172 research outputs found

    The SSSA-MyHand: a dexterous lightweight myoelectric hand prosthesis

    Get PDF
    The replacement of a missing hand by a prosthesis is one of the most fascinating challenges in rehabilitation engineering. State of art prostheses are curtailed by the physical features of the hand, like poor functionality and excessive weight. Here we present a new multi-grasp hand aimed at overcoming such limitations. The SSSA-MyHand builds around a novel transmission mechanism that implements a semi-independent actuation of the abduction/adduction of the thumb and of the flexion/extension of the index, by means of a single actuator. Thus, with only three electric motors the hand is capable to perform most of the grasps and gestures useful in activities of daily living, akin commercial prostheses with up to six actuators, albeit it is as lightweight as conventional 1-Degrees of Freedom prostheses. The hand integrates position and force sensors and an embedded controller that implements automatic grasps and allows inter-operability with different human-machine interfaces. We present the requirements, the design rationale of the first prototype and the evaluation of its performance. The weight (478 g), force (31 N maximum force at the thumb fingertip) and speed of the hand (closing time: <370 ms), make this new design an interesting alternative to clinically available multi-grasp prostheses

    Quantifying prosthetic and intact limb use in upper limb amputees via egocentric video: an unsupervised, at-home study

    Get PDF
    Analysis of the manipulation strategies employed by upper-limb prosthetic device users can provide valuable insights into the shortcomings of current prosthetic technology or therapeutic interventions. Typically, this problem has been approached with survey or lab-based studies, whose prehensile-grasp-focused results do not necessarily give accurate representations of daily activity. In this work, we capture prosthesis-user behavior in the unstructured and familiar environments of the participants own homes. Compact head-mounted video cameras recorded ego-centric views of the hands during self-selected household chores. Over 60 hours of video was recorded from 8 persons with unilateral amputation or limb difference (6 transradial, 1 transhumeral, 1 shoulder). Of this, almost 16 hours of video data was analyzed by human experts using the 22-category ‘TULIP’ custom manipulation taxonomy, producing the type and duration of over 27,000 prehensile and non-prehensile manipulation tags on both upper limbs, permitting a level of objective analysis not previously possible with this population. Our analysis included unique observations on non-prehensile manipulations occurrence, determining that 79% of transradial body-powered device manipulations were non-prehensile, compared to 60% for transradial myoelectric devices. Conversely, only 16-19% of intact limb activity was non-prehensile. Additionally, multi-grasp terminal devices did not lead to increased activity compared to 1DOF devices

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    sEMG-based natural control interface for a variable stiffness transradial hand prosthesis

    Get PDF
    We propose, implement, and evaluate a natural human-machine control interface for a variable stiffness transradial hand prosthesis that achieves tele-impedance control through surface electromyography (sEMG) signals. This interface, together with variable stiffness actuation (VSA), enables an amputee to modulate the impedance of the prosthetic limb to properly match the requirements of a task while performing activities of daily living (ADL). Both the desired position and stiffness references are estimated through sEMG signals and used to control the VSA hand prosthesis. In particular, regulation of hand impedance is managed through the impedance measurements of the intact upper arm; this control takes place naturally and automatically as the amputee interacts with the environment, while the position of the hand prosthesis is regulated intentionally by the amputee through the estimated position of the shoulder. The proposed approach is advantageous since the impedance regulation takes place naturally without requiring amputees' attention and diminishing their functional capability. Consequently, the proposed interface is easy to use, does not require long training periods or interferes with the control of intact body segments. This control approach is evaluated through human subject experiments conducted over able volunteers where adequate estimation of references and independent control of position and stiffness are demonstrated.Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) ; 219M58

    Human-centered Electric Prosthetic (HELP) Hand

    Get PDF
    In developing countries such as India, there is a higher rate of amputations among the population but a lack of viable, low cost solutions. Through a partnership with Indian non-profit Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS), the team designed a functional, robust, and low cost electrically powered prosthetic hand that communicates with people with unilateral, transradial amputations in urban India through a biointerface. The device uses compliant tendon actuation, small linear servos, and a wearable sleeve outfitted with electromyography (EMG) sensors to produce a device that, once placed inside a prosthetic glove, is anthropomorphic in both look and feel. The hand is capable of forming three grips through the use of a manually adjustable opposable thumb: the key, pinch, and wrap grips. The hand also provides vibrotactile user feedback upon completion of a grip. The design includes a prosthetic gel liner to provide a layer of cushion and comfort for safe use by the user. These results show that it is possible to create a low cost, electrically powered prosthetic hand for users in developing countries without sacrificing functionality. In order for this design to be truly adjustable to each user, the creation of an easily navigable graphical user interface (GUI) will have to be a future goal. The prosthesis prototype was developed such that future groups can design for manufacturing and distribution in India

    Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling

    Get PDF
    Objectives: Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities and restore amputees' capacity of moving and interacting with the environment. Despite recent advances in biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered by the lack of intuitive and robust man-machine interfaces. Approach: Based on authors' developments, this work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual's phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With respect to current approaches based on machine learning, our method employs explicit representations of the musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a subspace contained within the broader operational space of an individual's musculoskeletal system. Results: Our results show that this constraint makes the approach applicable to real-world scenarios and robust to movement artefacts. This stems from the fact that any control command must always exist within the musculoskeletal model operational space and be therefore physiologically plausible. The approach was effective both on intact-limbed individuals and a transradial amputee displaying robust online control of multi-functional prostheses across a large repertoire of challenging tasks. Significance: The development and translation of man-machine interfaces that account for an individual's neuromusculoskeletal system creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be restored or replaced via biomimetic wearable assistive technologies
    corecore