time signatures and syntactical computing (84, 76, 22, 56, 83, 54, 52, 49, 43, 55,

5, 53, 50, 73, 95, 4, 51, 42, 41). The PCNN contains several unique physiologically motivated

features not contained in the mainstream neural networks (23, 46, 45, 47, 74). The PCNN models

the physiologically motivated phenomenon of temporal synchronization which is theorized as the

method used to link related information within the brain. It is theorized that biological neurons

synchronize and pulse at the same frequency to represent objects or pieces of objects in the visual

system (32, 23, 67, 92). The PCNN implements this pulse level synchronization through a phys-

iologically motivated modulatory mechanism. This mechanism can also be used to model other

biologically observed phenomenon such as state dependent modulation which can be used in fea-

ture extraction (64). These unique features make the PCNN highly suitable for modeling processes

in the biological vision system.

A drawback of using the PCNN is the large number of parameters whose values that must be

determined. In its simplest form, the PCNN contains 25 adjustable parameters. Many parameters

are dependent upon other parameters which makes achieving a desired output difficult (6). To

date, guidance on setting PCNN parameters is almost non-existent and no PCNN currently exists
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that can automatically adapt parameter values to achieve a desired output. This research extends

the state-of-art in PCNN technology by developing the first adaptive PCNN. Given only an input

and a desired output, the adaptive PCNN algorithm will find all parameter values necessary to

approximate the desired output.

1.2 Problem Statement and Scope

This research 1) demonstrates the usefulness of the PCNN for modeling observed biological

feature extraction, 2) demonstrates the usefulness of the PCNN for modeling theorized biological

information fusion, and 3) develops the first PCNN that can automatically adapt parameter values

to achieve a desired output.

Current knowledge of the primate vision system is examined for methods that can be used

to advance the feature extraction and information fusion portion of the computer vision quest.

Current theoretical and experimental data are used to model biological vision processes using the

PCNN. The usefulness of this vision model for feature extraction, information fusion, and object

detection is demonstrated on the real-world problems of breast cancer detection and SCUD missile

launcher detection. Synopses of the three focus areas of this research are presented below.

Physiologically motivated feature extraction using the PCNN and Gabor filters. Feature ex-

traction is modeled using the biologically observed vision processes of spatial frequency filter-

ing (3, 20, 30, 62, 72, 88), competitive feature selection (38, 60, 25, 66, 40, 39, 12, 36, 35, 37), and

state dependent modulation (23, 64). Mechanisms inherent to the PCNN are used to implement

these feature extraction principles to form a physiologically motivated feature extraction network.

To remove unwanted visual information and focus on desired objects, these same vision principles

are used to implement a focus of attention mechanism within the network. Features such as (but not

limited to) orientation, pitch, intensity, wavelength, and motion at each location in a visual scene

3



can be extracted with this network. Feature extraction of a subset of these features is demonstrated

on gray-scale images.

Physiologically motivated information fusion for object detection using the PCNN. Theorized

and experimentally confirmed cortical information linking schemes, such as state dependent modu-

lation and temporal synchronization (32, 23, 64) are used as possible methods of visual information

fusion. The PCNN is used to implement these physiologically motivated information linking meth-

ods to form a physiologically motivated information fusion network. Using the features and focus

of attention provided by the feature extraction network, the information fusion network performs

object detection. On two sets of images, the information fusion network produces a reduced false

alarm rate compared to two published object detection techniques.

An adaptive PCNN. Gradient descent-based backward error propagation is used to derive

parameter adaptation equations (training rules) for all PCNN parameters. Through an analysis

of the PCNN neuron, connectivity, and pulse coupling mechanism, adaptation equations are de-

rived for the purpose of automatically adjusting all parameters to approximate a desired output.

Implementing these equations forms a fully adaptive PCNN which automatically adapts param-

eter values to minimize squared error between the actual and desired output. All equations can

be implemented external to the PCNN thus removing any need to internally modify an existing

PCNN.

1.3 Contributions

As previously stated, the PCNN has not been used for information fusion or physiologically

motivated feature extraction and no adaptive PCNN currently exist. The research contributions

made in these areas are briefly reviewed below.

1. The first PCNN-based physiologically motivated feature extraction system. This research

applies primate vision processing principles such as spatial frequency filtering, state de-

4



pendent modulation, temporal synchronization, competitive feature selection and mul-

tiple processing paths to create the first physiologically motivated PCNN-based image

feature extraction network. This is the first PCNN-based system to simulate feature

extraction and attention focus observed in the biological vision system.

2. The first PCNN-based physiologically motivated information fusion system. This research

develops the first PCNN-based information fusion network. Physiologically motivated

information fusion theories are analyzed and implemented in this network. The network

is used to fuse the results of several object detection techniques to improve object de-

tection accuracy. The feature extraction and object detection properties of the image

fusion network are demonstrated on mammograms and forward looking infrared (FLIR)

images. The network removed 46 percent of the false detections while removing only

seven percent of the true detections in the mammograms and removed 93 percent of the

false detections without removing any true detections in the FLIR images. This portion

of this dissertation research has been accepted for publication in IEEE Transactions on

Neural Networks.

3. The first adaptive PCNN. Using gradient descent-based backward error propagation,

this research develops the first fully adaptive PCNN. Given only an input and a desired

output, the adaptive PCNN finds all parameter values necessary to approximate that

desired output. The adaptive PCNN automatically adapts parameter values to minimize

mean squared error between the actual and desired output. To demonstrate its useful-

ness, the adaptive PCNN was used to segment magnetic resonance images (MRI) of the

brain. Adaptation was used to find parameter values that would cause the PCNN to

approximate two MRI segmentation processes used in model-based vision research (2).

For a given set of MRI images, the adaptive PCNN reproduced the results of the first

process with 100% accuracy and approximated the more difficult second process with

90% accuracy.
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1.4 Dissertation Organization

This dissertation is organized into six chapters. The following chapter provides background

information on the PCNN and the primate vision system. The PCNN information presents the

high level PCNN architecture, a detailed explanation of the PCNN neuron, the function of each

PCNN parameter, and the physiological motivation for its unique characteristics. The vision system

section develops and presents a model of the primate vision system. Based on current experimental

and theoretical knowledge, this model presents the information flow and processing believed to exist

in the system. Key vision processing principles described in this model are applied in Chapters III

and IV to design an object detection system.

Chapter III. Feature extraction is modeled using the principles of spatial frequency filtering (3,

20, 30, 62, 72, 88), competitive feature selection (38, 60, 25, 66, 40, 39, 12, 36, 35, 37), and state

dependent modulation (23, 64) which experimental data suggest exist in the primate vision system.

The model is implemented using the PCNN and Gabor filters. Feature extraction is demonstrated

on gray-scale images. Physiologically motivated focus of attention is added to the system and

demonstrated.

Chapter IV. Theorized and experimentally confirmed cortical information linking schemes,

such as state dependent modulation and temporal synchronization (32, 23, 64) are used to develop a

visual information fusion network. The network is used to fuse the results of several object detection

techniques. The object detection capability of the network is demonstrated on 30 mammograms

and 50 FLIR images. The detection and false alarm rate of the PCNN based network is compared

to rates of other published detection techniques using these real world images.

Chapter V. A mathematically equivalent model of the PCNN neuron is developed. From this

model, adaptation equations are derived for all PCNN parameters. Additional PCNN knowledge

is used to place the equations in a form that is suitable for application after PCNN processing is

6



complete. Adaptation is individually demonstrated for each parameter, and the entire adaptive

PCNN is demonstrated on actual MRIs.

Chapter VI. The final chapter summarizes key conclusions and lists the individual contribu-

tions made throughout this research effort.
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I. Background

The first section of this chapter presents a tutorial on the PCNN's architecture, parameters, and

function. The biologically observed phenomenon of state dependent modulation and temporal

synchronization are presented first as a foundation for selecting the PCNN for use in vision mod-

eling. The PCNNs modulatory pulse-based linking is discussed in detail. The second section of

this chapter develops a vision model based on experimental and theoretical data on the primate

vision system. The model is simplified to contain only the information necessary to support the

new information extraction and fusion approaches being developed.

The primate vision processing principles, such as state dependent modulation, temporal syn-

chronization, and multiple processing paths described in this chapter are implemented in later

chapters using the PCNN. The PCNN's modulatory pulsed-based linking capability explained in

this section is used in Chapters III and IV to simulate state dependent modulation. The PCNN's

segmentation capability, which is due to pulse synchronization, is used to simulate biological tem-

poral synchronization.

2.1 The Pulse Coupled Neural Network (PCNN)

2.1.1 Overview. The PCNN is a physiologically motivated artificial neural network com-

posed of artificial spiking neurons interconnected via multiplicative links. This artificial neural

network is selected for use in this research because it contains the modulatory pulse-based linking

and pulse synchronization needed to simulate the temporal synchronization and state dependent

modulation observed in the primate visual cortex. The PCNN is used to implement a feature

extraction and image fusion network based on these primate vision processing principles.

2.1.2 Physiological Motivation for Pulse-based Linking. As is discussed in the vision

section of this chapter, the primate vision system separates the information contained within a visual

image into various visual features (97). There is no known single place in the brain where these
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features (orientation, color, form, texture, motion, etc.) are brought back together and combined.

Many current theories propose that the neuronal pulses that transport these features synchronize

in a way which associates the information to represent the original object (32, 23, 67, 92, 22, 21).

2.1.2.1 Temporal Synchronization. In 1987, stimulus-related neural oscillations

were discovered in the primary visual cortex of cats (32, 23, 22, 21). These findings together with

theoretical proposals (13, 9, 10, 91, 8, 82, 84, 76, 94, 24) support the hypothesis that neuronal

pulse synchronization might be a mechanism that links local visual features into coherent global

percepts. Two types of synchronization have been theorized, stimulus-forced synchronization and

stimulus-induced synchronization. The first type is a direct result of the input stimulus. It is not

oscillatory, but follows the time course of the stimulus transients. This type of synchronization

is believed to play a major role in all areas of the visual cortex. The second type, stimulus-

induced synchronization is believed to be produced via a self-organizing process among local neural

oscillations that are mutually connected (32).

It is believed that stimulus-induced synchronization mainly supports the formation of more

complex, "attentive percepts" that require iterative interactions among different processing levels

and memory (23). Visual segments that are related in some fashion will synchronize and pulse in

unison. These synchronized segments represent objects, or segments of objects within a visual scene.

This segmentation provides objects through which dissimilar features can be associated. Gray and

Singer theorize that this association is performed by temporal synchronization (32). Through this

synchronization, the visual image is represented as an ensemble of synchronously pulsing objects.

This is a key concept and is used throughout this research. This concept is applied to segment

and combine information in Chapters III and IV. The modulatory linking and pulse synchronization

inherent to the PCNN is used to simulate both types of temporal synchronization described above.
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2.1.2.2 State Dependent Modulation. Biological studies show the vision system per-

forms substantial editing to focus attention and de-emphasizes irrelevant information (64). Even at

early stages of processing, preference is given to elements to which the observer is paying attention.

The response of many neurons double when the stimulus is a target of attention. State dependent

signals are believed to be the stimulus that causes this preferential treatment. These are signals

that originate from visual areas other than the retina, and are believed to modulate a neuron's re-

sponse to any object upon which attention is focused. The signals may originate from areas in the

visual cortex, or from the higher processing areas in the parietal and temporal lobes. The signals

modulate a neuron's response to a stimulus within its receptive field causing a state of focused at-

tention on the object causing the stimulus. This phenomenon is called state dependent modulation

and is a method for one area of processing to superimpose its findings, or expectations on another

area (64). The modulatory effect of state dependent modulations are believed to focus attention

by elevating the perception of objects of interest effectively suppressing unneeded information in a

visual scene.

This is a key concept and is applied throughout this research. This concept is used in Chapters

III and IV to transfer information between processing units. The modulatory linking inherent to

the PCNN is used to simulate state dependent modulation.

2.1.3 The Eckhorn Neuron. The PCNN uses the Eckhorn model spiking neuron (23),

shown in Figure 1. The Eckhorn neuron models the pulse height, duration, repetition rate, re-

fractory period, and modulatory inter-neural linking observed in biological dendrites. The most

notable aspects of the Eckhorn neuron are the dendritic branch and the pulse generator sections.

The dendritic branch contains feeding inputs which are modulated by linking inputs. Each input

contains a leaky integrator which models a dendritic synapse. The leaky integrator converts in-

coming pulses into a persistent signal. The time constant (TF or TL) of the leaky integrator models

the decay rate of neurotransmitters within the synapse. The pulse generator section is an oscillator
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Figure 1 The Eckhorn artificial neuron used within the PCNN.

that produces an output pulse train of very short duration pulses whose frequency is based on input

magnitude. The pulse generator time constant rS models the refractory period that occurs after a

biological dendrite fires. Table 1 gives the equations required to implement a discrete time PCNN.

The equations are presented in a digital filtering format, but the equation set can be rewritten in

a format showing convolution (23). For detailed discussion of the PCNN see Eckhorn (23) and

Johnson (46, 45, 47).

The remainder of this section describes the PCNN using simpler, but mathematically equiv-

alent equations. To produce this description it is necessary to specify operating assumptions for

the PCNN even though all terms have not been defined. All equations from this point on refer

to a PCNN operating in a "pulse-once" scenario unless noted otherwise. The pulse-once scenario

restricts each neuron to pulsing only once during PCNN execution. Once a neuron has pulsed, it

becomes dormant and produces no additional output for the remainder of the PCNN execution.

The reciprocal of the time (output pulse period) of each neuron's output pulse is used as the output

frequency of the neuron. The purpose for this restriction is to remove a type of harmonic distortion

11



Table 1 Digital filter equations to implement a PCNN.

Fjk[n] = Fjk[n - 1]e( ' ) + vFxj[n]Mjk

Fk[n] =Z 1 Fjk[n]

Lik [n] =ik [n - 1]e( ) + Yi[n]Wik

Lk[n] = E'=IL i k [n]

Ok[n] = Ok[n - 1]e(74 ) + VSYk[n]

Uk[n] = Fk[n](1 + 3Lk[n])

Yk [n] = 1 if Uk [n] _ Ok [n] + 00, 0 otherwise

Variables
n time index k counting index of neuron
i index of neuron on linking input j index of neuron/pixel on feeding input
X j  jth feeding input Mk weight applied to jk t h feeding input
Fjk jkth feeding leaky integrator output 7F  feeding leaky integrator time constant
Y, output of ith neighboring neuron Wik weight applied to ikth linking input
Lik ikih linking leaky integrator output rL linking leaky integrator time constant
Lk total linking input into kth neuron Fk total feeding input into kth neuron
VF feeding input magnitude adjustment VL linking input magnitude adjustment
Uk total input into the kth neuron /3 linking strength multiplier
Ok kth firing threshold r s  threshold leaky integrator time const.
00 firing threshold offset VS pulse generator magnitude adjustment
1 number of linking inputs f number of feeding inputs

from the PCNN output. When PCNN neurons are allowed to pulse multiple times, undesirable

pulse synchronization occurs between a neuron and any neighboring neurons whose output period

is a multiple of its own. This undesirable synchronization can be equated to harmonic distortion.

Neurons will synchronize even if they do not meet the requirements of pulse synchronization dis-

cussed later in this chapter. To avoid this harmonic synchronization, each neuron is restricted to

pulsing only once. In this scenario, pulse based synchronization satisfies the similarity definition

and produces useful segmentation. Some equations for a PCNN operating in a multiple-pulse sce-

nario will differ from the equations in this paper because of signal accumulation that takes place

in the leaky integrators over time.
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Figure 2 Example feeding and linking connections of a single neuron within the PCNN.

2.1.4 PCNN Architecture. Figure 2 shows an example of the feeding and linking connec-

tions within the PCNN. Only the external connections of a single neuron are shown for clarity.

Every neuron in the PCNN would have external connections identical to those shown in the figure.

This figure shows the PCNN connected to a digital image as an input and produces a digital image

as an output. This is the most common connection architecture used in this research. Alternatively,

the PCNN could receive its input from another PCNN, and/or send its output to another PCNN.

When PCNN inputs are connected to persistent sources, such as image pixels, the leaky integrators

on those inputs are omitted since their function is not needed.

When processing digital images, the PCNN typically contains one neuron for every pixel in the

image. A single feeding input (Fjk) of the (kth) neuron is connected to a spatially corresponding

image pixel (Xk). Often, each neuron contains many feeding inputs which are connected in a

symmetrical pattern to pixels surrounding the neuron's spatially corresponding pixel as shown in

Figure 2. Typically, the feeding connections are connected to all surrounding neurons within some

predetermined radius, known as the feeding radius.
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Figure 3 Sideview of example feeding and linking connections of a single neuron within the
PCNN.

Figure 3 shows a side view of a PCNN. The linking inputs (Lik) of each neuron are connected

to the outputs (Y) of neighboring neurons as can be seen in the figure. These linking connections

are typically connected to the outputs of all neighboring neurons within some predetermined radius.

This radius is know as the linking radius. The linking connections carry the pulsed signals which

are responsible for pulse synchronization (discussed in section 2.1.6).

The output of the PCNN is a pulsed signal. Each neuron output signal (Yk) is converted

to an intensity proportional to its pulse frequency. This intensity is used as the intensity of the

corresponding (kth) pixel in the output image.

2.1.5 The Function of the PCNN Parameters. The PCNN contains eight constants and

two sets of weights. These parameters perform the following three general functions.

1. Scaling inputs from feeding and linking inputs (linking strength (/3), feeding weights

(Mjk), linking weights(Wik).

2. Scaling internal signals to a desired range (magnitude adjustment constants for feeding

inputs (VF), linking inputs (VL), and pulse generator (VS)).
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3. Adjusting the conversions between pulses and magnitudes (time constants for feeding

input leaky integrators (TF), linking input leaky integrators (L), and pulse generator

(rs), and firing threshold offset (0))

The sections below briefly describe the role of each PCNN parameter. For notational simplicity,

the k subscript is omitted on all variables. All described variables belong to the kth neuron.

2.1.5.1 The Pulse Generator Leaky Integrator Time Constant (TS). The time

constant r S of the leaky integrator in the pulse generator section controls the resolution of the

PCNN output. The value of rs determines the number of distinct output pulse periods the pulse

generator can produce. This parameter is positive and can be equated to bandwidth. The PCNN

processes input values as if they were in a sorted list. The PCNN starts by processing the input

values with the largest magnitudes, then moving to input values of lower magnitudes. 7-S controls

the range of values processed at each step through the list by controlling the amount the firing

threshold decays during each unit of time. A decision to pulse or not to pulse is made by each

neuron at each time step during PCNN execution. A larger value of rS causes the firing threshold

to decay less during each time step. A larger time constant allows for more timesteps to occur

over a given range of input values (e.g., 1.0 to 0.9). This greater number of timesteps allows the

generation of more pulses to represent that input range. This provides a finer output resolution

which equates to a greater output bandwidth.

As the PCNN starts operation at time t = 0, the value of the firing threshold 0 for each neuron

is at 0 which causes each neuron to pulse regardless of the magnitude of its input. Within the pulse

generator, this unit area output pulse is rescaled by the magnitude adjustment constant Vs and

fed back to charge a leaky integrator. The output of this leaky integrator is the firing threshold

(0). This scaled pulse charges the leaky integrator which causes the firing threshold to rise to the

value Vs before time t = 1 is reached. For this reason, 0 = V S is considered the initial condition of

each PCNN neuron, and time t = 1 is the first timestep an output pulse can be generated. Given
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this initial condition and a pulse-once scenario, the pulse generator maps each value of its input

(U) to an output pulse period of

T = [--rSln(-U -)l for 9O <U<Vs (1)
Vs_

T=1 for U>Vs

T = oo (no pulse produced) for U< 0

where [.1 is the ceiling operator which rounds up any fractional number to the next largest integer,

U is the input magnitude into the pulse generator, Oo is the firing threshold offset, and Vs is the

pulse generator magnitude adjustment constant. A single pulse cannot have a pulse period, but

the initial condition of all neurons pulsing at t = 0 provides a second pulse from which a period

can be deduced. Since the initial pulse is at t = 0, the pulsing time of the pulse produced during

execution is also the pulses period.

2.1.5.2 The Global Linking Strength (/). The parameter 3 is a single constant that

controls how the pulse period of a neuron is influenced by the output of neighboring neurons. It

scales the total linking input value before that value modulates the feeding input. Larger values of

/3 causes greater pulse synchronization.

2.1.5.3 The Linking Weights (W). The linking weights (W) scale the magnitudes

of the linking pulses received from neighboring neurons. Each linking weight is independent of all

other weights in the neuron. The linking radius is the distance in any direction that a neuron has

linking connections to neighboring neurons. Often the linking radius corresponds to the number of

neurons in any direction. A square linking pattern is often used since it is easily implemented. All

examples presented in this disertation use a square linking pattern, but the equations are shape
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independent. A large linking radius allows a large number of neurons to influence the pulse rate of a

single neuron. This group influence gives a smoothing effect to the segmented output produced by

the PCNN. Radius size can be compared to neighborhood averaging where a larger neighborhood

produces a smoother output.

2.1.5.4 The Feeding and Linking Input Leaky Integrator Time Constants (7F and rL).

The purpose of the leaky integrators on the feeding and linking inputs is to convert a series of

input pulses into a persistent signal. The PCNN segments input values based on magnitude and

the leaky integrators convert pulsed inputs into magnitudes. The leaky integrators accumulate

incoming pulses and produce a persistent signal which allows PCNN neurons with input pulse trains

of similar frequencies to synchronize even if the pulse trains are not in phase. The magnitude of

the leaky integrator output is a function of the input pulse train frequency and the leaky integrator

time constant. Figure 4 shows the output of a leaky integrator with a pulse train input. The input
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Figure 4 Output of leaky integrator with pulse train input (period=10)

pulse train has a period (T) of 10 and the leaky integrator has a time constant (r) of 100. As time
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(t) becomes larger and larger, the maximum output magnitude (0) of a leaky integrator, with a

pulse train input, converges to

- -T' (2)1 - exp7

As can be seen in Figure 4, for r = 100 the leaky integrator output converges after several hundred

time steps.

2.1.5.5 The Magnitude Adjustment Constants (VF, VL, and VS). As shown in

equation (1) and in Figure 5, the pulse generator output is a logarithmic function of its input.

The pulse generator only produces a one-to-one mapping when input values are in the range from

0 to Vs. All inputs greater than Vs map to the pulse period T = 1, and all values less than

or equal to 0 do not generate a pulse (T = co). The sum of the feeding and/or linking inputs
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often exceed this range. The magnitude adjustment constants, V
F and VL, are used to scale the

magnitudes of the total feeding inputs F and the total linking inputs L, respectively, to fit within

the range [0o, VS]. The constant VS is used to adjust the pulse generator input operating range

which effectively performs the same function as adjusting V F and VS .

2.1.5.6 The Feeding Weights (M). The feeding weights (M) scale the magnitudes

of the feeding inputs. Each feeding weight is independent of all other weights in the neuron. The

feeding radius is the distance in any direction that feeding connections exist from the center con-

nection. As with the linking weights, square feeding connection patterns are often used to simplify

implementation. Feeding weights are often adjusted to give preference to spatial characteristics of

the input (spatial filtering). For example, a Mexican hat shaped weight pattern created by sub-

tracting one 2D Gaussian from another (Difference-of-Gaussians) would give preference to objects

the size and shape of the positive region of the pattern. Larger or smaller sized objects would

produce a lower value on the feeding input. This concept is used in Chapter IV for the purpose of

object detection.

2.1.5.7 The Pulse Generator Firing Threshold Offset (0o). The pulse generator

firing threshold offset 00 provides a method of thresholding the PCNN output while it is in operation.

The threshold offset is a bias value added to the pulse generator feedback loop. This bias raises

the threshold by 00, preventing any pulse generator input value U less than 00 from generating an

output pulse. Similar thresholding could be performed externally, but 00 provides a simple method

for thresholding each layer when several PCNN's are connected in series.

Use of 00 adds unnecessary complexity to adjusting PCNN parameters. A positive value for 0

changes the pulse generator performance with the cost of additional processing time. As can be seen

in equation (1) the pulse generator input value U is effectively shifted 00 in the negative direction

which causes a 0o size portion of the pulse generator input range to remain unused. This unused

range is processed needlessly unless the PCNN timeline is altered. For example, with rs = 100 and
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O0 = 0 a pulse generator operating over the range [0,1] will pulse at timestep t = 1 with an input

value of 1. Changing to 00 = 0.6 causes that same input to generate a pulse at timestep t = 92

with no pulses occurring during the first 91 timesteps. The magnitude adjustment constants can

be adjusted to compensate for the unused timesteps, but become interdependent with 0 which

complicates their adjustment. In most cases, the thresholding performed by 0 can be performed

with less complexity outside of the PCNN. The parameter 0 is not used in this research. All

references to it are to provide equations that accurately describe the neuron model.

2.1.6 Pulse Coupling Performs Temporal Synchronization. Pulse-based synchronization

is the key characteristic that distinguishes the PCNN from other types of neural networks. Pulse

synchronization provides a segmentation property useful in image processing. Neighboring neurons

with similar inputs pulse in synchrony to represent a segment of the input image. Neurons with

similar feeding input characteristics (color, intensity, etc.) have similar pulsing rates. The linking

connections cause neurons, in close proximity and with related characteristics, to pulse in unison

(synchronization) (32, 23). The PCNN synchronizes neurons base on similarity. This similarity

is defined by the magnitude of the total input (U) of a neuron relative to the magnitude of the

total input of neighboring neurons within its linking radius. When using a digital image as an

input, these input magnitudes are the values of the image pixels. The pixel values could be a

measure of brightness, a filter's response, a color value, or any other measurement represented at

each point in the image. A neuron is similar to any neuron within its linking radius that has an

input magnitude within F3L greater than its own, where F is the total feeding input value to

the neuron, L is the total linking input value, and 3 is the value of the linking strength between

neurons. For explanation purposes, assume each PCNN neuron has a single input. This forms a

one-to-one relationship between neurons and pixels (i.e., each neuron represents one pixel). A pixel

is similar to any neighboring pixel that has a magnitude within F/iL greater than its own. Shown
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in equation form, a pixel with a magnitude of I1 is similar to a pixel with a magnitude of 12 if

0 < 12 - I1 < FI1 ,3LI1  (3)

Because of the multiplicative linking connections, this relation is not as simple and straight forward

as it first appears. The value of I1 and 12 are dependent upon the pulsing activity of neighboring

neurons which makes them dependent upon one another. The following discussion makes some

simplifying assumptions to demonstrate the complexity of determining which neurons are similar.

The pulse period (T) of a digitally simulated neuron with constant linking inputs is defined

by the equation

As previously stated, U is the total input to the neuron which is defined as U = F(1 + /L),

r s is the pulse generator leaky integrator time constant, and Vs is the pulse generator magnitude

adjustment constant. Without any linking inputs (L = 0), bandwidth limitations of the neuron

(controlled by the value of Ts ) would cause input values between 0 and 1 to fire in non-overlapping

logarithmic sized groups as shown in Figure 5 (much higher values of r s are typically used). Notice

that if L = 0, U is equal to the total feeding inputs F. The scale of the output pulse period

axis is time units where one unit is the maximum pulse firing rate the neuron bandwidth will

support. For a digital implementation, each unit would be one time-step on the simulation clock.

The values of U that pulse each time slice without linking present are shown by the bold lines. The

set P(t) is defined to be the values of U that pulse at time t when no linking is present. Adding a

constant linking input to a neuron extends the lower limit of P(t) by FL (shown as the thin line

in Figure 5). We define the set S of real numbers that are added to P(t) due to linking to be the

synchronization range of a PCNN neuron,

S = [F, F + FL]. (5)
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This synchronization range defines the similarity in pixel intensity which will cause the output

pulses of neurons to synchronize. A neuron that would not normally fire at time t will fire in

synchrony with other neurons that fire at time t if

S n P(t) 54 0. (6)

This criteria must be met for a neuron to synchronize with other neurons pulsing at a particular

pulse frequency.

Notice in Figure 5, the total pulse range (P(t) U S) for each time t overlaps the total pulse

range for time t + 1. This means a neuron with a value U in the overlapping region can fire at

either time t or t + 1 depending on linking inputs. So will a particular neuron Ni fire at time t or

t+ 1? Expanding the earlier assumption of a constant linking input signal to state the linking inputs

originate as the constant outputs of neighboring neurons as shown in Figure 2, makes L a function of

the feeding and linking inputs of neighboring neurons. Since the value of L originates as the output

of neighboring neurons and the synchronization range S is a function of L, Equation (5) implies

segmentation is image content dependent. For two adjacent neurons that are linked, the output of

each neuron is dependent upon the output of the other. Since linked neurons are dependent upon

one another, finding the output pulse period of a particular neuron requires solving simultaneous

equations. For example, the output period of nine neurons connected in a 3 x 3 PCNN is described

by the following matrix equation,

T1 T2 T3 rrsln(F1(1+OL))] rTSln(F2 (1+L 2 )) [TSln(F3(1+L 3 ))1

T4 T5 T6 ETSln(F 4 (1 +3L 4))1 [TSln(F5(1 + 5L))] FTSln(F6 (1 + L 6 ))]

T7 T8 T9  Fr s ln(F 7(1 + L7))1 Frs ln(Fs(1 + L8 ))1 Frsln(Fg(1 +3L 9))]

(7)

where Fi is the total feeding input into the ith neuron and Li is the total linking input into the ith

neuron. Since the value of each Li is composed of the outputs of neighboring neurons (see Figure 2),
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Figure 6 Firing sequence of PCNN neurons due to linking.

the value of each Ti is dependent upon the values of other Ti's. Finding the output period of any

single neuron requires solving the nine equalities simultaneously. In essence, this is what the PCNN

does. The assumption of a constant linking input simplifies the problem significantly. Since the

PCNN is based on a spiking neuron, all linking signals are pulses which means linking inputs are

not constant. The actual operation of the PCNN is more complex than this simplified example,

but the functional concept is the same.

The actual PCNN solves the inter-neuron dependencies in a unique way. No linking signals

are present until the first neuron fires. The pixels with the largest magnitude within an input image

cause their corresponding neurons to fire first. This firing initiates a linking signal (linking wave)

which travels through the multiplicative linking interconnects causing other neurons with similar

inputs to fire (46).

Figure 6 shows the pulsing sequence of a sample 3 x 3 neuron PCNN. Dark circles represent

neurons that pulse during that timestep, light circles represent neurons that do not pulse. Only

the first three timesteps of PCNN execution are shown. Using arbitrary PCNN parameter values,

a linking radius of 1, and the input values shown in the figure, the upper left neuron pulses first (at

time t=2) since it has the greatest input magnitude. This output pulse travels through the linking

connections to neighboring neurons. This linking signal flow is called a linking wave. This linking
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wave increases the Li value of all neighboring neurons. If the total input magnitude F(1 + 3Li) of

any neighboring neuron exceeds its firing threshold, those neurons will pulse producing a linking

wave of their own. Any neuron that would not normally pulse at a particular time, but pulses due

to a linking wave is said to be captured by the neuron that emitted the wave. All neurons that

pulse together due to linking are considered a single group. This grouping effectively segments an

image into objects. Note the upper right neuron did not pulse with the first group because it was

not within the linking radius of any pulsing neuron. The neuron has the same input as neurons

that did pulse, but the neighbor requirement of the similarity definition was not met; thus it was

not similar to the first group.

Since linking fields overlap, grouping occurs beyond the limits of a single neuron's linking

radius. A single neuron can fire and cause a domino effect that continues until all neurons with

similar inputs fire in phase synchrony with the first neuron. This group of synchronously firing

neurons represents a distinct segment within the image. The segmentation process repeats each

time step, on neurons that have not fired, until all neurons within the PCNN have fired and the

image is completely segmented.

2.2 A Model of the Primate Vision System

2.2.1 Overview. This section develops a vision model based on experimental and theoret-

ical data concerning the primate vision system. The purpose of this section is to provide necessary

background of the information processing and fusion techniques used within the biological vision

system. A high level vision model is developed by first stating various facts and hypothesis about

the visual system and then developing a model that incorporates these facts and hypothesis. The

model is described using high level diagrams which are expanded and decomposed to the point that

a physiologically-based neural network can be used to implement the key information processing
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concepts. The model is simplified to contain only the information necessary to support a new

information extraction and fusion approach.

To assist the reader, several vision topics have been placed near the research where they are

used. The primate vision principles of state dependent modulation and temporal synchronization

were discussed earlier in this chapter. The discussion of the detailed processing which occurs within

individual functional areas is presented in Chapter III where it is used for feature extraction. The

key topics in this chapter are the concepts of multiple information paths and the concept of areas

sending information to unrelated areas to assist in processing.

2.2.2 Pathways and Functional Areas. Despite the enormous complexity of the primate

cortical visual system, studies suggest it can be modeled by two basic hierarchical pathways, the

parvocellular pathway and the magnocellular pathway (96). The former pathway predominantly

processes color information, and the later processes form and motion.

Figure 7 Forward information flow of the visual system model
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Figure 7 shows a model of these two pathways. The entry point of an image into the model

is the retina. The biological retina has luminance and color detectors which interpret light images

and preprocesses the image before relaying it to the rest of the visual system. The area marked

LGN models the biological lateral geniculate nucleus. This area separates the retinal image into

fundamental components such as luminance, contrast, frequency, etc.. The areas of the model

labeled with names starting with the letter V model specific areas in the human visual cortex.

Each of these areas is believed to maintain one or more processed, but topographically correct

images of the light pattern that falls upon the retina (97). The processing that is applied to the

image is discussed later in this section. Area V1 represents the striate visual cortex and is believed

to contain the most detailed and least processed visual image found in the cortical visual areas

(V1,...,V5). Henceforth, the visual image maintained by each visual cortex area is referred to as

a visual map, or simply a map. Area V2 contains a visual map that is less detailed and more

processed than area V1. Areas V3, V4, and V5 are called specialty areas because it is believed that

they process only selective information such as form, color, and motion, respectively. The maps

maintained within the specialty areas are less detailed than the map within V2 and only reflect

the particular information each area processes. For example, the visual map in area V3 would

predominantly contain information about the form contained in the image that is present on the

retina (97, 90). It would contain little or no color or motion information.

The names within the LGN, V1, and V2 boxes in Figure 7 refer to functionally distinct

sections of the area. Parvo, magno, blob, interblob, thinstripe, thickstripe, and interstripe are all

terms used by early researchers to describe subsections of the visual areas that are visually distinct

in appearance. These terms are still in use today and are included to link the vision model to the

biological vision system.

2.2.3 Processing Hierarchy. Information flows in both the forward and reverse directions

in a hierarchical fashion within the vision system. A portion of the forward flow of the orientation
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processing pathway is implemented in the following chapter. The reverse information flow is not

directly implemented in this research, but a mechanism for future implementation is developed. The

principle of state dependent modulation is observed throughout the vision system and is believed

to be used to perform some of the information processing and transfer discussed in this chapter.

The key concept in this section is that information from a processing area can be used to assist

in the processing of another area that processes a completely different type of information. This

concept is used in the information fusion chapter and feature extraction chapters.

2.2.3.1 Forward Visual Information Flow. Each box in Figure 7 represents a distinct

visual map believed to be maintained in the respective portion of the visual area (97). The ovals

denote the specific type of information contained within each map. The visual areas are almost fully

connected which is not shown in the diagram. For clarity, the diagram shows only the stronger

connections which are pertinent to the model being developed. The results of the processing

performed by each area is sent to the next area in the hierarchy to be incorporated into its map.

As you move to the right in the processing hierarchy shown in Figure 7, the spatial area

processed by each processing unit increases (97). For example, a single neuron in V3 processes a

larger part of the input image than a single neuron in V1. The orientation processing path of the

dynamic form pathway will be used to demonstrate the increasing size of receptive fields (Figure 8).

This figure is constructed from existing experimental and theoretical data (97, 90, 38, 12). The top

row of Figure 8 shows the forward flow of this orientation processing pathway. Each visual area is

shown processing the letter A. The size of the receptive fields of the processing unit in each area is

shown by the ellipses in the second row (note, the receptive fields are not drawn to scale, but are

merely used to demonstrate a concept). The third row shows a possible output of the processing

units which is communicated to other areas (97, 90, 38, 12). Each successive layer in the hierarchy

has a larger receptive field, and produces an output based on a larger amount of information. This

concept of receptive field size is used in Chapter III to explain the effects of spatial uncertainty.
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Figure 8 Example of orientation processing in the visual system model

2.2.3.2 Reverse Visual Information Flow. Zeki theorizes that "the most precise map

is area Vi, followed by V2. The specialized areas (V3, V4, V5) must therefore send information

back to Vi and V2 so that the results of the processing can be mapped back onto the visual field"

(98). These feedback connections are called reentrant connections. Figure 9 shows the reentrant

connections used to transfer information back into the maps of related areas. Each connection

does not necessarily carry the same type of information. This is due to the fact that the receptive

fields of the processing units within a hierarchical level are larger than the receptive fields of the

units found in a previous hierarchical level. The forward projections of information are patchy and

discrete and the return projections are diffuse and fairly non-specific. Another function of these

reentrant connections is to supply information to resolve any conflicts that may exist in a lower

level (98). As Figure 9 shows, the reentrant connections from visual areas are not restricted to the

areas that supply its input. It is theorized that these additional connections are used for resolving

conflicts between areas that have different capabilities but are responding to the same stimulus
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Figure 9 Reverse information flow in the visual system model

(97). For completeness, the three areas within VI are each connected and the three areas within

V2 are each connected. Also, there is a direct connection between the LGN and the three specialty

areas V3, V4, and V5. These connections are omitted because their functions are either unknown

or of no significance to the model being designed.

Based on theoretical and observed data, Figure 10 shows the feedback (reentrancy) of the

output of each visual area into the maps of the areas in previous hierarchical levels which is believed

to occur in the primate vision system (97, 90, 38, 12). The solid black ellipses shown in each map

represent the size of the receptive fields of the processing units that operate on that particular map.

As stated previously, the receptive field grows larger at each successive hierarchical level, and each

level reenters its output information into lower levels to resolve any conflicts that may exist.

2.2.4 Information Flow. Figure 11 shows the forward and reverse information flow in the

visual system which was previously presented. The ovals denote the type of information processed

by each area, bold lines denote information flow in the forward direction and normal lines denote
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Figure 10 Feedback in orientation processing in the visual system model

reverse flow of information. The subscripts on the VI and V2 processing areas denote the type of

selective processing units located within that area (to remove ambiguity). It is important to note

that many areas receive a reverse flow of information which is not the type they normally process.

For instance, layer 4B of area V1 (Figure 9) contains units of cells which are primarily orientation

selective. These processing units are neither wavelength nor direction selective, but still receive

this type of information from areas V4 and V5. This information is not ignored, but is combined

(linked) with the orientation information to remove any ambiguities or conflicts.

The dominant type of information produced by each processing area is listed in Table 2.

Much is still unknown about the vision system, but this list of outputs is sufficiently complete for

the purpose of this research which is to model feature extraction and information fusion.

Based on the knowledge that each processing unit is a group of neurons operating on input

signals carried by axons (97), Figure 12 gives a probable model for the connections that provide

the input and reentrance of information.
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Figure 11 Information flow in the visual system model

Visual area V1 is used as an example to demonstrate how information could be reentered,

but the same model would apply to all of the visual areas. Figure 12 also shows a blackbox

representation of the filter used to model the neuronal process within the processing unit. Notice

the filter operates on the combination of all inputs. The method used to combine the input, lateral

inhibition, and reentrant signals is key to the information fusion process within the visual model. As

previously discussed, state dependent modulation is used to combine information at the neuronal

level. This concept is the basis for transporting and combining information throughout the vision

model. State dependent modulation is implemented using the modulatory pulse-based linking found

in the PCNN. The filter shown in Figure 12 is discussed and implemented in Chapter III.
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Table 2 Signal definitions for the vision model

Signal within Vision Model ] Signal Type 7
Output of Retina Spectrum, Luminance,

Temporal frequency
Output of LGN Parvocellular Layers Spectrum, Luminance,
Output of LGN Magnocellular Layers Luminance, Temporal frequency
Output of Area V1 (layers 2 & 3) which processes Wavelength vector
Wavelength
Output of Area V1 (layers 2 & 3) which processes Orientation vector
Orientation
Output of Area VI (layer 4) which processes Orientation vector
Orientation
Output of Area V1 (layer 4) which processes Direction + Orientation vector
Direction+Orientation
Output of Area V2 which processes Wavelength Wavelength vector
Output of Area V2 which processes Orientation Orientation vector
Output of Area V2 which processes Direction + Orientation vector
Direction+Orientation
Output of Area V3 Set of orientation vectors
Output of Area V4 Set of color vectors
Output of Area V5 Set of motion vectors

2.3 Summary

This chapter has presented a tutorial on the PCNN and on primate vision processing. The

biologically observed vision principles of state dependent modulation, temporal synchronization,

and multiple processing paths are key topics used in later chapters. Theoretical and experimental

data has been presented to describe their function in primate vision processing and the PCNN

section discussed the modulatory pulse-based linking and temporal synchronization capabilities

that are used to simulate them.

Throughout the vision section, the multiple processing paths are described and explained.

The early vision processing believed to be performed in one of these paths is simulated in the

following chapter using the PCNN and Gabor filters. This single processing path simulation is used

to demonstrate each key vision processing principle. Modifications are described that incorporate

other processing paths into the simulation.
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Figure 12 A processing unit within the visual system model
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III. Simulated Visual Feature Extraction Using the PCNN

3.1 Overview

In this chapter, PCNNs and Gabor filters are used to simulate the biological feature extraction

performed in the primary visual cortex. Substantial experimental evidence suggests that some

form of spatial frequency analysis is being performed in the primary visual cortex (3, 20, 30, 62,

72, 88, 61). Studies have found orientation-selective, direction-selective and wavelength-selective

cells which perform this analysis. The Gabor function has been shown to be a good model for

many of these cells (15, 63, 48). A feature extraction model is designed using filters created from

Gabor functions to simulate the orientation-selective cells in the biological vision system. The

information produced by these filters is processed with several PCNNs to determine the pitch

(magnitude along radial axis in two dimensional frequency domain), orientation, and intensity that

exist at each location in the input field of view. This feature extraction model performs a spatial

frequency analysis to produce simulated visual features. Though spatial frequency filters are used

to demonstrate the capabilities of the the model, the model is not limited to extracting spatial

frequency features. The model can be easily extended through alternate filter choices to extract

color and motion features from color imagery and motion video.

All spatial frequency filters have an inherent space/frequency tradeoff that causes a degree

of spatial uncertainty in the location of objects in their output. Many vision models simulate

biological visual processing using spatial frequency filters, then apply digital image processing

techniques to extract visual features (38, 60, 25, 66, 40, 39, 12, 36, 35, 37, 33, 75). The pixel-based

digital image processing techniques used to extract features often magnify the spatial uncertainty

by causing artifacts in the simulated visual features. In this chapter, the PCNN is shown to be

a good alternative to these pixel-based techniques. Using the physiologically motivated principle

of temporal synchronization (32, 23, 22, 21, 67, 92), the PCNN is used to form objects from the

filter outputs, and determine the features that exist at each spatial location. This object-based
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approach does not produce the feature artifacts that plague pixel based approaches. Example

features produced by several pixel-based image processing techniques are presented and compared

with features produced by the PCNN feature extraction network.

The end use of simulated visual features is typically in an object detection/recognition system.

An object detection system requires a method of focusing attention on desired objects while ignoring

the rest of the visual scene. Using the PCNN to implement the physiologically motivated principle of

state dependent modulation, a focus of attention capability is added to the PCNN feature extraction

network creating a simple object detection system. In a simple example, this focus of attention

capability is used to detect a desired object within a visual scene containing several objects. In

the next chapter, this simple object detection system is enhanced to include additional object

detection and information fusion capabilities. The object detection capability of this enhanced

system is demonstrated on x-ray and FLIR images with promising results.

The contributions in this chapter are:

1. The first use of a PCNN to perform object-based physiologically motivated feature com-

petition.

2. The first physiologically motivated PCNN-based visual feature extraction network.

3. The first use of a PCNN to implement state dependent modulation for focus of attention.

3.2 Simulating Visual Features Using Filters

To simulate biological feature extraction, we need to simulate the processes within the bi-

ological visual processing areas (V1, V2, V3, V4, and V5) and then select features from that

information. The primate vision system is a multi-stage hierarchical system of neurons which ex-

tracts features from the visual scene for the purpose of object detection/recognition (97). The

early stages of visual processing (lateral geniculate nucleus, primary visual cortex, and pre-striate

cortex) separate images that fall upon the retina into color, shape and motion (98). Studies of
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these areas have found orientation-selective, direction-selective and wavelength-selective cells. To

simulate biological feature extraction, we use the hypothesis that neuronal processing units are

best described as filters that are selective along multiple stimulus directions(90). Since all images

used in this research (mammogram and FLIR) are static and gray-scaled, only the biological static

form pathway is discussed (Figure 7). Table 3 gives a list of possible filters that can be used to

approximate each visual area of the biological static form pathway.

Table 3 Filters that can approximate functions performed in the vision model
Vision Model Area Possible Filter Models

Retina (R) Difference of Gaussians filter (12, 7), Wavelet filter.
LGN Parvocellular Difference of Gaussians filter (12, 7)
LGN Magnocellular Difference of Gaussians filter (12, 7)
V1 wavelength selective 2D Gabor filters (89), Gaussilinear or Wavelet filters (90)
V1 orientation selective 2D Gabor filters (89) , Gaussilinear or Wavelet filters (90)
V1 layer 4B orientation Gaussilinear or Wavelet filters (90), orientation
selective selective filters (12, 7)
V1 layer 4B orientation + Gaussilinear or Wavelet filters (90),
direction selective orientation selective filters (12, 7)
V2 wavelength selective (V2W) 2D Gabor filters (89), Gaussilinear or Wavelet filters (90)
V2 orientation selective (V20) Gated dipole filter (12, 7)
V3 Dynamic Form Gated dipole filter (12, 7)

To limit the scope of this research, only the visual processing performed in the primary visual

cortex (area V1) is simulated. More experimental and theoretical data exist for this cortical visual

area than the others (V2, V3, V4, V5, etc.). For this reason, the primary visual cortex is the focus

of the remainder of this chapter. However, the applicability of this research is not limited to this

visual area and can be extended to the other visual areas as additional knowledge is amassed

Recent physiological evidence suggests that the primary visual cortex performs a spatial fre-

quency analysis, distributing information in the scene among multiple channels which are selective

to different spatial frequencies (15, 69, 97). Any of the filters in Table 3 could be used to simulate

this space/frequency analysis. Since 2D Gabor filters have been found to be a good model for the

2D receptive fields of cells in the primary visual cortex (15, 48, 89), they are used for this research.

These filters are used to simulate the orientation-selective cells in the primary visual cortex. The
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results presented in this chapter are not filter dependent. Any spatial frequency filter could be used

with similar results.

3.2.1 The Gabor Function. In 1980, a model for the receptive field of simple cells in the

visual cortex was proposed which consisted of harmonic oscillation within Gaussian envelopes (15,

63). In 1984, direct measurements of cortical cells showed this model approximates cell receptive

fields (48). These Gaussian damped oscillations belong to a class of functions known as Gabor

functions. Gabor functions are discussed in detail in (15, 27, 48, 89).
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Figure 13 A one dimensional Gabor function.

Figure 13 shows a one dimensional Gabor function constructed from a sinusoidal wave within

a Gaussian envelope. Both a sine wave and a cosine wave are shown as examples of the sinusoidal

wave. In two dimensions, the Gaussian envelope surrounds a sinusoidal plane wave. For this
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research we use the following frequency domain definition of a Gabor function (27). The cosine-

Gabor function is defined as

l (exp (--" [(fsine-f=cos6P) 2 + (fl cos0-f. sin0 )])2 (8)

2a b

+ exp( i[(f~sin6+f.C.Os+P)± (f cos O-f.sin 0) 2])

and the sine-Gabor function is defined as

I= exp (-1-[(iysin .iCoS-P)2 + (fl;cos0-f.sin0)2]) (9)

f exp ( T O[(sinc.s +P )
2 
-+ ( fy c os -f sin0)2])

where p is the center radial spatial frequency, 0 is the center angular spatial frequency, b is the spatial

frequency bandwidth along the radial axis, a is the spatial frequency bandwidth perpendicular to

the radial axis, and j is the imaginary value v-l.
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Figure 14 shows a plot of a Gabor function in the spatial and frequency domain. The values

used in this example (p = 8, 0 -3, a = V/-2, and b = 1) produce a Gabor function with a radial

center frequency of 4 cycles per image, oriented to 60 degrees, with a 1.5 octave bandwidth.
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Figure 15 Frequency domain plot of spatial frequencies covered by multiple Gabor filters.

3.2.2 Extracting Spatial Frequency with Gabor Filters. Zeki theorizes the cells in the

primary visual cortex are organized to form multiple views of the retinal image, each view being

devoted to a different visual attribute (97). Many of these cells are selective to particular spatial

frequencies. The Gabor function can be used to model these cells. The Gabor function used as

a filter kernal is a Gabor filter. Many of the multiple views believed to exist in the visual cortex

can be modeled using multiple images, each filtered by a Gabor filter tuned to a unique spatial
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frequency. As shown in Figure 14b, a single Gabor function covers two symmetric, elliptically

shaped regions in the frequency domain. Through the use of multiple filters, a broad range of

spatial frequencies can be covered. Figure 15 is a frequency domain plot of the spatial frequencies

covered by multiple Gabor filters. The ellipses represent contours of equal response for the example

filters. Gabor filters have optimal joint resolution in the spatial and frequency domain (26, 15, 16).

A minimum number of filters are needed to perform spatial frequency analysis.

The Gabor filter is both orientation-selective and pitch-selective. The output of a Gabor

filter will indicate the degree a particular pitch and orientation are present within its receptive

field. Multiple Gabor filters can be used to measure the orientation and pitch content at each

location in a digital image. Measuring spatial frequency content at multiple spatial locations is

known as spatial frequency analysis. Substantial experimental evidence suggest that some form of

spatial frequency analysis is being performed in the primary visual cortex (3, 20, 30, 62, 72, 88).

3.3 Combining Spatial Frequency Information with the PCNN

Several methods of combining information are observed in the biological visual cortex. Two

observed methods are summing individual attributes, and selecting attributes by magnitude. The

direct convergence (summing) of different sources, registering different attributes of the visual scene,

is not the predominant or preferred approach that the cortex uses to combine different sources (97).

Each stage of each visual pathway contributes to perception explicitly (97). In the early stages of

visual processing, neuronal processing units measure the amount of information, to which they are

selective, at their location (90). Neurons that detect information to which they are selective provide

greater output than those that do not. The neurons with the greatest output represent the type of

information most present in a visual scene. In our visual model, this can be simulated by simply

letting the filter with the greatest output at each point in the visual scene represent the type of

information most present at that point. The goal in this section is to determine which filter has

40



the greatest output at each location in the visual scene (input image) and retain only the output

of those filters as features. Filters have an inherent space/frequency trade-off. Physiologically

motivated feature competition is used to reduce the effects of this trade-off.

I g
(a) (b) (c) (d)

Figure 16 Square processed by cosine Gabor filters. (a) 3 x 3 pixel square (b) square processed
with Gabor filter oriented to 0 degrees (vertical) (c) square processed with Gabor filter
oriented to 45 degrees (d) square processed with Gabor filter oriented to 90 degrees

Biological evidence shows the neuronal processing units in the primary visual cortex which

combine information produced by orientation-selective cells each have receptive fields that cover a

small area in the visual field (97). A feature produced by these processing units is not based on a

single point in the visual scene, but represents information at every point in its receptive field. The

size of these receptive fields causes a degree of uncertainty as to the location of a detection within

the field. The receptive field of each processing unit overlaps with the fields of other processing

units (97) which adds additional uncertainty to the spatial location of objects detected in the visual

scene. This spatial uncertainty is demonstrated in the following example.

In this example, the cosine Gabor filter is used to simulate the response of spatial frequency-

selective cells in the visual cortex. Twelve filters are used to extract orientation information (at the

filter's preferred pitch) from the 3 x 3 pixel square shown in Figure 16a. The 12 filters detect the

same pitch, but differ from each other in orientation. The filters are oriented every 15 degrees which

covers all multiples of 15 degrees in a 360 degree circle. Each oriented filter's impulse response is

convolved with the image of the square and orientation features are determined from the filter

outputs. The goal is to select the filter with the greatest output at any given spatial coordinate.

The orientations of the selected filters represent the dominant orientation (at the filter's preferred
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pitch) that exist at each coordinate. Figures 16b, 16c, and 16d show the output of three of the

Gabor filters which are oriented at 0, 45, and 60 degrees (from vertical), respectively. Like the

outputs of neuronal processing units, the filter output at any given spatial coordinate represents

orientation information within a region (the filter's receptive field) about that coordinate within

the input image. The filter receptive fields overlap just as the neuronal receptive fields do. These

multi-pixel, overlapping receptive fields cause a degree of spatial uncertainty. This uncertainty

results in each point in the square being represented by a pattern the size of the filters response

(Figure 14a). The spatial uncertainty of each filter can be seen in the filter outputs shown in

Figure 16.

Individually, these filter outputs give little information about the size, shape, and location of

the detected object. Many existing vision models attempt to decrease these spatial uncertainties by

using physiologically motivated competitive operations between filter outputs (38, 60, 25, 66, 40, 39,

12, 36, 35, 37, 13, 34). These operations include lateral inhibition and winner-take-all competitions

which are demonstrated in this example. For digital simulations, these operations are typically

applied on a pixel by pixel basis due to the pixel-based nature of the digital image. Since both

neuronal processing units and filter units each operate on a region of pixels, pixel-based processing

does not completely simulate a competition between processing units. The goal of competition is to

have the unit with the greatest output suppress or over-ride the output of all other competing units.

Through pixel-based processing, other filter detections cannot be fully suppressed or over-ridden.

Figure 17 shows the results of three pixel-based operations. The corresponding operations

are a pixel-wise sum, a "winner-take-all" operation, and a "winner-take-all with lateral inhibition"

operation. The later two are competitive operations. Figure 17a shows the results of summing the

pixels of the filter outputs shown in Figure 16 (the output of 12 filters are summed). To perform the

summing, the pixel intensities of all filter outputs at a single (x, y) location are summed to form a

single value for that (x, y) location. Since no dominant orientation is determined at each coordinate,
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(a) (b) (c)

Figure 17 Various methods of combining Gabor filter outputs. Filters are oriented at every
15 degrees for a total of 12 filters. (a) Filter outputs combined by summing all filter
outputs at each spatial location. (b) Filter outputs combined by keeping only the max
filter output at each spatial location. (c) Filter outputs combined by applying lateral
inhibition between pixels in each orientations then keeping only the max intensity
pixel at each spatial location.

this pixel-wise operation loses all orientation information about the square. It also suffers from

spatial uncertainty, since the object's boundaries cannot be determined from the output. Figure 17b

shows the 12 filters combined with a pixel-wise Max (winner-take-all) operation. The Max operator

retains the maximum filter intensity at each (x, y) location and discards all other filter intensities

at that location. The Max operator retains orientation information by selecting the filter with

the greatest output, but the pixel-wise application method still leaves much spatial uncertainty

remaining. The spatial uncertainty stems from the pixel-wise operation's inability to discard the

entire output of non-selected filters. For this square, the outputs of the filters oriented at 45 and

135 degrees had greater energy than the outputs of any of the other orientations. If our goal were

met, only these two orientations should have been selected and all orientations should have been

suppressed or discarded. The pixel-wise Max operation could not discard the entire filter output,

only the individual points at which the filters' receptive fields overlap. A well-known vision model,

the Grossberg boundary contour system, performs pixels-wise lateral inhibition across filters, and

then performs a pixel-wise Max operation (38). Figure 17c shows the results of this process. This

method retains orientation information, but suffers from spatial uncertainty. As with the Max
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operation, the pixel-wise lateral inhibition can only suppress pixels of non-selected orientations at

points where the filter receptive fields overlap.

These pixel-based approaches can be improved by grouping all pixels in the output of a

simulated processing unit to form a single entity (object). The same physiologically motivated

competitions used earlier can be performed between objects instead of pixels. Competitions in the

biological vision system are performed between neuronal processing units and not the individual

locations within their receptive field (97). For this reason, competition between objects simulates

physiology with greater fidelity than competition between pixels.

(a) (b) (c) (d)

Figure 18 Square in Figure 16 processed by cosine Gabor filters then segmented with PCNN.
(a) PCNN object segmented from 0 degrees oriented filter output (b) PCNN object
segmented from 45 degrees oriented filter output (c) PCNN object segmented from 90
degrees oriented filter output (d) PCNN objects combined by keeping only the max
intensity object at each spatial location

This object-based approach to feature extraction can be implemented in many ways. The

segmentation capability of the PCNN provides an efficient and effective physiologically motivated

method for both grouping pixels into objects, and performing competition between objects. The

temporal synchronization property of the PCNN is used to group all pixels detected by individual

oriented filters into objects that can be treated as single entities. Figures 18a, 18b, and 18c show

the Gabor filter outputs after the PCNN has segmented them into objects. Note the majority

of each filter output has been grouped to contain a single gray level. This gray level coding is

used only for display purposes. The object could have easily been coded with a unique value or

object number. A competitive operation can be used to determine which object has the greatest

magnitude, and the remaining objects can be easily suppressed in their entirety.
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In a pulse once scenario, a second PCNN with feeding inputs connected to the pulsed outputs

of several of these object forming PCNNs would exhibit a behavior identical to a Max operator.

Each neuron in the second PCNN pulses in response to the first pulse it receives, then remains

dormant for the remaining period of execution. As stated previously, the earlier a neuron pulses,

the greater output frequency it would produce. Each neuron in the second PCNN latches the

highest frequency signal received on its feeding inputs, thus simulating the Max operation. By

connecting the input of each neuron in this Max PCNN to the output of the neurons (at the same

coordinate) in the object forming PCNN, a competition between neurons is formed. As previously

stated, the PCNN initially pulses at the brightest point in an object. This pulse causes a linking

wave that synchronizes all neighboring neurons with like inputs. The initial pulse is the seed the

PCNN uses to form individual objects. If the object forming PCNNs are slightly modified to

transmit only this seed pulse to the Max PCNN, each entire object is now represented by a single

point. If a seed point is the earliest (highest pulse frequency) to reach the Max PCNN, the Max

PCNN pulses producing a linking wave which replicates the object in the Max PCNN. If a seed

pulse arrives at a particular neuron in the Max PCNN that has already pulsed, no new pulse is

generated. Since no pulse is generated, no linking wave is produced and the object is not replicated

in the Max PCNN. This lack of replication effectively suppresses all competing objects (in their

entirety) once one object has been selected as having the greatest output.

Applying this PCNN-based competitive process to the objects in Figures 18a, 18b, and 18c

produces the output shown in Figure 18d. The object-based competition retains orientation in-

formation and reduces the spatial uncertainty present in the original filters. This process achieves

the goal of selecting the filter with the greatest response to the object and suppressing all other

competing filter outputs.

This feature extraction process is shown in block diagram form in Figure 19. The first PCNN

in the process segments the filter outputs into objects. The intensity of each object is directly

45



Filter Group Select Save pitch,
FitrGopmaximum orientation,

Image at pixels in mxmmoinainIae ah pels finr Intensity and intensity
epaa e t filtr object at information

spatial output into each spatial of selected
frequency objects location objects

Figure 19 Functional block diagram of PCNN feature extraction process.

proportional to the total energy in the pixels combined to form the object. The second PCNN

selects the maximum intensity object at each spatial coordinate which gives the pitch, orientation,

and intensity of the selected objects. Using the first PCNN to group filter outputs into objects,

and the second PCNN to pick the maximum valued object, forms a PCNN-based visual feature

extraction network.

All Gabor filters used in this example detect the same pitch, but differed in preferred orien-

tation. Attempting to select the filter with the greatest response at a particular coordinate from a

group of filters that differ in pitch poses the same difficulties encountered when selecting from filters

of various orientations. The PCNN object based filter selection techniques can be used to select

between filters of different pitch in the same way it selects between filters of different orientations.

Extending the concept of PCNN feature extraction to include filters that differ in pitch selectivity

produces the PCNN feature extraction network shown in Figure 20. This network segments filtered

images into objects, selects the maximum intensity object at each spatial coordinate, and records

the pitch, orientation, and intensity of the selected objects.

The functionality of the network is independent of the characteristics of the chosen filters.

Wavelet filters, Difference-of-Gaussians (DoG) filters, or any other spatial frequency selective fil-

ter could be substituted for, or combined with the Gabor filters. The network will perform a

spatial frequency analysis using any of these filters. As previously stated, it is hypothesized that

neuronal processing units are best described as filters that are selective along multiple stimulus

directions (90). This network can extract features using any filter that is selective along multiple
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Figure 20 PCNN feature extraction network.

stimulus directions. The network can extract motion features using spatio-temporal filters and can

extract color features using spatio-wavelength filters. This allows easy extension of the network for

analysis of color imagery and sequential image sets containing motion (video).

The accuracy of the extracted features is driven by the number and characteristics of chosen

filters. For example, a 600 filter network would provide better feature resolution than a 60 filter

network. A network constructed with non-orientation-selective filters (e.g., DoG filters) would

produce no orientation features.
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3.4 Examples of Simulated Visual Features
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Figure 21 Simulated visual features extracted by the PCNN feature network. (a) Original image

(b) pitch feature map (c) orientation feature map (d) intensity feature map

The PCNN feature extraction network simulates the spatial frequency analysis which exper-

imental evidence suggest is being performed in some form in the primary visual cortex (3, 20, 30,

62, 72, 88). The pitch, orientation, and intensity selected at each location is the simulated visual

feature for that location. Figure 21a shows a circle, and Figures 21b, 21c, and 21d show the features

extracted from the circle by the PCNN feature extraction process. The image was filtered using 60
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cosine Gabor filters each centered at the spatial frequencies shown in Figure 15 (five pitches at 12

orientations each). Figure 21b shows the dominant pitch present at each point in the circle. The

numbers denote the pitch of the selected filter (higher numbers indicating higher frequencies). The

five filter groups are an octave apart in pitch. A number 5 denotes a pitch of 128 cycles per image,

4 denotes 64 cycles per image, 3 denotes 32 cycles per image, 2 denotes 16 cycles per image, and

1 denotes 8 cycles per image. The frequencies are displayed in this format to allow each pitch to

be represented by a single digit. Figure 21c shows the dominant orientation present at each point

in the circle. The orientation map has been multiplied by the intensity map for display purposes.

Darkness of line segments denote the relative presence of the orientation (ie, locations with light

line segments are not as strongly oriented as locations with dark line segments). Figure 21d shows

the intensity at which the dominant pitch and orientation are present at each point. In other words,

this map gives the strength with which the selected filter responded.

3.5 Simulating Focus of Attention with the PCNN

To detect the presence of a desired object within a visual scene, an object detection algorithm

can suppress all objects that do not have features matching the desired object. Only objects that

have features resembling the desired object will remain. Alternately, objects that have features

resembling the desired object can be enhanced. The two methods are equivalent except for scaling.

The process of enhancing desired objects (or features) can be called a focus of attention. Additional

attention is focused on the desired object or features. Focus of attention can easily be added to

the PCNN feature extraction network by adding a positive bias to desired features.

The biological principle of state dependent modulation can be used as a mechanism for fo-

cusing attention on features of a desired object. In the biological vision system, state dependent

modulation signals increase a neuron's response to its input. A signal of this type can be used to

increase neuronal response to desired features which in turn elevates the overall visual response to
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a desired object. This elevated response facilitates detecting and isolating a particular object in a

visual scene.

The principle of state dependent modulation can be easily applied to the feature extraction

system described in this chapter. Extracted features are the spatial frequency information derived

from the outputs of multiple filters. To isolate a desired object in an image, a positive bias can

be added to the output of filters which are selective to the desired features. This bias causes the

desired object to be enhanced relative to the rest of the visual scene. All desired features will

be the brightest features in the processed visual scene. To increase the signal-to-noise ratio, the

bias signal can be applied by multiplying instead of adding (44). Lower intensity noise signals are

not increased as much as the higher intensity filter detection signals. Multiplying one signal by

another is called modulation. The bias signals multiplied against select filter outputs is a state

dependent modulation signal. These modulatory signals focus attention on desired objects in the

visual scene. To shift the focus of attention from one object to another, simply shift the state

dependent modulation signals to different filters. The focus of attention moves to objects with

different characteristics.

As discussed in Section 2.1, the linking inputs of the PCNN modulate the feeding inputs.

State dependent modulation signals are applied to the filter outputs by applying the bias signal to

the linking inputs of each neuron in the PCNNs that process the output. This increases the output

frequencies produced by the PCNN which elevates its output above other non-biased PCNNs.

The features produced by the biased PCNNs will have the greatest magnitude in the output of the

PCNN feature selection system. This modulation process simulates the state dependent modulation

observed in the biological vision system. Through this mechanism a focus of attention can be applied

to desired objects, thus forming an object detection system.

Figure 22 shows an example of focus of attention. The image in Figure 22a contains three

objects; a tall rectangle, a circle, and a small square. The goal of this example is to detect the tall
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(a) (b) (c)

Figure 22 Example of focus of attention using state dependent modulation. Goal is to enhance
long vertical edges to distinguish tall rectangle from other objects. (a) Original image
(b) intensity features produced by PCNN feature extraction network (c) intensity
features produced with state dependent modulation signal of 3 applied to PCNN that
processes highest frequency vertically oriented features.

rectangle by focusing attention on one of its distinguishing features. The long vertical edges will be

used as the distinguishing feature since the rectangle is the only object in the scene that contains

them. Figure 22b shows the intensity features extracted from the image when no state dependent

modulation signals are present. A state dependent modulation signal, of magnitude equal to 3, is

applied to the particular PCNN which processes the highest pitch vertically oriented filtered image.

With this focus of attention, the PCNN feature extraction network produces the intensity features

shown in Figure 22c. The long vertical edges of the tall rectangle are the brightest features present.

This added intensity can be used to easily detect and isolate the desired object in the visual scene.

3.6 Summary

PCNNs and Gabor filters were used to simulate the biological feature extraction performed in

the primary visual cortex. The feature extraction model uses Gabor filters to simulate the biological

orientation-selective vision cells and the PCNN to simulate the cells that compare and select visual

features produced by these orientation selective cells. The resulting features describe the pitch,

orientation, and intensity that exist at each location in an input image. This feature extraction

network models the spatial frequency analysis shown to exist in the primary visual cortex.
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Some degree of spatial uncertainty is inherent in all spatial frequency filters. pixel-based

versions of physiologically motivated techniques for reducing this uncertainty have been demon-

strated to show the inadequacies of pixel-based methods. The temporal synchronization property

and refractory period of the PCNN are used to provide a superior object-based alternative to pixel-

based methods. Using these physiologically motivated principles, the PCNN forms objects from

the filter outputs, and compares these objects to determine the features that exist at each spatial

location. This object-based approach does not produce the feature artifacts that plague pixel-based

approaches. Through examples, the features produced by the PCNN feature extraction network are

compared to features produced by several pixel-based methods. The PCNN-based system produces

features that have greater spatial precision and contain less artifacts than the features produced by

the pixel-based techniques. The physiologically motivated principle of state dependent modulation

is used to add a focus of attention capability to the PCNN feature extraction network, forming a

simple object detection system. Through a simple example, this focus of attention capability is

used to detect a desired object within a visual scene containing several objects.

The strength of this feature extraction network lies in its flexibility. Simple modifications

have been presented that can extend the model's capabilities to perform spatio temporal (motion)

and spatial wavelength (color) analysis. With these extended capabilities, the feature extraction

model can simulate visual processing of all known basic information types (luminance, wavelength,

direction, and orientation) processed by neuronal processing units in the early stages of the primate

vision system (90, 98, 97, 7, 19, 14). Cascading this model to simulate observed multi-layer hierar-

chical vision processing can produce the higher order moments of the basic information types such

as gradient information, texture, and acceleration (89). This set of features provides a sufficient

basis for nearly any type of visual object detection/recognition goal. The extended model can pro-

vide an effective, flexible, and extensible feature extraction stage for nearly any object recognition

system.
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Object detection systems, similar in principles to the one developed in this chapter, are used in

the next chapter to simulate biological information fusion. The physiologically motivated principles

of temporal synchronization and state dependent modulation are used to combine the outputs of

several object detection systems to increase object detection accuracy. This information fusion

system is demonstrated on real-world images with promising results.
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IV. Information Fusion for Object Detection

4.1 Overview

Digital image processing is being investigated for object detection in applications such as

breast cancer detection and automatic target recognition (29, 68, 85, 58, 59, 78, 17, 65, 71). Image

processing is used to reduce unwanted information from an image with the hope that the improved

signal-to-noise ratio will allow a pattern recognition process to detect and possibly identify the

desired object. In general, no single image processing technique can be selective to all patterns

for a given object, and still perform well at removing the many possible variations of unwanted

information. Often, several techniques are used and the results are combined.

As previously mentioned, many current theories propose that neuronal pulses synchronize to

combine visual features into visual objects (32, 23, 67, 92). In this chapter, these theories are used to

design a PCNN-based image fusion network that segments a visual scene, combines features to form

objects, and isolates desired objects from the rest of the image. This PCNN fusion network combines

the output of individual detection techniques in a physiologically motivated fashion for the purpose

of improved object detection. Observed biological phenomenon such as temporal synchronization

and state dependent modulation are applied to combine the information and focus attention on

a desired object. The role that these biological phenomena perform in information fusion and in

the image fusion network is discussed. Through a combination of image segmentation, information

fusion, and attention focus, an object detection property emerges from the PCNN fusion network.

Actual infrared and mammographic images are used to demonstrate the object detection accuracy

of the network (6).

4.2 The PCNN Fusion Network

To perform object detection, the PCNN fusion network takes an original and filtered versions

of a gray-scale image and outputs a single image in which the desired objects are the brightest
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Figure 23 PCNN fusion architecture used to fuse both breast cancer and FLIR images.

objects and thus easily detected. Gray-scale outputs of object detection techniques are used as

inputs to the fusion network. These gray-scale images are used to simulate the feature maps

produced in the previous chapter. The filtering process simulates the feature extraction process.

Each filter is tuned to be selective to a particular characteristic of a desired object which simulates

focus of attention.

Figure 23 shows the PCNN network used to fuse the original and filtered images. When

applied to the mammograms, the image processing filters are tuned to be selective to microcal-

cifications which can be an early indication of cancerous growth (68). For the FLIR images, the

filters are tuned for selectivity to features of a SCUD mobile missile launcher. Since these filters

are selective to a particular object, the outputs can be used as state dependent modulation signals

where the current state of attention is focused on detecting objects that resemble the target object.

55



Each PCNN in Figure 23 has one neuron per input image pixel. The average output pulse

rate of each neuron in the center PCNN is used as a brightness value for the pixels in the output

image. Each neuron is allowed to pulse only once during execution (pulse-once scenario), therefore

the period (timestep) of the output pulse is used to calculate an average output pulse rate for each

neuron. The neurons within the PCNN are arranged as a single two dimensional layer network with

lateral linking. Figure 2 (page 13) shows the feeding and linking connections of a single neuron

within the PCNN. As used in this chapter, every neuron receives linking inputs from all neighboring

neurons within a radius of 3 (Figure 2 shows a linking radius of 1). Each neuron receives feeding

inputs which are the intensity of the corresponding pixels in the input image. The pulse-based

linking mechanisms of the PCNN use temporal synchronization to segment the original image. The

outer PCNNs provide state dependent modulation signals used to focus attention on segments of

interest.

Figure 24 shows the inputs and output of the fusion process when used on a small portion of

a mammogram which contains microcalcifications. The average pulse rate of each output neuron

is used as a brightness value for the pixels in the output image. Figures 24a, 24b, and 24c are

the images used as input to the fusion network. The fusion results are shown in Figure 24d. A

threshold has been applied to remove the background and lower intensity segments. The segments

that remain are the desired objects.

4.3 Pulse Coupling Performs Temporal Synchronization

PCNN pulse synchronization is discussed in Section 2.1.6. Pulse synchronization causes neu-

rons with similar inputs to form a synchronously firing group. This grouping results in segmentation

of the input image. Segmentation allows the PCNN fusion network to identify and remove unwanted

objects based on size, shape, and intensity.
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Figure 24 128-by-128 pixel region containing microcalcifications (segmented from a 1024-by-2048
pixel mammogram). (a) Original image (b) hit-and-miss filtered image (c) wavelet
filtered image (d) PCNN fused image after a threshold has been applied.

4.4 State Dependent Modulation in the PCNN Fusion Network

The PCNN fusion network uses the principle of state dependent modulation to focus attention

on objects that best fit the criteria of a desired object. By using the relative presence of a desired

feature as a state dependent modulation signal, the network's response to the desired object is

elevated. This elevated response facilitates detection and isolation of a particular object in a visual

scene.
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Figure 25 The Eckhorn artificial neuron used within the PCNN.

As shown in Figure 25, the total input to a PCNN neuron (U) can be described by the

equation

U = F(1 + /3L)(1 + /3ExtL) (10)

where ExtL is the value of total linking inputs from sources external to the PCNN (possibly other

PCNNs). The signal U feeds directly into the pulse generator section of the PCNN which produces

the output pulse train. The output frequency of pulses produced by the pulse generator is

1

f = 1(11)r--, in ( )]11

which is the reciprocal of the output period shown in Equation (4). From Equation (10) it can be

seen that the linking inputs of the PCNN modulate the feeding inputs. This is the modulatory

mechanism used to simulate the state dependent modulation. Without linking inputs, U would

equal F and the feeding input would drive the pulse generator section. A positive linking input

(L > 0) would increase the value of U which would increase the frequency of the output pulse train
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(Equation (11)). If outputs of filters which are selective to features of a desired target are used

as linking inputs, then neurons connected to image areas that resemble the desired target would

have greater linking inputs than those that do not. The filter outputs represent the state dependent

modulation signals when the current state of the PCNN is a focus of attention on the desired target.

The neurons with inputs that best match the desired target would have the greatest modulatory

input, thus having the highest frequency output. This increased output effectively separates the

neurons from the rest of the image.

For the PCNN fusion network, this modulatory mechanism provides a method of associating

filtered features with segments in the original image. It also provides a focus of attention to isolate

the segment. Segments with a greater number of desired features present will be more active than

other segments; therefore the most active segments are those that fulfill more of the target criteria.

These segments are easily separable from the rest of the image.

4.5 How Information is Fused

The cornerstone of the PCNN fusion network is the segmentation performed by pulse synchro-

nization. This temporal synchronization groups the image pixels into individual, disjoint segmented

regions (objects) that pulse at different frequencies (46, 74). The parameters of the PCNN are man-

ually set to segment image regions fitting the desired object's size and brightness characteristics

into single objects. Since the PCNN segments on brightness boundaries, the PCNN parameter val-

ues used in the segmentation process are image dependent (74). PCNN segmentation is sensitive

to image contrast, thus some images sets may require preprocessing to ensure all images within the

set have similar contrast. Histogram equalization has performed satisfactorily as a preprocessing

step for many of the images in this research. The quality of the information fusion process is

highly dependent upon the quality of the image segmentation. Chapter V presents an adaptive
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PCNN that can be used to determine the PCNN parameter values necessary to achieve a desired

segmentation result.

The fusion process exploits the fact that the segmentation step has grouped the input image

into objects. Since the features produced by a feature extraction process may be spatially disjoint,

a method is needed to associate features belonging to a single object to that object. The objects

produced by the PCNN segmentation provide a single region of space to which disjoint features

can be mapped. These method allows dissimilar and possibly spatially disjoint features such as

brightness, edges, and gradients to be associated with individual objects. Through this feature

association, several dissimilar features of an object are fused into a single representation of the

object.

In the PCNN fusion network, the original image is used as a basis for object segmentation,

and the filtered versions of the original image are used as the dissimilar features. The filters used

in the fusion process are tuned to be selective to particular features of the desired object. Each

filtered image, produced by convolving the impulse response of a tuned filter with the input image,

represents image features with a focus of attention on a particular characteristic of the desired

object. The two outer PCNNs shown in Figure 23 convert the filtered images into pulsed signals

for use as state dependent modulation signals. These pulsed signals are linked to the original

image using the center PCNN's linking inputs. These linking connections are arranged such that

each neuron in the outer PCNNs provides a linking signal to the neuron in the center PCNN that

occupies the same relative spatial location.

The purpose of these linking signals is to link (fuse) each individual feature into its associated

object. These signals are linked by modulating the center PCNN's neuronal response to the object of

interest. The modulatory signals received by each neuron within an object increases the magnitude

of the total input signal U which increases the pulsing frequency of each neuron. Local linking

connections within the center pcnn cause the neurons to fire in synchrony as a single object (46, 45).
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This is the method by which dissimilar and possibly disjoint features are associated with individual

objects. This association process fuses information from separate images into a single image.

The object detection property of the PCNN fusion system is inherent to the association pro-

cess. The strength of the total modulatory signal present within each object is directly proportional

to the number of desired features present within the object and degree to which the features are

present. Objects that contain a greater number of desired features receive a larger modulatory sig-

nal than objects that do not. The greater the modulatory input an object receives, the higher the

pulsing rate of the neurons within the object. The pixels within the original image that best fulfill

the selective criteria of the filters will be represented by the fastest pulsing objects in the output.

Since the value of each pixel in the output of the PCNN fusion network is the pulsing frequency of

the corresponding neuron in the center PCNN, objects with higher pulsing rates are represented as

brighter pixels. The brightness of the output pixels can be used to effectively separate the desired

objects from other objects and the image background. Brightness thresholding of the fused output

image can be used to remove background objects leaving only objects that whose features resemble

the desired object. This is the object detection property inherent to the PCNN fusion network.

4.6 Object Detection Results Using X-Ray and FLIR Images

The following example demonstrates the object detection capability of the PCNN fusion

network. The network is used to fuse information from two independent object detection systems

to produce a single output that has fewer false alarms while still detecting the desired object. The

individual object detection systems used to generate the inputs to the fusion system are actual

published detection systems. Two particular object detection systems are chosen to provide visual

features because both have been used successfully to detect breast cancer in mammograms (68,

17, 65, 71) and SCUD missile launchers in FLIR images (78). One of the systems is based on

morphological (hit-and-miss) processing, and the other is based on Difference-of-Gaussians (DoG)
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filtering. The band pass filtering performed in these detection systems are used to extract size

and spatial frequency components from digital images. The filtered components serve as individual

features which are fused by the PCNN fusion network into a single image which combines and yet

exploits the selectivity of each individual filter.

The two detection systems serve the same function as the PCNN feature extraction network

presented in the previous chapter. These object detection systems can be viewed as a feature

extraction system that has a focus of attention for a particular type of object (the target). This

focus of attention is created by selecting the band-pass filter characteristics that best detect the

desired object. The features produced by the two systems are a subset of the features produced

by the more general feature extraction network. A frequency output is not produced because the

detection systems are tuned to a specific frequency range. Since detection of the target is desired

at any orientation, non-oriented filters are used. This means an orientation output is also not

needed or produced. This leaves the intensity output as the remaining feature. The outputs of the

detection systems are very similar to the intensity output of the feature extraction network. Each

output contains a measure of the energy in the bandpass filters bandwidth at each point in the

original image.

Figures 26a, 26b, and 26c show example inputs to the image fusion network. Figure 26d shows

the output produced by the network. Figure 26a is an actual FLIR image produced by an aircraft

imaging system. The image contains a SCUD mobile missile launcher, two support vehicles, and

four flash pods. Figures 26b and 26c are the outputs of the two object detection systems when

using Figure 26a as an input.

In this experiment, 100 FLIR images were used to calibrate and test the object detection

capability of the PCNN fusion network. The goal of the experiment is to detect the SCUD launcher

while minimizing the number of false alarms. Fifty images were used to calibrate the PCNN weights,

linking radius, f and threshold parameters. Each image contained a single SCUD mobile missile
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Figure 26 Input and output images of a mobile SCUD launcher and flash pods. (a) Original
FLIR Image (b) DoG filtered image (c)morphological (Hit/Miss) filtered image, (d)
PCNN fusion network output image

launcher, a truck, a van, and four surrounding flash pods to mark the target location. The flash

pods function as a guide for the photographer and are not used by the detection algorithms.

After PCNN calibration, the object detection capability of the fusion network was tested on the

remaining 50 FLIR images. Since the output of an object detection system is often processed by a

pattern recognition engine to obtain additional accuracy, a large false alarm rate is preferable to a

missed target. For this reason, all filters were tuned conservatively to ensure SCUD detection. Any

detected object other than the SCUD, truck, van, pods, and image edge effects were considered

false targets. Detection of the truck, van, and flash pods was considered optional.
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Table 4 Mobile SCUD launcher detection results using the PCNN fusion network
Image Number Number of False Alarms (with 100 percent target detection)

I Hit/Miss algorithm DoG algorithm PCNN network

1 7 12 0
2 5 22 0
3 2 16 0
4 28 17 1
5 40 28 2
6 9 7 3
7 1 8 1
8 1 26 0
9 1 30 0
10 3 29 0
11 7 27 0
12 3 21 0

average 8.2 20.3 0.6

Table 4 presents the detection accuracy achieved by each method. Due to space consider-

ations, only 12 images are shown. The accuracy achieved on these 12 images is representative

of the average accuracy achieved over the entire image set. The images shown in Figure 26 are

example images taken from this set of results. For every image inside the desired target detection

range (ranges of interest from a munitions release perspective), the selective filters and the PCNN

fusion network detected the SCUD mobile missile launcher. As can be seen in Figures 26b and 26c,

conservative tuning can cause the selective filter routines to produce a large number of false alarms.

The Hit/Miss filter algorithm averaged 8.2 false targets per image, the DoG filter algorithm aver-

aged 20.3 false targets per image, and PCNN network averaged 0.6 false alarms per image. When

compared to the best filter accuracy, the PCNN network removed 93 percent of the false alarms

without removing any true detections. The accuracy produced by the PCNN network also exceeds

the accuracy produced by ANDing the filter outputs.

In the second test, the algorithms were used to detect microcalcifications in mammograms.

Microcalcification density is often used by computer aided diagnosis (CADx) systems for early

detection of cancerous breast regions (29). Microcalcifications are present in healthy tissue, but

a high density (5+ per square centimeter) can be an early indication of cancer. In this test, the
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selective filters were tuned to detect radiologist identified microcalcifications. The goal of the test

was to maximize the detection of identified microcalcifications while minimizing the number of

other detections. All detected objects that did not represent an identified microcalcification were

considered false targets. The identified microcalcifications were visually detectable, but others may

exist. Since this test does not attempt to detect all microcalcifications, but only those identified

by radiologist, the resulting accuracy should not be directly compared to other cancer detection

algorithms. The purpose of the test is to demonstrate information fusion by a PCNN.

Table 5 Detection results of microcalcifications in mammograms using the PCNN fusion network
Image Number Number of Calcs Found/Number of False Alarms

Hit/Miss algorithm DoG algorithm PCNN network

1 15/15 21/27 18/15
2 31/15 41/26 38/12
3 20/17 24/19 21/8
4 32/7 49/18 15/0
5 25/29 32/57 26/20
6 5/41 7/72 1/3
7 3/24 3/34 3/28
8 4/26 5/22 4/11
9 6/16 7/29 6/21
10 2/9 4/23 0/0
11 9/14 9/19 8/2
12 10/11 10/7 10/1

Average Ratio 0.76 0.60 1.24

Thirty 256 x 256 pixel regions segmented from full breast mammograms were used to test

microcalcification detection. Eighteen of the regions were used to calibrate the PCNN network

and the filter algorithms, and the remaining 12 were used to test the detection accuracy. Table 5

presents the detection accuracy achieved by each algorithm. Since the PCNN network fuses the

results of the selective filters, no additional true detections were expected or achieved. The results

do show that the number of false detections were significantly reduced with only a small reduction

in true detections. The Hit/Miss algorithm averaged 1.3 false detections for each true detection

and the DoG algorithm averaged 1.7 false detections per true one. The PCNN network reduced

these ratios to 0.8 false detections per true detection. When compared to the best filter result, the
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PCNN network removed 46 percent of the false detections while removing only 7 percent of the

true detections.

The fusion network provided a greater accuracy increase on the FLIR images than on the

mammogram images. The network reduced the false alarm rate from 8.2 to 0.6 false alarms per

image in the FLIR images and from 1.3 to 0.8 false detections per true detections in the mam-

mograms. In the fusion process, the PCNN network does not add true detections to the output,

but instead removes false detections. Since the FLIR images contained many objects such as trees

and roads that were larger than the target, the PCNN could easily segment and remove the large

objects. Because the mammograms contained few large objects with consistent brightness and

boundaries, the PCNN segmented the image into many small objects which prevented any signif-

icant object removal based on size. The majority of the information removal was performed by

the state dependent modulation. These results imply the PCNN fusion network is better suited

for processing images which contain structures that differ in size from the targets. The PCNN was

able to map many false detections, such as road and forest edges, into the larger original object and

subsequently remove the false detections. The tests have shown the PCNN network is suitable for

removing false detections from conservatively tuned filter outputs while preserving a majority of

the true detections. The network removed 93 percent of the false detections without removing any

true detections in the FLIR images and removed 46 percent of the false detections while removing

only 7 percent of the true detections in the mammograms.

4.7 Summary

The first PCNN-based fusion network has been developed using the primate vision processing

principles of temporal synchronization, state dependent modulation, and multiple processing paths.

The network combines the output of individual detection techniques in a physiologically motivated

fashion which achieves improved object detection. The information fusion and object detection
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properties of the image fusion network were demonstrated on mammograms and forward looking

infrared (FLIR) images.

The PCNN fusion network provides a method of improving object detection accuracy by

fusing the outputs of multiple object detection algorithms. For the example images, the accuracy

of the fusion network surpassed the accuracy provided by the results of any single filtered output,

or the logical AND of all filter results. The network takes pixel-based information as an input

and produces an object-based output. The brightness values of the objects in the output image

represent the degree to which each object matches the characteristics of the desired object. The

PCNN fusion network provides a good foundation for implementing and evaluating other biological

vision processing principles as more is learned about the primate vision system.

The calibration phase of this system is time consuming due to the complexity of setting the

many PCNN parameter values. Once calibrated, the system requires no further attention and can

be run autonomously. This large time requirement for parameter setting is typical of PCNN-based

systems. The following chapter provides a remedy to this problem by developing the first adaptive

PCNN. Given only an input and a desired output, the adaptive PCNN finds the parameter values

necessary to approximate the desired output. This adaptive PCNN saves time and produces near-

optimal settings for each parameter.

67



V. Adapting PCNN Parameters

5.1 Overview

A PCNN with a linking radius of 1 and a feeding radius of 1 contains 25 adjustable parameters

(8 constants and 17 weights). A PCNN with a linking and feeding radius of 10 contains 889

adjustable parameters. Manually adjusting one or two parameters is feasible, but finding a near-

optimal setting for all parameters requires searching a high dimensional parameter space. A task

of this magnitude is best performed in an automated fashion. No PCNN presently exists which can

adapt its parameters to meet a desired goal. Little guidance exists for selecting PCNN parameter

values, and no guidance exists for adjusting poor parameter values to make the PCNN better

achieve a goal (23, 46, 45, 47).

Training rules or parameter setting equations, exist for the multi-layer perceptron, Hopfield

network, and many other neural networks (77). Some of the attributes that make the PCNN

unique are the same attributes that have hindered development of equivalent equations or training

rules for the PCNN. Linking connections within the PCNN causes the output of each neuron

to be dependent upon the outputs of neighboring neurons. Adjusting one neuron's parameters

has a nonlinear effect on all neighboring neurons. Another hindrance to the adaptation task is

the pulse-based nature of the PCNN. Pulses are used to transport information between PCNN

neurons. Well-known adaptation methods such as error back-propagation and reinforcement are

typically applied to networks that use persistent signals to transfer information. A continuous

signal equivalent to the PCNN must be developed before such techniques can be applied. The

phenomenon of pulse capture (pulse synchronization) adds additional complexity to the adaptation

task. Pulse capturing is a nonlinear operation which needs to be considered when attempting to

apply linear adaptation techniques used in other neural networks to PCNNs.

In this chapter, adaptation equations are developed for all parameters of the PCNN. These

equations take into account the inter-neural dependencies, pulse-based information transfer, and
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pulse coupling that occur within the PCNN. First, a simplified, mathematically equivalent, persis-

tent signal PCNN neuron model is developed. From this model, a system equation is formulated

that provides the input-to-output relations needed to apply a gradient descent-based adaptation

method. Backward error propagation is applied to the PCNN system equation to derive param-

eter adaptation equations for each parameter. Some of the resulting equations are time varying

and require adaptation after every time step during a discrete time simulation. This time depen-

dency limits the usefulness of the equations and increases computational requirements. Additional

knowledge of pulse capturing is applied to these equations to reduce them to a form which is not

a function of time. This allows all adaptation equations to be applied after PCNN execution is

complete. The post-execution nature of the equations allows adaptation to be added to an existing

PCNN without any internal modifications. This is a definite advantage for those who wish to add

adaptation to an existing PCNN implemented in hardware. Given only an input and a desired

output, an adaptive PCNN can find near-optimal parameter values that will minimize the squared

error between the actual output and the desired output.

5.2 A Simplified, Mathematically Equivalent PCNN Neuron

The PCNN uses the Eckhorn artificial spiking neuron which consists of three major units: the

feeding input branch, the linking input branch, and the pulse generator. Examining the neuron in

a function oriented format simplifies both the neuron equations and the diagrams. The functional

units of the neuron are shown in Figure 27 in a visually simplified model. Since the feeding inputs

are connected to a source with constant value, no feeding leaky integrators are needed. Each linking

input is replaced by the time signal Lk(t), which is the output of the corresponding linking leaky

integrator in the full model. The simplified model makes the following two assumptions:

1. Each neuron fires only once then remains dormant until the PCNN is restarted

2. 0 = 0.
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Figure 27 Simplified view of Eckhorn spiking neuron

The simplified neuron model is valid over the range 0 < Uk 5 Vs. For Uk > V S , Y(t) = 1 and

for Uk _ 0, Y(t) = 0 where 6(.) is a unit impulse function. Within the bounds of these assumptions,

the simplified model is mathematically equivalent to the full neuron model. The equations for the

simplified model are:

Output Pulse: Yk(t; X, M, L', W, fl, VF, VL, V S , 
7

S
) = 6(t - Tk(Uk))

Output Pulse Period: Tk(t; X, M, L', Wf3, VF, VL, VS,rS) = -- rS in ( Y)

Total Input to Pulse Generator: Uk(t; X, M, L', W,3,V F, YL) = Fk(X)[1 +n3Lk(t)]

Total Feeding Input: Fk(X; M, VF) = VF E 1 XjkMjk

Total Linking Input: Lk(t; L', W, VL) = VL Zl 1 L~k(t)Wik

where Tk(t) defines the period of the output pulse produced by the kth neuron. Combining the

output pulse period (Tk) and total input (Uk) equations gives

Tk(t) = -r S ln (Fk(X)[1 SLk(t)])

This is a good equation for providing a high-level understanding of the operation of the PCNN. It

shows the output pulse period is a logarithmic function of the feeding inputs multiplied (modulated)
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by the linking inputs. Adding in the total feeding input (Fk) and total linking input (Fk) equations

produces
l(k k(+fVL.lL~k(t)Wik)\Tkt) - s n VF -]=Xkj(I+ OVL EI

Tk(t)VS i ) (12)

which is the equation for the period of the output pulse produced by the simplified Eckhorn neuron

model. Additional expansion of Equation (12) could be performed by substituting

L k(t) = exp (-(t TT(t))) u(t- T(t)) (13)

for the leaky integrator's output, or

Lk(t) = 6(t - Ti(t)) (14)

if no leaky integrator is used. Ti(t) is the output pulse period of the ith neuron connected to the

linking inputs, u(.) is the unit step function, and 6(-) is a unit impulse function. The value of Ti(t)

can be calculated using Equation 12 which creates a group of simultaneous equations, or can be

replaced with the actual output value during PCNN execution.

5.3 Adapting Parameters Using Gradient Descent

Backward error propagation (backprop) is one of the most common techniques for develop-

ing adaptation rules for multilayer perceptron artificial neural networks (93, 80). Backward error

propagation using gradient descent can be applied to Equation (12) to derive an adaptation equa-

tion for any chosen parameter. A gradient descent-based optimization technique requires an error

functional to minimize. Defining this error functional as

E - (Desiredk - Actualk) 2  (15)
k=1
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gives the mean squared error (MSE) between the desired output and the actual output of an n

neuron PCNN. Desiredk and Actualk are the desired and actual output of neuron i, respectively.

This error functional actually defines MSE multiplied by 1/2. This scaling factor is included for

convenience because it cancels other scale factors during equation derivation. It has no effect on

the final adaptation results because minimizing MSE/2 also minimizes MSE. The partial derivative

of this error functional with respect to a chosen variables provides the gradient of the output error

with respect to that variable. Adjusting the chosen variable in the direction of the steepest descent

of this error gradient will reduce the output error. This method of adaptation is known as the

first-order gradient steepest descent method which is commonly used in artificial neural network

weight update rules (77). The general PCNN adaptation rule for a variable is

Gew Gld I OE old)

where Gold is the variable before adaption, Gnew is the variable after adaption, i is the index of

the element of G that is being adapted, and ij' is the adaptation rate (a small real valued number).

This equation defines an adaptation rule for minimizing the squared error over n neurons. The

partial derivative term provides the direction of the steepest descent with respect to the scalar G.

Focusing on the kih neuron within the PCNN, the error functional (Equation 15) becomes

E = 1 (Desiredk - Actualk) 2 . (16)

Taking the partial derivative of this error functional for a single neuron gives

OE (Gold) = -(Desiredk -Actu OActualk (Gold)
aGi (G

where k is the index of the neuron.

72



The output pulse period of the simplified Eckhorn neuron (Equation (12)) can be substituted

for the variable Actualk so that additional decomposition can be performed. There is no need to

perform additional decomposition on the first occurrence of the variable Actualk, thus it is left

unchanged. The second occurrence of Actualk is substituted because the gradient term of the

equation is decomposed to derive adaptation equations. Performing this substitution produces the

equation.
OE _l •OTk ,odOE (G )= (Desiredk - Actualk)-k(G Id) (17)

A chosen variable within the kth PCNN neuron can be adapted to reduce output error using the

equation

Gew = G° Id + 77(Desiredk - Actualk)--(G ) (18)Z S OGi

where 77 = (to minimize the number of scaling variables that appear in future equations).

5.4 Applying Gradient Descent to PCNN Parameters

5.4.1 Feeding Weights Adaptation. The adaptation equation for the feeding weights is

derived first because of its simple and straight forward nature. The previous section developed

generalized adaptation equations based on gradient descent. These equations must be solved for

a specific variable before they can be applied. Substituting Mjk for the general parameter Gi in

Equation (17) results in the error gradient equation for the jkth feeding weight

__OTk (9

E (Desiredk - Actualk) O(1k

Expanding the partial derivative of Tk with respect to Mjk by replacing Tk with Equation (12)

gives

OTk(t) __ _____ ln (vF(EJ= XjkMk)(1+ /JVL EZ=, L(t)Wik) )

OMjk aMjk7
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-TSXjkE = iMik"

Substituting this partial derivative term back into the error gradient equation for the jkh feeding

weight (Equation 19) gives the gradient of the output error with respect to the feeding weight Mjk

E = (Desiredk - Actualk) TSXjk
aMjk E z=j XikMik"

Substituting this parameter specific information into the general adaptation Equation (18) produces

Mnew, M/od ( d erd TS Xjkk 7k - -(Desiredk - Actualk). Mo l d  (20)

Ac -i---1 Xik Mk

which is an adaptation equation for the jth feeding weight (Mik) of the kth PCNN neuron to reduce

output error.

5.4.2 Linking Weights Adaptation. The same procedure used to derive the feeding weight

adaptation equation can be applied to the linking weights. The error gradient equation for the i
t h

linking weight Wik is
c9E OTk(t)

E _(Desiredk - Actualk) OW k
OWik 9i

Expanding the partial derivative of Tk(t) with respect to Wik gives

aTk (t) _ -SI3VL Lk (t)

owik 1 + fL(t)

Substituting linking weight specific information into Equation (18) produces

w~new = Wokd -L (- M-f (t)

ik Wk 7L(Desiredk - Actualk)' 1 + OLk)
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where 71L is the adaptation rate for the linking weights. This adaptation equation is usable, but

contains the time varying signals Lk(t) and Lk(t). Any adaptation performed using this equation

must be performed at each timestep, or the value of Lk(t) and Lk(t) for each timestep must be

saved for later processing.

Even though the adaptation equation for Wik is a function of t, adaptation need not be

performed for every value of t. The time varying aspect of the equation can be removed using the

initial assumptions and knowledge of pulse capturing. The goal of this discussion is to replace the

variable t with a constant that may differ for each neuron. The initial assumptions state a neuron

can only pulse once. As before, let Actualk be the the actual output pulse period of the kth neuron.

Once execution is complete, the three following training possibilities exist:

if Actualk = Desiredk do not adapt

if Actualk < Desiredk adapt parameter to make neuron fire later

if Actualk > Desiredk adapt parameter to make neuron fire earlier.

Since all neurons pulse at t = 0, the neuron's firing time and output pulse period (Actualk) are

the same value and will be used interchangeably. Adapting the linking weights adjusts the degree

to which the pulse period Actualk of the kt h neuron is influenced by the output of neighboring

neurons. Pulse capture, which is the mechanism of neuron synchronization, only occurs in one

direction (46). A neuron can only be captured by a neuron that fires earlier than itself because

linking signals only exist from neurons that have fired. To make a neuron fire later one must lower

the influence exerted by neighboring neurons that fire at Actualk. To make a neuron fire earlier, the

influence exerted by neighboring neurons that fire earlier than Actualk must be increased. Since the

goal of this discussion is to replace all occurrences of t within the equation with a neuron specific

time, let tk represent that time for the kth neuron. The time ik is the time at which training must

take place. This is the time at which the influential signals are present. This time is always the

earlier of Actualk and Desiredk (i.e., tk = min{Desiredk,Actualk} where min is the minimum
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operator). Substituting this earlier time tk for t gives

k Wd - L (Desiredk - Actualk) 7S ,VLLk(k) (21)

Lk(ik) and Lk(k) could each be written as a function of the linking inputs by performing a

variable substitution using Equation (13). The variable Ti(t) in Equation (13) is time varying and

requires a time independent replacement. After execution is complete, the output pulse periods for

all neurons are known. The output pulse period equation Ti(t) for neuron i can be replaced by its

actual output pulse period Actuali. Making this substitution produces the leaky integrator output

equation

Lk(ik) = exp ((k - Actual) ) U(k - Actuali). (22)

Expanding Equation (21) using Equation (22) produces

WS/3VL exp (-( k-Actuali)) u(t4 - Actuali) (23)

,+=3VL- exp tk - Actualj)

If leaky integrators are not used on the linking inputs, the equation reduces to

Winew = Wiold - - Actualk) TS0VL6(jk - Actuali) (24)

1 + /3VL E=1 6(tk - Actualj)

Equations (23) and (24) are adaptation equations for modifying linking weight Wik of the kth

PCNN neuron to reduce total output error. Either equation can be applied after all timesteps are

completed knowing only the desired and actual output of the PCNN.

Not all desired outputs can be achieved by adapting the linking weights. A neuron cannot

be influenced to fire at an earlier timestep through linking weight adaptation if no neighboring

neuron fires at that timestep or earlier (if linking leaky integrators are used). Other parameters

(feeding weights, etc.) must be adapted to achieve this goal. Another problem that may be
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encountered when training linking weights is oscillations. Through linking, the neuron outputs

become interdependent (6). A change in output of one neuron as it adapts based on a neighbor's

output may cause that neighbor's output to change. During testing, this condition has caused

oscillations between neighboring neurons that are adapting to achieve mutually exclusive goals.

This problem can be controlled by decreasing qjL over successive training epochs. The neuron

adaptation goals will remain mutually exclusive, but the cause of the oscillations is now damped

and will cause the oscillations to diminish over successive training epochs.

Figures 28 and 29 present examples in which the linking weights are adapted to cause the

center neuron to fire at earlier and later timesteps, respectively. Figure 28 shows the output of a

PCNN before and after adapting the linking weights. Darkened circles represent pulsing neurons

and empty circles represent non-pulsing neurons. Output timestep and output pulse period are

synonymous (i.e., a neuron that pulses at time t = 3 has an output pulse period of T = 3). The

PCNN is composed of a 3 x 3 array of neurons connected using a linking radius of 1. Each neuron

has a single feeding input. An identical set of linking weights is used for each neuron and all linking

weights are initially set to 1. With these linking weights all neurons with non-zero feeding inputs

fire together at t = 2. The desired output is the center neuron firing at t = 3 and all other neurons,

with non-zero feeding inputs, firing at t = 2. Adaptation was performed by averaging the needed

weight changes and applying the average to all neurons. The value of 7L is initially set to 0.1 and

decreased over time. After several adaptation runs, the desired output is achieved. The weights

connecting the center neurons to the capturing neurons have decreased to the point where the center

neuron is no longer captured. The network adapted to cause the center neuron to fire at a later

timestep. Figure 29 shows another training run using the same network. The goal in this run is to

adapt the PCNN to cause the center neuron to fire at an earlier timestep than it originally fires.

The initial parameters used in this run are the same as in the previous run. After adaptation, the

center neuron fires at the desired timestep. The linking weights connected to pulsing neighboring

neurons have increased to a value which allows the center neuron to be captured by these neurons.
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A point worth noting: for this input, the PCNN linking weights cannot be adapted to cause the

center neuron to pulse at timestep 3 without the use of leaky integrators. Linking works through

the mechanism of pulse capture (46), and no neurons pulse at timestep 3 which could influence the

center neuron through pulse capture.

Input Values (X) Goal: to adapt a single set of PCNN linking weights Desired Output
Inpu Vaues(X)Period T

( go (radius= 1) to cause the center neuron to fire at timestep 0 M

t=3 (adapt neuron to fire later). (0 ( D G0
(9 GG Training (DD(000 A/ occurs0 0

t=1 / t=2 " t=3 t=4 Weights used

Pulses before 000 / @00 \ 000 000 1.01.01.0
training 000 ' o 000 000 1.00.01.0

training 000 00 I 000 000 1.01.01.0

Pulses after 000 00 000 000 0.1 1.01.0

training 000 \ 0O0 / 090 000 0.10.01.0
000 \\00/ 000 000 0.11.01.0

Figure 28 PCNN adaptation example: Linking weights are adapted to cause center neuron to
fire at later timestep

5.4.3 Global Linking Strength (3) Adaptation. Of the many PCNN variables, 3 is most

likely to be adjusted since it directly effects the coarseness of any segmentation that is performed.

Using the same procedure used to derive the previous parameter adaptation equations, the partial

derivative of the output equation with respect to 3 is

6 Tk -rSLk(t)
(9,3 1 +3Lk (t)"

The adaptation equation for3 is

/3new = 3 otd -,q? 3(Desiredk - Actualk)l-
1+ 3Lk(t)
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Input Values (X) Goal: to adapt a single set of PCNN linking weights Desired Output
Period (T)

( D 0 (radius= 1) to cause the center neuron to fire at timestep 0 0
t=2 (adapt neuron to fire earlier).

G (D Training 0 0 

t-1 / t=2 ",s t=3 t=4 Weights used
Pulses before 000 @00 000 000 1.01.01.0

000 / @00 \, 000 00 1.oo.o.o
training 000 @00 000 000 1.01.01.0

Pulses after 000 00 000 000 2.31.01.0

training 000 000 000 000 2.30.01.0
000 \\O0 / 000 000 2.31.01.0

Figure 29 PCNN adaptation example: Linking weights are adapted to cause center neuron to
fire at earlier timestep

where 7773 is the adaptation rate for /3. This equation is concise and usable, but contains the internal

time varying signal Lk(t) that must be processed at time t or stored for later use. Performing

variable substitution using Equation (22) gives

TSVL 1 exp u(t- Actuali)
/3 new = '3,d _ 3(Desiredk - Actualk)- /- - (25)

+ 3VL Li=l exp )-i-cUaL)pVL O-Actati)) u(tk -- Actuali)
EL , ex L

If leaky integrators are not used on the linking inputs, the equation reduces to

neflw = ld T5 VL Z~ 16(i,, - Actuai) (6
)3 = - 7)p(Desiredk - Actualk) (26) - Atual2)1 ± 3L Zl=1f+ VL E",=l (tk - Actuali)

Equations (25) and (26) are adaptation equations for modifying the /3 of the kth PCNN neuron to

reduce output error.

The parameter /3 performs a function very similar to the linking weights. The value of /3

could be incorporated into the linking weights, but is usually kept separate for the convenience of

having a single variable that controls linking strength. When adapting the linking weights, there

is no need to adapt /3 because linking strength is inherently included in the weight magnitudes. As
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with adapting linking weights, not all desired outputs can be achieved by adapting / alone. The

possibility of training oscillations exist when adapting 3 for neurons that have mutually exclusive

goals.

Figure 30 shows the results of adapting 3. This example uses the same network architecture

used in the linking weight adaptation example. The goal is to adapt 3 to cause the center neuron

to fire at timestep t = 2. Using Equation (13) and solving the simultaneous equations shown in 7

for the nine neuron PCNN shows the desired output can only be achieved using a value of / in the

interval [0.03659,0.05807]. For the first training case, the network is started with 3 = 0.1 which

is too large to achieve the goal. The network adapts until it reaches 3 = 0.05749 which induces

the center neuron to fire at t = 2. The second training case covers the opposite situation where

the network is started with3 = 0.001 which is too small. The network increases 3 until it reaches

= 0.03840 which satisfies the goal. In both cases /= 0.0001 is used as the learning rate.

Input Values (X) 0.11

(3 G) 0 0.1 + + Training run with

0.09 + initial Beta that is
0 . + too large

(3 (. 0 ;:; 0.08 +

-"0 0.07 Maximum Beta that will

DeiedOtptachieve desired outpuF.D esired O utput 0.06 . ............................................................................. . .. ... - - -

Period (T) 90 0 0 - 0.05 Minimum Beta that will
C 0.04 achieve desired output( ® @ _ .................................. .............. ..... ...... ...... ...... ...... ...... ........

0.02 * Training run with
0initial Beta that is

Is16 L=10 0.01 • too small
linking radius=1 0

feeding radius=O 0 2 4 6 8 10 12 14 16

All weights=1.0 Training Epochs

(a) (b)

Figure 30 PCNN adaptation example: Beta (/3) is adapted to cause center neuron to fire at
timestep t=2. (a) Input and desired output for PCNN. (b) Adaptation of 3 during
two training runs. Upper plot starts with 3 that is too large, lower plot starts with/3
too small.
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5.4.4 Pulse Generator Time Constant (-S) Adaptation. The pulse generator time con-

stant r S is another PCNN constant that is likely to be adjusted to achieve a desired output. It

determines the timestep to which an input value will be mapped if no linking influence exist. If the

value r S is smaller than is required to ensure a one-to-one mapping from input values to timesteps,

r s will directly effect the coarseness of any segmentation that is performed. Using the same proce-

dure used to derive the previous parameter adaptation equations, the adaptation equation for TS

is

- T 0l - 7 (Desiredk - Actualk) x (27)

In_.1 jkik( E=1 exp ( u ( - Actuali)Wik)
In (F+VS t

where r7s is the adaptation rate for rS. If leaky integrators are not used on the linking inputs, the

equation reduces to

Tnew = TolSd - 77s (Desiredk - Actualk) X (28)

In V  - = 1 X j kM i k ( I +  VL i= l 6(ik - Actuali)Wik) \

5.4.5 Linking Leaky Integrator Time Constant (TL) Adaptation. The linking leaky inte-

grator time constant is an interesting parameter, because at first glance a leaky integrator would

appear to serve no function in a pulse-once scenario. If only one pulse is emitted by each neu-

ron, then there is no need for a leaky integrator to accumulate pulses. The leaky integrator does

serve another function. It converts the single pulse to a persistent (albeit decaying) signal. This

persistent signal allows a neuron to be influenced by an earlier firing neighboring neuron even if it

is not captured by that neuron. What does this mean to the overall PCNN operation? It allows

neighboring neurons to influence a neuron to fire early, but at a timestep in which no neighboring

neuron is firing. This is an important fact. Without linking leaky integrators, the center neuron
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in the second linking weight training example (Figure 29) can fire at only timestep 2 or timestep

4. It either is or is not captured by the three neighboring neurons. With leaky integrators, the

influence of the three neighboring neurons is still present at timestep 3, thus the center neuron can

be influenced to fire at timestep 3. With that said, the same procedure used to derive the previous

parameter adaptation equations can be used to derive an equation for adapting L. The adaptation

equation for r L is

T~ew -- Told - 77L (Desiredk - Actualk) x (29)
TS ,VL E W e (z- Actual)) (2 cu a ).iW xp) u(tk - Actuali)

1 + 3VL E1=1 exp ((k-Actuati) ) u( - Actual)

where ??'L is the adaptation rate for rL. This same procedure can be applied to the feeding leaky

integrators, but will not be since the simplified Eckhorn neuron contains none.

5.4.6 Feeding (rF) and Linking Radius (rL) Adaptation. The feeding and linking radius

determine the number of input values or neighboring neuron outputs that are processed by a single

neuron. No adaptation equations will be derived for these parameters because they are inherently

adapted by the feeding weight and linking weight adaptation equations. For a given feeding and

linking radius, the corresponding weight adaptation equation will adjust the radius by adjusting

weights of undesirable inputs towards zero. This will effectively reduce the radius if a reduced

radius is needed to achieve the desired output. The weight adaptation equations cannot increase

the radius if a larger radius is required. During training, a sufficiently large radius should be

selected to achieve the desired output. Equations that can be used to determine a sufficient radius

are given in Ranganath (74).

5.4.7 Using Identical Parameter Values for Multiple Neurons. The adaptation equations

derived above can be directly applied to individual neurons to achieve a near-optimal setting for

each neuron. Individual parameter settings for each neuron will train a network to operate well on

82



a single image or a group of images with spatially similar content. When a network with spatial

invariance is desired, identical parameter settings are often used for all neurons in the network (or

network layer). The adaptation equations presented in this dissertation can be applied to this type

of network by summing the needed update values and dividing by the total number of neurons

in the PCNN. This summed and scaled update value can then be applied to each neuron in the

PCNN. Averaging the needed update values may cause oscillations because a single neuron can

cause the same magnitude change to a parameter's value as multiple neurons.

5.4.8 Limitations of the Gradient Descent Method. As with all search techniques based

solely on gradient descent, the adaptation equations presented in this research may find a local

minima in the error surface and not reach a global minimum MSE. The quality of the results is

directly dependent upon the shape of the error surface and the initial parameters. Often multiple

training runs using randomly chosen initial values are used to reduce the effect of local minima.

Genetic algorithms and simulated annealing have also been successfully used to reduce the effect of

local minimas while maintaining most of the efficiency associated with gradient base searches (31,

81, 87, 70). Only a true global search or absolute knowledge of the error surface can guarantee an

optimal result.

5.5 Setting the Remaining Parameters

The remaining parameters, which include the firing threshold offset (0o), magnitude adjust-

ment constants (VF, VL, and Vs), and maximum timestep, can be viewed as neuron tuning

parameters. They are no less important than the other parameters, but serve a slightly different

purpose. These remaining parameters control internal signal levels which alter the efficiency and

resolution of the PCNN processing. Sub-optimal values for these parameters will result in inefficient

processing or distorted output.
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5.5.1 The Pulse Generator Firing Threshold (0o). To set the pulse generator firing thresh-

old to prevent any values of Uk less than or equal to 0.6 from generating a pulse, set 80 = 0.6. As

implemented, the threshold has the performance side effect described earlier. For O0 : 0, all adap-

tation equations will work properly, but equations for setting VS will need modification to include

0. Any other constants used to compensate for the side effect of 0 will become interdependent

with 00. We recommend setting 00 = 0 and either threshold the input before PCNN execution, or

threshold the output after PCNN execution.

5.5.2 The Magnitude Adjustment Constants (VF, VL, and VS). As previously stated,

the pulse generator operates over the input range [0,VS]. The magnitude adjustment constants

VF and VL are used to scale magnitudes of Fk and Lk, respectively, to produce a value of Uk that

is within this desired range. V S can also be set to scale the value of Uk. For optimal scaling, the

variables should be set to any combination that satisfies

Fma.(1 + Lma.) = V S

where Fmax and Lmax are the maximum possible values of F and Lk, respectively. Expanding

this equation to contain VF and V L gives

f +&k -I u( - Actuali VS
Vf(Z XkMjk)m a(1 +v -exp T u(tk - Actuali)Wik)) = a.,

j=1

where the subscript max denotes the maximum possible value. This equation simply states that

all constants should be set to maintain (Uk/V s ) < 1.

Another use for VL can be to maintain a consistent total linking strength when the linking

radius is changed. For example, a neuron with a linking radius of 1 is connected to eight neighboring

neurons and can receive up to eight simultaneous pulses. If the linking radius is changed to 3, the
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same neuron can now receive up to 48 simultaneous pulses. VL can be adjusted to make the total

linking magnitude the same for each case. This allows the same 0 to be used for both cases.

5.5.3 The Maximum Timestep. This is not a true PCNN parameter, but is mentioned

here to aid efficiency. The maximum timestep is defined as the total number of timesteps a PCNN

should be executed during a training epoch. This number should be set equal to the largest

timestep present in the desired output. Any lesser value prevents the adaptive PCNN from fully

approximating the desired output. Any greater value will result in unnecessary processing since

the extra time steps can never match anything in the desired image.

5.6 Parameter Adaptation Example Using an MRI

Original MRI PCNN - PCNN Segmented
Image Filter Segmenter MRI Image

256 x 256 0=6-0.06, Hitga =0.07, 256 x 256
pixels, 256+ Equalizatio -s=25, pixels, 6-10
unique gray " L=o, linking "c='=O linking unique gray

levels radius=l radius=l levels

Stage 1 Stage 2 Stage 3

Figure 31 PCNN-based process used to segment MRIs for 3D modeling.

To demonstrate the utility of the adaptive PCNN, it is used to find the parameter settings

necessary to segment MRIs with the PCNN. Another research effort at the Air Force Institute of

Technology (AFIT) uses the process in Figure 31 to segment MRIs for the purpose of 3D model-

ing (2). For this process, all neurons within a PCNN use identical parameters. The PCNN filter

and segmenter stages are described in detail in Ranganath (74) and Johnson (46). The original

images contain 256+ unique gray levels and the segmentation process groups similar pixels to form

an output image with only 6-10 unique gray levels.
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(a) (b)

Figure 32 Input and output of the PCNN in Stage 3 of the MRI segmentation process (256-
by-256 pixel MRI, 3 = 0.07, and r S = 25). (a) Input image containing 45 unique
intensity levels (b) output image containing 7 unique intensity levels.

The first adaptation example demonstrates the adaptive PCNN is capable of finding the

parameters necessary to produce an output that is within the PCNN's capabilities. The easiest

way to demonstrate this point is to take the output of another PCNN and have the adaptive

PCNN find the parameters needed to produce that output. Figure 32 shows the input and output

of the PCNN in Stage 3 of the MRI segmentation process shown in Figure 31. All pixels in the

input image are non-zero (even the dark background). The output image has been converted from

timestep values to intensities for viewing purposes.

The adaptive PCNN is given the input to Stage 3, the desired output, and the arbitrary

initial conditions of /3 = 0.01, and rS = 100. The values i = 0.07 and r s = 25 are used to create

the desired output. The goal of this example is for the adaptive PCNN to minimize the squared

error between its output and the desired output by adapting the parameters P and i-s. Figure 33

shows the parameters as the PCNN adapts to minimize the squared error. The parameters were

adapted to 03 = 0.07, and 7-S = 25 and the final squared error was driven to zero. The desired

output was reproduced with 100% accuracy. Several adaptation runs were performed using various
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Figure 33 Adaptive PCNN parameters during adaptation while approximating the processing
performed by the PCNN in Stage 2 of the MRI segmentation process. Goal of training
is to match the parameters (0 = 0.07 and 7S = 25) and the output of the Stage 2
PCNN. (a) Beta (b) pulse generator time constant r s (c) squared error between
desired output and adaptive PCNN output.

initial values of 3 and rs. In all cases the adaptive PCNN found the correct parameters resulting

in a squared error of zero.

The second example attempts to approximate the entire MRI segmentation process with a

single PCNN segmenter. In this example the desired output cannot be achieved by the PCNN with

100% accuracy. The PCNN segmenter cannot fully reproduce the filter actions performed in Stage

1 by the PCNN filter, or the brightness adjustments performed by the histogram equalization in

Stage 2. Prior to running the adaptive PCNN, a manual attempt was made to have a single PCNN

approximate this process. Manually adjusting the PCNN parameters is a time consuming process.

After three days without success the manual attempt was abandoned and the task was given to

the adaptive PCNN. The adaptive PCNN is provided the input to the entire MRI segmentation

process, the desired output, and the arbitrary initial conditions of 0 = 0.74, Ts = 47, and -.L = 6.0.

Figures 34a and 34b show the input image and the desired output. All pixels in the input image

are non-zero (even the dark background). The goal of this example is to minimize the squared error

between the actual and desired output by adapting /, r s and L. Figures 34c and 34d show the

actual output and the resulting squared error between the actual and desired output. Perceptually,

the difference between the actual and desired output are small.
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Table 6 Error between adaptive PCNN output and desired output. PCNN parameters were
adapted to minimize error on the reference image only. These parameters were then
used on the remaining images to determine their generalization properties.

Image Squared Error Pixels that differ Pixels that differ by more
than 1 gray level

Reference 0,058 10.71% 0.30%
Image 1 0.055 9.75% 0.44%
Image 2 0.053 9.51% 0.34%
Image 3 0.061 10.20% 0.64%
Image 4 0.084 12.64% 1.36%
Image 5 0.099 13.91% 1.98%
Image 6 0.074 12.62% 0.75%
Mean 0.071 11.44% 0.92%
Std. Dev. 0.018 1.85% 0.63%

Figure 35 shows the adaptation of the three parameters and the resulting mean squared error

between the actual and desired output. As expected, the squared error was not driven to zero, but

was significantly reduced to 0.058. The actual and desired outputs differ in 10.7% of their pixels.

However, only 0.3% of the pixels differ by more than one gray level. These results reflect the fact

that the adaptation equations were derived from an error term based on squared error. The results

would differ if a different error term were defined.

In the third example, the results of the adaptive PCNN are examined for generalization

properties. Will the parameters that minimized the squared error in one image produce similar

results in similar images? Seven MRIs were processed using the complete MRI segmentation process

and using the adaptive PCNN segmenter. The output images of the MRI segmentation process are

used as the desired outputs. The adaptive PCNN was trained on the first image and the resulting

parameters are used to process the remaining six images. Table 6 shows the squared error and pixel

error (percent of pixels that differ) between the adaptive PCNN output and the desired output.

The standard deviation across all images was less than 1.9%, showing the parameters generalize

well. This example shows adaptation can be performed using a single image from a set of images,

and the remaining images in the set can be processed with consistent results.
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5.7 Summary

The equations for implementing a PCNN with self-adjusting parameters have been presented.

Given a desired output, these equations adapt the PCNN parameters to minimize the mean squared

error of the actual output. These adaptation equations cover all PCNN constants and weights. Both

simple and complex examples of parameter adaptation are provided to demonstrate the utility of

adaptation. For a given image, the segmentation produced by a PCNN with unknown parameters

was reproduced with 100% accuracy. The multi-stage MRI segmentation process, which performed

image manipulation beyond the capabilities of a PCNN, was approximated with only 10.7% of the

pixels differing from the desired output and less than 0.3% differing by more than one gray level.

These adaptation equations save time and simplify using the PCNN. A researcher need only

know the desired output and the adaptive PCNN will produce the parameters that best reach that

goal. As demonstrated in the MRI example, self-adjusting parameters allow the PCNN's utility as

a segmenter to be easily exploited on real world images. To process a set of images, simply execute

the adaptive PCNN on a single image from the set. The adaptive PCNN will find the parameter

values that best produce that desired output. These parameters generalize well and can be used

on the remaining images in the set with consistent results.
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(a) (b)

(c) (d)

Figure 34 Adaptation example on a 256-by-256 pixel Magnetic Resonance Image (MRI). (a)
Original image (b) desired output (c) output produced by adaptive PGNN after adap-
tation (d) the squared error at each pixel between desired output and adaptive PCNN
output.
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Figure 35 Adaptive PCNN parameters during adaptation on the 256-by-256 pixel MRI shown in
Figure 34. (a) The global linking strength 0 (b) the pulse generator time constant TS

(c) the linking input time constant rL (d) the mean squared error between the desired
output and the adaptive PCNN output.
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VI. Conclusion and Contributions

6.1 Conclusion

A new technique for modeling the primate vision system has been presented. For the first

time, the theorized and biologically observed vision principles of spatial frequency filtering, multiple

processing paths, competitive information processing, state dependent modulation, and temporal

synchronization are brought together in a single model. Using these biologically-based principles,

the PCNN feature extraction network performs spatial frequency analysis producing basic features

for use in object detection and recognition. It can provide an effective, flexible, and extensible fea-

ture extraction stage for an object recognition system. Simple modifications have been presented

that can extend the the model's capabilities to perform spatio-temporal (motion) and spatial wave-

length (color) analysis. With these extended capabilities, the feature extraction model can simulate

visual processing of many known basic information types (luminance, wavelength, direction, and

orientation) processed by neuronal processing units in the early stages of the primate vision system.

Cascading this model to simulate observed multi-layer hierarchical vision processing can produce

the higher order moments of the basic information types such as texture and acceleration. This

set of features provides a sufficient basis for nearly any type of visual object detection/recognition

goal.

The PCNN image fusion network provides a novel and effective approach to information

fusion. It provides a physiologically motivated method of associating dissimilar, spatially disjoint,

features with objects. This model produces promising results in the areas of object detection and

information fusion. The capabilities of the model have been demonstrated on real world images in

the areas of breast cancer detection and automated target detection. The object detection accuracy

of the network exceeds the accuracy of published detection systems.

The most significant contribution made by this research is the development of adaptation

equations for the PCNN. These equations allow the near-optimal setting of PCNN parameters.
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Researchers can now quickly and reliably use the PCNN as a research tool instead of spending time

empirically setting the PCNN parameter values. Given only an input and a desired output, the

adaptive PCNN will find all parameter values necessary to approximate that desired output. The

adaptation equations automatically adapt parameter values to minimize squared error between the

actual and desired output. To demonstrate its usefulness as a segmenter, the adaptive PCNN was

used to segment actual magnetic resonance brain images.

6.2 Contributions

This research makes the following contributions:

1. The first PCNN-based physiologically motivated feature extraction system. This research

applies primate vision processing principles such as spatial frequency filtering, state de-

pendent modulation, temporal synchronization, competitive feature selection and mul-

tiple processing paths to create the first physiologically motivated, PCNN-based image

fusion network. This is the first PCNN-based system to simulate feature extraction and

attention focus observed in the biological vision system.

2. The first PCNN-based physiologically motivated information fusion system. This research

develops the first PCNN-based information fusion network. Physiologically motivated

information fusion theories are analyzed and implemented in this network. The network

is used to fuse the results of several object detection techniques to improve object de-

tection accuracy. The feature extraction and object detection properties of the image

fusion network are demonstrated on mammograms and forward looking infrared (FLIR)

images. The network removed 93 percent of the false detections without removing any

true detections in the FLIR images and removed 46 percent of the false detections while

removing only 7 percent of the true detections in the mammograms.
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3. The first adaptive PCNN. Using gradient descent-based backward error propagation,

this research develops the first fully adaptive PCNN. Given only an input and a desired

output, the adaptive PCNN will find all parameter values necessary to best achieve that

desired output. The adaptive PCNN automatically adapts parameter values to minimize

squared error between the actual and desired output. To demonstrate its usefulness as a

segmenter, the adaptive PCNN was used to segment MRIs of the brain. Adaptation was

used to find parameter values that would cause the PCNN to approximate two Magnetic

Resonance Image segmentation processes used in model-based vision research (2). For

the given images, the adaptive PCNN reproduced the results of the first process with

100% accuracy and approximated the more difficult second process with 90% accuracy.
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