4,285 research outputs found

    A Content Analysis on Quality for Cad Based Product Design: Developing a Framework for Malaysian Technical Teacher Training Institute

    Get PDF
    Product design is a complicated process and requires a systematic requirement and specification to produce sufficient quality to remain competitive. One of the most important components in the design process is Computer-Aided Design (CAD), which renders a detailed drawing in either two-dimensional (2D) or three-dimensional modeling (3D). This paper discusses the conception of quality design to produce a creative design product. This study employed a systematic review to produce a framework of quality product design based on Computer-Aided Design (CAD). Out of 210 papers that were identified, 102 were reviewed and also 12 other relevant articles, books, reports, and documents, hence a total of 114 papers were included in this review. The reviews revealed that there are main aspect drivers of the product design, design process, design quality, customer need on the product, product evaluation, and design concept of quality products. The study also showed that the initial stage of idea-generating is an essential phase to produce innovative, creative and quality product design. This framework is useful as a guide for teachers to standardize product design concept and to assist Malaysian design and technology trainee teachers in producing a quality product design. Finally, this research proposes a conceptual framework based on our propositions. The proposed quality product design framework is beneficial to be used as a guideline for the Malaysian Technical Teacher Training Institute and policy makers to enhance the skills in the development of a quality product

    Hydrogen jet-fire: Accident investigation and implementation of safety measures for the design of a downstream oil plant

    Get PDF
    As amply known, hydrogen plays a very significant role in the process industry exerting a vital functionality in oil refineries, namely for secondary level refining units such hydro-treating and hydrocracking sections. This paper starts from a statistical analysis on hydrogen accidents and a thorough investigation on the sequence and causes of an accident involving a hydrogen leakage in a downstream oil industry. We present some key features of the accident and comment some practical implications for setting up risk reduction options at the plant level. The applicative phase of the paper states the main prevention strategies and suggest possible mitigation measures for hydrogen leaks events, discussing some practical solutions applied in the design of a large refinery. The experience and lessons learned gained from the event investigation and the comparison of the accident with the predictions of the safety report leads to the formulation of proposals and design modifications aiming at preventing or at least minimizing the consequences

    Aeronautical Engineering: A Continuing Bibliography with Indexes

    Get PDF
    This report lists reports, articles and other documents recently announced in the NASA STI Database

    The Importance of Quality Product Design Aspect Based on Computer Aided Design (CAD)

    Get PDF
    Computer-Aided Design (CAD) is the essential tools to create technical documentation and product specification for designing a product. Because of this, a survey conducted to identify the needs and importance of the design aspect such as design requirement, design concept, detailed product design and design evaluation. The result of a descriptive analysis indicated that significance of the elements of designing the quality product was at a high level. Findings also state that there was a positive relationship between the design process among each aspect of the product design, and the correlation shows a moderate level. Keywords: Design Requirement; Design Concept; Detailed Product Design; Design Evaluation. eISSN: 2398-4287© 2020. The Authors. Published for AMER ABRA cE-Bsby e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v5iSI3.254

    Performance Assessment Strategies

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    Performance Assessment Strategies:

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    Performance Assessment Strategies:

    Get PDF
    Using engineering performance evaluations to explore design alternatives during the conceptual phase of architectural design helps to understand the relationships between form and performance; and is crucial for developing well-performing final designs. Computer aided conceptual design has the potential to aid the design team in discovering and highlighting these relationships; especially by means of procedural and parametric geometry to support the generation of geometric design, and building performance simulation tools to support performance assessments. However, current tools and methods for computer aided conceptual design in architecture do not explicitly reveal nor allow for backtracking the relationships between performance and geometry of the design. They currently support post-engineering, rather than the early design decisions and the design exploration process. Focusing on large roofs, this research aims at developing a computational design approach to support designers in performance driven explorations. The approach is meant to facilitate the multidisciplinary integration and the learning process of the designer; and not to constrain the process in precompiled procedures or in hard engineering formulations, nor to automatize it by delegating the design creativity to computational procedures. PAS (Performance Assessment Strategies) as a method is the main output of the research. It consists of a framework including guidelines and an extensible library of procedures for parametric modelling. It is structured on three parts. Pre-PAS provides guidelines for a design strategy-definition, toward the parameterization process. Model-PAS provides guidelines, procedures and scripts for building the parametric models. Explore-PAS supports the solutions-assessment based on numeric evaluations and performance simulations, until the identification of a suitable design solution. PAS has been developed based on action research. Several case studies have focused on each step of PAS and on their interrelationships. The relations between the knowledge available in pre-PAS and the challenges of the solution space exploration in explore-PAS have been highlighted. In order to facilitate the explore-PAS phase in case of large solution spaces, the support of genetic algorithms has been investigated and the exiting method ParaGen has been further implemented. Final case studies have focused on the potentials of ParaGen to identify well performing solutions; to extract knowledge during explore-PAS; and to allow interventions of the designer as an alternative to generations driven solely by coded criteria. Both the use of PAS and its recommended future developments are addressed in the thesis

    Supporting strategic design of workplace environments with case-based reasoning

    Get PDF
    XVII+279hlm.;24c

    On the thermal interaction of building structure and heating and ventilating system

    Get PDF

    Interoperability-based optimisation of architectural design

    Get PDF
    As a major contributor to the planetary greenhouse effect, construction industry needs to adopt sustainability at the core of its activities - to reverse or slow down the impacts of climate change. Increased collaboration among stakeholders along with analysis/performance based decision making is the way forward for enhanced sustainability. Emphasis is placed on the process of shared creation through multi-disciplinary collaboration, enabled by the implementation of IT (Information Technology) that acts as a platform to augment our ability to communicate. Developments in the Construction IT have been product oriented and aimed at solving particular domain problems usually with a narrow focus - further reducing the accessibility and interoperability of information over the lifecycle stages. Advances in the semantics based interoperable data standards, such as IFC (Industry Foundation Classes) offer significant advantage in removing such barriers to successful vertical and horizontal integration of software tools and process. The use of building simulation in architectural design requires specialist knowledge and a rich set of information about the proposed building which are not available to the design team at early stages. Standards based mapping of information for input processing of the simulation engines can act as an alternative to simplified tools supporting the exploratory nature of design. Detailed based input processing also restricts the use of simulation to occasional validation of solutions - even during detailed design stages. For a directed exploration of the solution space, numerical optimisation methods can be applied to enhance simulation assisted design. Successful application of optimisation methods pivots on the ability of the analysis and decision making components of the software to communicate with each other without the loss of data semantics. To realise this potential, a process-oriented integrated framework based on the interoperability of information and software tools have been developed and implemented in this thesis. For horizontal integration of domain specific tools through intra-software messaging, ardML - an XML (eXtensible Markup Language) based schema has been developed which attempts to connect non-interoperable software tools. Multi-disciplinary environmental design of buildings has been chosen as the domain of discourse. The framework currently employs industry standard zonal building simulation as an analysis tool and gradient-based mathematical optimisation methods for informed decision making. Interoperability among tools, processes and information has been achieved through the implementation of IFC based data model. The modular nature of the object-oriented framework allows incorporation of existing and future tools. The applicability of the framework has been investigated in the early stages of architectural design, in particular the selection of form and orientation - considering the environmental aspects. The implementation of the framework at an ambiguous and exploratory stage of design reinforces its applicability in a wider industry context
    • …
    corecore