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We propose, implement, and evaluate a natural human-machine control interface for

a variable stiffness transradial hand prosthesis that achieves tele-impedance control

through surface electromyography (sEMG) signals. This interface, together with variable

stiffness actuation (VSA), enables an amputee to modulate the impedance of the

prosthetic limb to properly match the requirements of a task while performing activities

of daily living (ADL). Both the desired position and stiffness references are estimated

through sEMG signals and used to control the VSA hand prosthesis. In particular,

regulation of hand impedance is managed through the impedance measurements

of the intact upper arm; this control takes place naturally and automatically as the

amputee interacts with the environment, while the position of the hand prosthesis is

regulated intentionally by the amputee through the estimated position of the shoulder.

The proposed approach is advantageous since the impedance regulation takes place

naturally without requiring amputees’ attention and diminishing their functional capability.

Consequently, the proposed interface is easy to use, does not require long training

periods or interferes with the control of intact body segments. This control approach is

evaluated through human subject experiments conducted over able volunteers where

adequate estimation of references and independent control of position and stiffness

are demonstrated.

Keywords: tele-impedance control, sEMG-based control interface, variable stiffness actuation, transradial hand

prosthesis, impedance modulation

1. INTRODUCTION

According to theWHO, there are about 40million amputees living in developing countries (Marino
et al., 2015), and this number is expected to rise in the future (Ziegler-Graham et al., 2007). Many
prosthetic devices have been proposed to raise the living standards of amputees by helping them
restore their functional abilities, enabling them to perform daily chores, and return back to their
work (Millstein et al., 1985).

Despite many potential benefits, a substantial percentage of people with upper-limb amputation
prefer not to wear prostheses. In the literature, the mean rejection rates for the use of electric and
body-powered prostheses are reported for the pediatric population as 35 and 45%, and for the
adult population as 23 and 26%, respectively (Biddiss and Chau, 2007). Some of the reasons behind
the low acceptance rate of body-powered hands are reported as slow movement, heavy-weight,
inadequate grip force, limited functionality, inconvenience of harnessing, unnatural use, and
discomfort (Biddiss and Chau, 2007).
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Many research groups have investigated means to close the
acceptance gap by orienting their studies to increase the dexterity
and functionality of prosthetic hand devices. In both academic
studies (Riillo et al., 2014; Naik et al., 2016; Wang et al.,
2017) and commercial applications (Bebionic, 2022; Motion
Control Inc., 2022; Ossur Inc., 2022; Ottobock, 2022), the
most common means to control dexterous hand prosthesis is
based on classifying surface electromyography (sEMG) signals
recorded from different muscle groups and assigning a grip
pattern to each class. Recently, some studies have also integrated
different sources of data, such as mechanomiographic (MMG)
biosignals (Kurzynski et al., 2016), near-infrared spectroscopy
(NIRS) (Guo et al., 2017), and inertial measurement unit
(IMU) (Kyranou et al., 2016), to improve the classification
performance of multi-functional hand prostheses. Although such
studies are aimed to make the amputees’ life easier by enabling
hand prostheses to have more functions, these devices demand
long-training periods (Herle, 2016) stemming from their non-
intuitive control interface and have not been shown to provide
a viable solution for the high abandonment rate of prosthetic
devices (Atkins et al., 1996).

To enable natural dexterity and an intuitive control interface
for prosthetic hand devices, one of the prominent features
of human neuromuscular system specialized to be competent
at realizing various physical activities may provide a solution.
In particular, most of the daily activities that require physical
interactions with human hands are successfully performed
because of the unrivaled capability of human adaptation. Such
ability originates from predicting the type of the interaction
and regulating the impedance of the limb based on the
activity (Franklin and Milner, 2003; Franklin et al., 2003a,b,
2004; Popescu et al., 2003; Perreault et al., 2004). The impedance
regulation of limbs is realized through the modulation of the
contraction levels of antagonistic muscle pairs and reflexive
reactions that contribute to neuromotor control to assist the
stability of human-object interaction. All these abilities enable
humans to actively and naturally perform activities of daily living
(ADL). For instance, during tasks that require high precision
(such as writing), humans raise the stiffness of their arm to
guarantee the precise positioning against perturbations, while
during interactions with soft/fragile objects, humans regulate
their limbs to become more compliant in order to prevent
damage to the object (Hogan, 2002).

The impedance modulation ability of humans has become
inspiring in robotics. Along these lines, several studies on
prosthetic devices have been conducted to imitate the stiffness
regulation feature of humans, while physically interacting
with their environment (Abul-Haj and Hogan, 1990a,b; Rao
et al., 2010). Moreover, systematic human subject experiments
have provided evidence that task-dependent impedance
regulation improves human performance while using a virtual
arm prosthesis (Blank et al., 2011, 2012, 2013). Recently,
authors have proposed a variable stiffness transradial hand
prosthesis (Hocaoglu and Patoglu, 2012, 2019b). Variable
stiffness actuation (VSA) of this prosthesis is based on

antagonistically arranged tendons coupled to nonlinear springs
driven through a Bowden cable based power transmission.
Unlike in the control based impedance modulation, VSA based
prosthesis possesses high energy efficiency, since its actuators
are not in use at all times to maintain the desired stiffness
level. Furthermore, since the resulting stiffness of VSA is an
inherent physical property of the device, it is valid over the
whole frequency spectrum, including the frequencies over the
controllable bandwidth of the actuators.

In this study, we propose, implement, and evaluate a natural
human-machine interface for a variable stiffness transradial
hand prosthesis to achieve tele-impedance control through
sEMG signals. The mechatronic design of the transradial hand
prosthesis, presented inHocaoglu and Patoglu (2019a), employs a
VSA based on the antagonistic actuation principle with quadratic
springs and enables amputees to regulate the stiffness and
position of the hand prosthesis independently. For the tele-
impedance control of the variable stiffness transradial hand
prosthesis, we benefit from sEMG signals generated during
the muscular activity captured by biopotential electrodes, by
means of which amputees can naturally be a part of the
control architecture.

Our human machine interface is based on using four channels
of sEMG signals responsible for controlling the position and
impedance of the variable stiffness transradial hand prosthesis.
In particular, as commonly done in the literature (Dalley et al.,
2009; Bennett et al., 2016; Lenzi et al., 2016; Kim et al., 2019),
the motion control of the hand prosthesis is regulated through
intentional muscular activities generated at chest and shoulder
mapped to the opening/closing of the fingers. However, in
contrast to other interfaces, the stiffness of the prosthesis is
regulated automatically based on the estimated stiffness of the
intact muscle groups of the upper arm. As a result, while
the proposed human machine interface requires the amputee
to intentionally control the position of the VSA prosthesis,
the stiffness regulation takes place automatically based on the
instantaneous stiffness of the intact portion of the limb. Such
an approach is advantageous since the impedance regulation
takes place effortlessly from task to task or during the execution
of a single task without requiring amputees’ attention and
diminishing their functional capability. Consequently, such
an interface is easy to use, does not require long training
periods, and does not interfere with the control of intact body
segments. Furthermore, it has been pointed out in the literature
that energetic interactions with the environment influence the
determination of the impedance by the intact neuromuscular
system (Franklin et al., 2004). Hence, regulating the prosthesis to
mimic the impedance of an intact portion of the limb promises
to be a more plausible control strategy than requiring the
amputee to determine and control the proper impedance using
dysfunctional muscles that lack such physical feedback, since
these muscles are not physically coupled to the environment.

A preliminary study regarding tele-impedance control of
variable stiffness transradial hand prosthesis has been presented
in Hocaoglu and Patoglu (2012). This study significantly
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extends (Hocaoglu and Patoglu, 2012). To the best of the authors’
knowledge, this study, along with Hocaoglu and Patoglu (2012),
presents one of the first human-machine control interfaces
for a VSA hand prosthesis. Furthermore, the human subject
experiments presented in this study complement the ones in the
literature (Blank et al., 2011, 2012, 2013; Hocaoglu and Patoglu,
2012), as physical interactions with the environment are enabled.

The contributions are summarized as follows: (i) A natural
human-machine interface compatible with a variable stiffness
transradial hand prosthesis is proposed. (ii) A muscle fatigue
compensator responsible for the reference signal generation is
designed and embedded into the proposed control architecture.
(iii) The independent and simultaneous stiffness and position
controls of variable stiffness hand prosthesis have been
experimentally verified. (iv) Evidence is provided through
human-subject experiments conducted over able volunteers
on various tasks that the upper and lower arm impedance
modulation display similar characteristics and impedances of
both parts of the arm are modulated simultaneously for many
tasks. (v) Experimental verification of the effectiveness of stiffness
modulation and the need for short training periods have
been demonstrated.

The rest of the article is organized as follows: Section 2
introduces sEMG-based tele-impedance control of the variable
stiffness transradial hand prosthesis, details the construction of
control references through sEMG based stiffness and position
estimations, explains the independent control of the position
and stiffness for the antagonist VSA, presents the compensation
strategy used against muscle fatigue, and provides a set of
experiments to verify the hypothesis that the stiffness modulation
of the upper arm and the forearm are correlated. Section 3
experimentally verifies the independent control of the position
and stiffness through the sEMG-based tele-impedance control
of a VSA transradial hand prosthesis and provides evidence
that the natural human-machine interface is an effective strategy
in control. Section 4 concludes the article and discusses the
limitations of the study.

2. MATERIALS AND METHODS

This section conveys the technical details of our approach and
presents the experimental verification of the effectiveness of
each module in the approach. Accordingly, the tele-impedance
control paradigm of a variable stiffness hand prosthesis is
introduced in section 2.1, the modules constituting the paradigm
are detailed, and experimental evaluations of each function in
the modules are elaborated in sections 2.1.1 and 2.1.2. The
compensation technique proposed for muscle fatigue due to
co-contraction of the muscle pairs is circumstantiated through
human-subject experiments in section 2.1.3. Moreover, the
experimental validations of the methodologies to estimate the
stiffness and position parameters through sEMG signals to be
employed for the control of hand prosthesis are detailed in
section 2.1.4. Section 2 is concluded with the experimental
verification of the correlated stiffness adaptation of antagonistic
muscle pairs.

2.1. sEMG Based Tele-Impedance Control
of a Variable Stiffness Transradial Hand
Prosthesis
Surface electromyography based tele-impedance controller
is developed to control a VSA transradial hand
prosthesis (Hocaoglu and Patoglu, 2019a). The transradial
hand prosthesis features tendon driven underactuated compliant
fingers that naturally adapt the hand shape to wrap around a
wide variety of object geometries. Abiding by the definition of
underactuation, two movable pulleys on the palm actuated by a
VSA mechanism are assigned for the extension and flexion of
the 12 DoF tendon-driven hand mechanism. Antagonistically
arranged tendons of the prosthesis enable the modulation of the
stiffness of the fingers and control of their position. Adaptation
of the mechanical impedance of prosthesis based on changing
physical conditions enables the amputee to perform various tasks
with high dexterity.

Figure 1 presents an overview of the tele-impedance control
architecture. The proposed control architecture consists of two
modules. The first module handles the measurement of sEMG
signals, their conditioning, and the estimation of reference
values for the hand position and stiffness control. In the second
module, the closed-loop motion controller [Proportional integral
derivative (PID) controller] ensures the position and stiffness
regulation of the VSA prosthetic hand based on the reference
values estimated in the first module. In order to translate the
meaning of normalized sEMG signals as physical references,
namely position and stiffness references for the closed loop
control system, one-to-one correspondence is assigned between
the upper and lower limits of the normalized sEMG signals and
angular position and stiffness limits of the fingers. Throughout
the control, visual feedback and physical coupling provide
information for the amputees to adapt their sEMG signals to
match the task requirements.

Given that transradial upper extremity amputees lack the
muscle groups responsible for hand and forearm motions,
sEMG signals for the position control of the hand prosthesis
are measured from the chest and the shoulder, while sEMG
signals measured from the intact muscle pairs on the upper
arm are used for the impedance control. Estimation of the hand
position and stiffness from the sEMG signal involves modeling
of hand motion/stiffness based on sEMG signals, empirical
determination of model parameters for use in real-time control,
and incorporation of fatigue compensation.

2.1.1. Stiffness Estimation Through sEMG Signals
Muscle groups play a crucial role in the human body in terms
of both the torque and impedance (stiffness and damping)
modulation of a joint to properly interact with different
environmental conditions. Particularly, impedance matching to
the varying environment dynamics is carried out by means of
the prominent features of muscles, such as regulation of co-
contraction levels and reflex gains. The mechanical impedance
of joints is an important parameter in the control of limbs under
both static and dynamic conditions.
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FIGURE 1 | The control interface of the variable stiffness transradial hand prosthesis: In the first module, raw surface electromyography (sEMG) signals are measured

from the upper arm and muscle groups placed under the chest and shoulder, sEMG signals are conditioned by a series of filters, and the position and stiffness

references are estimated. The second module implements the position and stiffness control of the variable stiffness transradial hand prosthesis to follow the references

estimated in the first module. Figure reproduced from Hocaoglu and Patoglu (2022).

In the literature, many researchers have addressed the
characterization of joint stiffness by focusing on multi-joint arm
movements (Gomi and Kawato, 1996; Burdet et al., 2000, 2001).
These studies are mainly focused on point-to-point reaching
movements of subjects under perturbations and disturbance
forces. The stiffness of the arm is estimated based on the relation
between the deviations of the trajectories with respect to the
undisturbed trajectories and the applied perturbation forces.
Such methods are not viable for real-time applications, such
as use with prosthetic limbs, as they require coupling users
to a computer controlled manipulator. Index of muscle co-
contraction around the joint (IMCJ) (Osu et al., 2002) approach
is based on sEMG signals and provides a stiffness estimation
technique that is feasible for real-time use. In this approach,
the stiffness estimation is realized through the estimation of
the co-contraction levels of antagonistic muscle groups. In the
literature, the IMCJ method has been employed to reveal the
mechanical characteristics of themusculoskeletal system (Hunter
and Kearney, 1982; Basmajian andDe Luca, 1985; Gomi andOsu,
1998).

Index of muscle co-contraction around the joint describes the
working principle of antagonistic muscle groups around a joint
through rectified sEMG signals and utilizes Equations (1)–(2) for
stiffness estimation of the joint (Osu et al., 2002).

τ=

k
∑

i=1

[

κi.agon(sEMGi)− λi.anta(sEMGi)
]

(1)

S=

k
∑

i=1

[

|κi|.agon(sEMGi)+ |λi|.anta(sEMGi)
]

(2)

Here, i is the index that labels each muscle group, τ symbolizes
the joint torque of the limb, while agon(sEMG) and anta(sEMG)
denote the normalized muscular activity of the agonist and
antagonist muscles, respectively. Symbols κ and λ capture the

moment arms in charge of converting muscle activity to muscle
tension responsible for generating muscle torque. The relation
between the muscle torque and the muscle impedance (Murray
et al., 1995; Kuechle et al., 1997; Gomi and Osu, 1998) is
mapped to the correlation between the joint torque and the joint
impedance (Hunter and Kearney, 1982; Gomi and Osu, 1998),
leading to the joint stiffness estimates S via Equation (2), where κ

and λ are estimated according to Equation (1).
In this study, Equations (1)–(2) were used to estimate the

joint stiffness through a series of experiments as follows. Eight
healthy volunteers (2 women, 6 men), who were students of
Sabancı University participated in the experiments. Participants

had no prior experience with the experimental setup. The

participants did not report any sensory or motor impairment.
All participants in all experimental studies presented in this

article signed informed consent forms approved by the IRB of
Sabancı University.

The experimental task was to grasp a dumbbell while

positioning the elbow at 90◦, as shown in Figure 2. In particular,

the forearm was configured horizontally, while the upper arm
was kept perpendicular to the forearm with the palm was facing
down. To maintain this configuration, the antagonistic muscle
groups placed on the upper arm were isometrically contracted

not to change the palm configuration and to exert appropriate
forces to keep the joint angle at the desired value.

Participants started by lifting their forearm when their hand
was free, and then the load was gradually increased using
dumbbells of 0.5 kg, 1 kg, 1.28 kg, 2.26 kg, 2.76 kg, and 3.76 kg,
respectively. Each condition was tested for 20 trials, where each
trial lasted 20 s, on average.

The net torque applied at the elbow joint is calculated using
the weight of the load Wload and the weight of the forearm
Wforearm together with the moment arm corresponding to the
load Lld and the center of gravity of the forearm Lf with respect
to the elbow joint.
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FIGURE 2 | The biomechanical model with the pivot at the elbow joint and the elbow positioned at 90◦.

The antagonistic muscle pairs, biceps and triceps, responsible
for generating the sEMG signals for the stiffness estimation are
shown in Figure 3a. sEMG signals were measured by means of
surface electrodes of an sEMG signal acquisition device with a
sampling rate of 1 kHz. Raw sEMG signals were collected during
the trials and conditioned by means of a full-wave rectifier, a 200
sample moving average filter, and an envelope detector. During
the analysis, the first 500 samples of each trial were omitted
from the experimental data to exclude signal outliers owing to
initialization and motion artifacts.

The sequential processes of signal conditioning and reference
estimation are illustrated in Figure 3c, while a sample signal
extracted from a real-time experiment is presented in Figure 3d.
After measuring the raw sEMG signals from two antagonistic
muscle pairs responsible for stiffness and position controls
of the hand prosthesis, they were filtered against inherent
and environmental noises and motion artifacts utilizing a
Butterworth band-pass filter with a frequency range of 20–500
Hz. After improving the signal-to-noise ratio of the sEMG signal,
as illustrated in the purple dashed frame, the signal was full-
wave rectified to correlate the behavior of muscles’ contractions
with physical variables, of position and stiffness references. As
presented in Figure 3d, a moving window over a period of 0.5 s
was employed to reveal the muscle’s response against the task at

hand. In addition, an envelope detector was utilized to filter out
the ripples of the averaged signal. Such conditioning methods
a play crucial role in revealing the relation between the joint
torque and sEMG signals. Finally, the normalization of sEMG
signals was carried out using themaximum voluntary contraction
(MVC) of the participants, since these signals show different
characteristics for each participant and vary their features at
different time intervals. As depicted with the green dashed frame
in Figure 3c, the signals were prepared for the estimation of the
control parameters to correlate the finger and VSA kinematics
with the normalized position and stiffness signals, respectively.

The parameters in Equation (1) were estimated using
multiple linear regression by means of recorded data streams
of agon(sEMG), anta(sEMG), and τ . For this linear model,
the regression coefficients were obtained with 95% confidence
bounds. The estimations for a subject are presented in Table 1.
The quality of the estimation for all subjects was evaluated to
be high, with R2 >0.99 and RMSE <0.03. Please note that this
estimation procedure is repeated for each subject, before each use
of the prosthetic hand.

2.1.2. Position Estimation Through sEMG Signals
In order to achieve independent and simultaneous position and
stiffness control, the overlap of sEMG signals corresponding to
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FIGURE 3 | (a) Biceps and triceps muscles are responsible for the stiffness modulation. (b) Trapezius and pectoralis major muscles are employed for position

regulation. (c) sEMG signal flow: Raw sEMG signals (yellow) are bandpass filtered (blue) and full wave rectified. Then, these signals are averaged using 0.5 second

moving window and undesired ripples are omitted by means of envelope detection. (d) On the top graph, the raw sEMG data filtered against the inherent and

environmental noises, and artifacts are represented with the blue signal. The second graph depicts the rectified (green), moving averaged (red), enveloped (black)

sEMG signal. The bottom figure shows the normalized sEMG signal.
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TABLE 1 | Estimated parameters of the stiffness model.

κ λ R2 RMSE

1.8612 1 0.9938 0.02941

the stiffness reference with sEMG signals corresponding to the
position reference has to be avoided. All muscle groups on the
arm take part in the isometric contraction. Since sEMG signals
measured from the upper arm are used to estimate stiffness
reference, to avoid any overlap, pectoralis major and trapezius
muscles placed in the chest and shoulder, shown in Figure 3b,
are preferred for the position control of hand prosthesis. This
selection ensures the independent location of muscle pairs
responsible for stiffness modulation and position control, such
that their activities do not directly affect each other.

The position of the underactuated variable stiffness hand
prosthesis is controlled intentionally under visual feedback.
The hand prosthesis in this study is a highly underactuated
mechanism, as all fingers are connected to two main joints
responsible for flexion and extension. VSA mechanism is
actuated by two DC motors and controls the position and
stiffness of the fingers. For the position control of the fingers,
the required position reference signal is provided by the sEMG
signals of the amputee. The exact positions of the fingers depend
on the interaction between the prosthesis and the environment,
as well as the position controller tracking the reference signal
generated by the amputee. In this application, the precise
estimation of position reference is not of critical importance,
since the amputee can adjust the position of the prosthetic
hand based on visual feedback. The position of the transradial
prosthetic hand is controlled through a direct proportional
relation between the intensity of sEMG signals with the desired
joint angle of the fingers. Along these lines, the normalized
sEMG signal responsible for position reference is expressed as ten
discrete values, and each value is matched between the angular
positions of the fingers in the rest and the fist states. In other
words, different contraction levels of the responsible muscle
groups indicate different ranges of normalized sEMG signals, and
these values are mapped to different closure states of the fingers.
For example, while the volunteer’s normalized sEMG signals
increase from 0 to 1 by contracting his/her muscles intentionally,
the fingers start to rotate from their rest positions to reach a fist
state. Since the required angular positions of the fingers to grasp
the different geometric shapes of objects are different, volunteers
adjust the contraction level of their muscles responsible for
position control to different ranges based on visual feedback.

Another design parameter while constructing the position
control references is the MVC percentage that is used
for normalization. Instead of mapping 100% MVC to fully
close/open the hand, a lower MVC can be set to decrease muscle
fatigue to a great extent. In our study, the MVC level is selected
as 70%, such that the position reference for the actuation of VSAs
is calculated using the following normalized sEMG signal

sEMGnormpos =
sEMGposition − sEMGbias

sEMG%70MVC
(3)

where sEMGnormpos denotes the normalized sEMG signals
corresponding to position reference, sEMGposition represents the
conditioned sEMG signals measured from pectoralis major and
trapezius muscles, sEMG%70MVC is 70% MVC of the responsible
muscles, and sEMGbias is the bias on the signal.

Another undesirable condition is the contamination of sEMG
signals generated by pectoralis major responsible for the opening
of the hand by electrocardiography (ECG) signals. ECG crosstalk
effect is prevented from sEMG signals by avoiding the electrode
placement in the contamination zone and by adding extra
bias term to the sEMG signals until the ECG signal effect
is suppressed.

2.1.3. Compensation Against Muscle Fatigue
Muscle fatigue can be defined as a decline in the muscle strength
to generate force, that is, a decrease in the sEMG amplitude
as a result of the reduction in active muscle fibers during
ceaseless muscle activity (Al-Mulla et al., 2011). The reason
for muscle fatigue encompasses the metabolic, structural, and
energetic alternations in muscles owing to insufficient oxygen
level, inadequate blood circulation responsible for supplying
nutritive substances, and also decrease in the efficiency of the
nervous system (Merletti et al., 2005).

Myoelectric signals collected on the surface of the skin can
be used for real-time monitoring of muscle fatigue (De Luca,
1984). This method is commonly preferred since it can
provide uninterrupted data recordings related to muscle fatigue
with a non-invasive technique, even though this method has
certain disadvantages, such as the difficulties associated with
exact positioning of surface electrodes on desired muscles
and undesired cross-talk of the myoelectric signals with the
neighboring muscles. A large number of studies have been
performed to establish signal-based quantitative criteria to
characterize muscle fatigue under static and dynamic tasks.
Along these lines, numerous classical and modern signal
processing methods have been established for sEMG-based
muscle fatigue evaluation (Cifrek et al., 2009).

In this study, we rely on a time-domain root-mean-square
(RMS) feature of sEMG signals to compensate for the fatigue
effect (Bilodeau et al., 2003). In particular, during the use of
the prosthetic device, the muscle performance decreases as a
function of use time; as muscle fatigue increases, the sEMG-
based stiffness reference estimates deteriorate. RMS feature based
fatigue compensation estimates the decrease in sEMG signal
power as a function of use time and introduces a compensation
factor to counteract this fatigue.

Muscle fatigue compensation is activated in the control loop
when a threshold is exceeded. A moving average window of
2,000 samples runs to check the presence of the consecutive
contractions, by comparing the average level of enveloped
sEMG signal under the moving window with the threshold.
The threshold commissioned for activation of the fatigue
compensation is empirically determined as about 20% MVC
and varies slightly among volunteers. Figure 4 illustrates muscle
fatigue captured by sEMG signals when a volunteer repeatedly
co-contracts her muscles within 5 s. In the figure, the green line
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FIGURE 4 | Surface electromyography signal features capturing the average fatigue characteristics of biceps and triceps muscles.

presents the envelope of RMS of sEMG signals and the decrease
of signal power can be observed.

To estimate the fatigue characteristics from sEMG signals, an
experiment is conducted where a volunteer is requested to realize
sustained isometric contractions periodically. In each session, the
volunteers are instructed to perform isometric contractions five
times. The experiment includes 10 sessions with each session
including 5 trials lasting for 30 s.

The fatigue behavior of the individual is extracted from
the sEMG data through three sequential signal conditioning
stages. First, the raw sEMG signals are band-pass filtered with a
frequency band between 20-500 Hz to remove undesired signals
due to electronic noise, motion artifacts, ECG cross-talk, and
power-line interference. Second, the filtered sEMG signal is
normalized with the MVC of the volunteer. Finally, the RMS of
the sEMG signal is calculated.

Figure 5 presents sample results characterizing the fatigue
observed on the biceps and triceps muscles as a function of
the time. The muscle fatigue behavior during a session, i.e., the
RMS of each contraction (trial) in a session is represented by
the same geometric symbol in Figure 5. Each session has its
own respective symbols to help with the identification of muscle
fatigue. In particular, the star symbol represents a consecutive
contraction, namely the trial, of the subject in a session. The
average of 10 sessions is represented by a dark blue star icon
in the graph. Linear fits, as presented in Figure 5, are sufficient

to capture the time dependent fatigue characteristics embedded
in this data set, as evidenced by the good quality of curve fits
(R2 > 0.8). Once these linear estimates are at hand, they can
be incorporated in the stiffness reference estimation as a feed-
forward compensation term denoted by Cfi in Figure 1. Unlike
the impedance modulation, position control typically does not
require sequential contractions; hence, the muscle fatigue is
neglected during position regulation, that is, no feed-forward
compensation is performed for the position control by setting
Cfp=0 in Figure 1.

2.1.4. Position and Stiffness Regulation With

Antagonist VSA
Given the sEMG based position and stiffness reference estimation
and fatigue compensation processes, the second module of the
interface is a controller that ensures tracking of these references
by the VSA prosthetic hand. In particular, the position and
stiffness of the VSA are controlled through position control
of Bowden cables driven by two geared DC motors. Figure 6
presents a schematic representation of the VSA, where α and
β denote the angular position of DC motors, while S and θ

represent the joint stiffness and angle, respectively.
Under quasi-static conditions (English and Russell, 1999;

Migliore et al., 2007), the angular position of DC motors α and β

for a given reference position θr and stiffness Sr can be calculated
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FIGURE 5 | Linear fits capturing the average fatigue characteristics of biceps and triceps muscles.
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FIGURE 6 | Schematic model of an antagonistically driven VSA, where k represents the nonlinear springs.

as

α = (Sr − 2br2j )/4armr
2
j + (rj/rm)((τload/Sr)− θr) (4)

β = (Sr − 2br2j )/4armr
2
j − (rj/rm)((τload/Sr)− θr) (5)

where rm represents the radius of the pulleys attached to the
geared DC motors, rj is the radius of the drive pulley, a and
b are the parameters that characterize the expanding contour
cam as detailed in Hocaoglu and Patoglu (2019a), while the
external torque applied to VSA is denoted by τload. When control
references belonging to joint position and stiffness are estimated
through sEMG signals, desired motor positions are computed
according to Equations (4)–(5) with τload = 0 and motors are
motion controlled to these values under real-time control.

2.2. Verification of Correlated Stiffness
Adaptation of Antagonistic Muscle Pairs
The stiffness of the prosthesis is regulated automatically based
on the estimated stiffness of the intact muscle groups of the
upper arm. This control strategy, in which the prosthesis
mimics the impedance of an intact portion of the limb, relies
on the assumption that the impedance of the upper and
lower arm change similarly, during energetic interactions with
the environment.

We have conducted a series of experiments to test the
validity of this assumption. During these experiments, the
stiffness of both the forearm and upper arm of participants
is estimated through the sEMG signals collected from the
relevant antagonistic muscle pairs, using the technique detailed
in section 2.1.1. Hence, during these experiments, the stiffness

estimations of the upper and lower arm are performed based
on sEMG signals and the load applied. Eight healthy volunteers
took place in the experiments. The experiments were conducted
for two tasks: i) a load bearing task and ii) interaction with the
various objects with different impedance characteristics.

The first task aims to observe resistance of the hand, forearm,
and upper arm against displacement stemmed from the weight
of an object with respect to the arm’s normal posture. During the
first task, participants were asked to keep their arms straight and
forward as depicted in Figure 7. The stiffness of the upper arm
and forearm were estimated as the load at the hand was increased
incrementally. In particular, the load was gradually increased
from no load to 0.5, 1, 1.5, 2, and 3 kg. Each task was repeated
5 times and each trial lasted about 8 s. Sufficient rest time was
provided between consecutive trials to prevent muscle fatigue.

Stiffness estimation was performed as detailed in section 2.1.1.
sEMG signals were collected from the antagonistic muscle groups
of flexor digitorum profundis and extensor digitorum at the
forearm, and biceps and triceps at the upper arm. Since the
stiffness of both the upper arm and forearm was estimated, two
separate biomechanical models were derived around the elbow
and wrist joints, respectively. The net torque applied on the
joints was calculated considering the weight of the grasped load
Wload, the handWhand, the forearmWforearm, and the upper arm
Wupperarm together with their respective moment arms.

Figure 8 depicts the estimated stiffness levels at the forearm
and the upper arm, under various loading conditions. As
expected, as the load is increased, the stiffness of both the upper
arm and the forearm increases. As presented in Figure 8, the
change in stiffness levels is statistically significant between almost
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FIGURE 7 | The biomechanical model with the pivots at the wrist and elbow joints, while keeping the arm straight and forward.

all pairs of loading conditions (with p < 0.05). More importantly,
one can observe from these plots that the stiffness increase in
the forearm and the upper arm are strongly correlated, and there
exists no statistically significant difference between the forearm
and the upper arm stiffness levels for each loading condition, for
the load bearing task.

The second task tested the adaptation of the upper arm
and the forearm impedance levels while interacting with several
objects, to mimic common interactions taking place during ADL.
In particular, participants started at a rest position, lifted their
arm, reached toward the object, grasped it, held it for a while,
released it on the table, and returned to their initial configuration.
Three different object types were included in the experiment: A
sponge, an empty glass, and a water-filled glass were employed
for different impedance requirements. Each object was grasped
five times and each trial took about 7 s. Sufficient rest time
was provided to volunteers between sequential trials to prevent
muscle fatigue.

The objects were selected such that their manipulation
emphasized different control strategies, ranging from precise
motion control to robust force control. Due to the complexity
of the task that involved multiple sub-movements, participants’

stiffness levels went over continual changes throughout the
trials. To quantitatively characterize the correlation between the
stiffness of the upper arm and the forearm for each subject, a
moving average filter is used to extract average stiffness variations
from the instantaneous estimates. Table 2 presents the Pearson’s
correlation coefficient for these time series comparisons for each
subject. In this table, the concordance correlation coefficients
have large values of about 0.8, providing strong evidence that the
impedance adaptation behavior of the upper arm and the forearm
were in good agreement with each other throughout the complex
manipulation task.

3. EXPERIMENTAL EVALUATION OF THE
NATURAL CONTROL INTERFACE

In this section, we present the evaluation of the integrated
system, where stiffness and position estimation modules and
sEMG based control are utilized simultaneously. We verify the
feasibility and effectiveness of the proposed sEMG based human-
machine interface that automatically modulates the impedance
of VSA prosthetic hand while users intentionally control the
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FIGURE 8 | Stiffness estimates from the forearm and the upper arm of participants, while resisting against increasing loads.

TABLE 2 | Pearson’s correlation coefficient between the stiffness modulation of

the upper arm and the forearm muscles.

Subject Sponge Glass Water filled glass

Subject 1 0.9246 0.9914 0.9447

Subject 2 0.9771 0.9180 0.9000

Subject 3 0.9863 0.9134 0.9222

Subject 4 0.9000 0.9234 0.9216

Subject 5 0.9000 0.9260 0.9715

Subject 6 0.9685 0.9158 0.9363

Subject 7 0.9062 0.9892 0.9148

Subject 8 0.9611 0.9425 0.9775

hand position. For this purpose, we present two experiments
where the independent control of hand position and stiffness
were demonstrated. Section 3.1 details the experimental set-up
and procedure used to verify the effectiveness and utility of
the proposed sEMG-based control architecture to control VSA
prosthesis. Section 3.2 presents the position and stiffness control
tasks and experimental procedures used in the experiments.
Section 3.3 details the results of the experiment, while Section
3.4 provides illustrative experiments where volunteers perform
various grasps for different stiffness and geometric shape
of objects.

3.1. Experimental Setup
Human-subject experiments on able volunteers were conducted
using the VSA transradial hand prosthesis detailed in Hocaoglu
and Patoglu (2019a). In the current design, the prosthesis does

not feature a thumb but relies on passive elastic support that can
counteract finger forces. This decision is intentional and helps to
keep the system and the controller simple. Our experiences with
the volunteers indicate that the passive support is adequate for
implementing a wide variety of functional grasps.

Throughout the experiments, sEMG signals were collected
from biceps and triceps muscles for stiffness modulation and
from trapezius and pectoralis major muscles for position control
using a data acquisition system with active electrodes. Stiffness
and position references were estimated as discussed in section 2.1
and fed to the tracking controller that controlled two geared
Direct Current (DC) motors under Proportional Derivative
(PD) control in real-time at 500 Hz through a PC based Data
Acquisition (DAQ) card. The robust position controller of each
DC motor enables the system to achieve the desired joint
position and joint stiffness settings as computed according to
Equations (4)–(5) by properly actuating the angular positions
(α and β) of the motors. A direct drive linear actuator
combined with a precision position encoder was placed under
the fingers of the hand prosthesis, as shown in Figure 9

to render forces and measure finger deflections. During the
experiments, the gravitational force acting on the linear actuator
was compensated with a counter mass, while the linear actuator
was force controlled.

3.2. Experimental Procedure
Experiments were conducted to test the independent control of
the position and the stiffness of the prosthetic hand under sEMG
based tele-impedance control interface.
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FIGURE 9 | Schematic representation of the experimental setup: The linear actuator is used to apply controlled forces to the fingers and to measure their deflection

under position and stiffness modulation tasks. Figure reproduced from Hocaoglu and Patoglu (2022).

Throughout the experiments, the transradial hand prosthesis
was worn by the volunteers, such that interaction forces with the
environment provided direct power coupling with the volunteer.
Note that such feedback is a crucial part of any prosthesis;
however, has been neglected in Virtual Reality (VR) based
studies (Blank et al., 2011, 2012, 2013).

Five healthy volunteers took place in the experiments. The
prosthesis was worn parallel to the volunteers’ lower arm, such
that consistent placement of the prosthesis was ensured for
proper hand-eye coordination.

The experiments were composed of two tasks with 10
repetitions for each condition of each task. During the first task,
the position of the VSA hand prosthesis was kept constant at
0◦ while the stiffness of VSA was adjusted by the volunteers
to five distinct stiffness values that correspond to a low,
three intermediate, and a high stiffness level for the fingers.
The stiffness of the fingers was experimentally determined by
applying a linearly increasing force to flex the fingers and
recording their deflection.

During the second task, the stiffness of the VSA hand
prosthesis was kept constant at its intermediate level by the
volunteers, while the position of the VSA was adjusted by the
volunteers to three distinct position values that correspond to
low, intermediate, and high flexion of the fingers. The position
of the fingers was determined by recording the position of the
linear actuator under zero force control, while the stiffness of the
fingers was determined by applying a constant force to resist the
flexion of the fingers at their equilibrium position and recording
the resulting deflection.

3.3. Experimental Results
Figure 10a presents the experimental results for the case when
the volunteers adjusted the VSA stiffness to five distinct values
that correspond to a low, three intermediate, and a high stiffness
level for the fingers, while the finger positions were kept constant.
In particular, shaded regions represent all the linear fits recorded
for 10 trials, while the dark line represents their mean. The
slopes of these lines indicate that the high, three intermediate,
and the low stiffness for the fingers were kh = 1.7 N/mm, k1i
= 0.3 N/mm, k2i = 0.16 N/mm, k3i = 0.12 N/mm, and kl =
0.091 N/mm, respectively. The R2 values for these linear fits are
higher than 0.97.

Figure 10b presents the experimental results for the case when
the volunteers kept the VSA stiffness at an intermediate level,
while the finger positions of the fingers were regulated by the
volunteers to 0◦, 30◦, and 60◦, respectively. Once again, the
shaded regions represent all the linear fits recorded for 10 trials,
while the dark line represents their mean. The slopes of these
lines indicate that the stiffness levels of the fingers were k0◦

= 0.16 N/mm, k30◦ = 0.17 N/mm, and k60◦ = 0.17 N/mm,
respectively. The R2 values for these linear fits are higher
than 0.98.

The fingers’ response shown in Figure 10 closely matches
the characteristics of human fingers, as presented in Howe
et al. (1985). The characterization results are also compatible
with the results presented in Matsuoka and Afshar (2004),
as flexion/extension movements performed by an anatomically
human-like robotic index finger necessitate a similar amount of
muscle forces.
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FIGURE 10 | (a) Stiffness modulation of hand prosthesis through sEMG based tele-impedance control. (b) Position control of hand prosthesis through sEMG based

tele-impedance control. In the figures, gray zones present the results of each trial, and the blue lines represent the average value of ten trials. Figure reproduced from

Hocaoglu and Patoglu (2022).
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FIGURE 11 | Demonstration of variable stiffness transradial hand prosthesis performing various grasps with the sEMG based tele-impedance control interface, while

interacting with (a) a deformable object, (b) a fragile object, (c) a triangular rigid object, (d) a cylindrical rigid object, (e) a square rigid object, and (f) a rectangular rigid

object.

Experimental results indicate that the sEMG based
impedance controlled VSA hand prosthesis possesses very
similar performance to the case with an external reference
generator, as presented in Hocaoglu and Patoglu (2019a). In
particular, volunteers were able to modulate their stiffness
levels to the minimum and maximum stiffness limits of the
prosthetic hand, as well as to various intermediate ranges, by
means of the sEMG based tele-impedance control. These results
provide evidence that the stiffness and position of the transradial
hand prosthesis can be controlled independently by users, with
high repeatability.

3.4. Illustrative Experiments and
Evaluations
Given that only the position and the stiffness of the drive tendon
can be directly regulated by the volunteers, in general, the
resulting position and the stiffness of the fingers depending on
the interaction. To test the usefulness of the sEMG based tele-
impedance control interface of the variable stiffness transradial
hand prosthesis, the device was attached to six volunteers, as
shown in Figure 9, and the volunteers were given control of the
position and stiffness of the prosthesis through the sEMG based
tele-impedance controller. In particular, sEMG signals measured
from the surface of the upper arm were used to automatically
adjust the stiffness level of the prosthesis to that of the upper arm,
while the position regulation was intentionally controlled by the
volunteers by moving their shoulder muscles.

The volunteers were instructed to grasp 16 objects with a
broad array of geometries (e.g., cylindrical, square, oval, or
unstructured) and elasticities (e.g., stiff, soft), as shown in
Figure 11. In Figure 11a, a deformable sponge, in Figure 11b,
a fragile raw egg were grasped by the volunteers with this
natural control interface, without damaging the objects. In
Figures 11c–f, rigid objects with various shapes were grasped
by the volunteers using different stiffness levels. Videos
demonstrating several illustrative grasps by a volunteer are
available at https://youtu.be/fGFIKSSmtDg. The average time
required to grasp and release the objects in the video is calculated
as 1.218 ± 0.564 s and 0.819 ± 0.48 s, respectively. The time
elapsed to make a fist is about 2 s. The commercial prosthetic
hand devices (Ossur Inc., 2022) present quite the same grasping
performance as the proposed variable stiffness hand prosthesis.

The proposed tele-impedance controller interface emphasizes
simplicity, ease of use, and adaptability; hence, implements

automatic modulation of prosthetic hand stiffness to match that
of the upper arm, while intentional control of the position of
the underactuated prosthetic hand is left to the user. Under the
observation that humans tend to modulate the impedance of
their limb as a whole while executing different tasks (as shown
in section 3), the tele-impedance controller implemented for the
prosthesis automatically modulates the stiffness of the hand to
match that of the intact part of the arm. Automatic stiffness
modulation increases the dexterity of the prosthetic hand,
without introducing complexity to the human control interface.

Successful interactions with the prosthesis depend on the
amputee making proper decisions on how to interact with
the object under visual feedback and physical coupling. Our
extensive experiments with six healthy volunteers indicate that
humans are very skillful at learning how to interact with the
environment with such a device under the proposed sEMG
based natural control interface. All volunteers were able to adapt
to the device on average in 3.2 ± 1.3 min and successfully
complete the required manipulation tasks without any prior
training. Furthermore, it has been observed that the stiffness
modulation property is effective in increasing the performance
of the transradial prosthesis.

Volunteers suffer from the high complexity of the controller
when intentional control of both the stiffness and the position of
the device is left to the user. During our tests, volunteers indicated
a strong preference for the automatic impedance adjustment
property. Furthermore, it has been observed that volunteers
are more successful at interactions when the impedance of the
prosthesis is automatically adjusted.

4. DISCUSSION

Tele-impedance control of a VSA prosthetic hand is implemented
through stiffness and position estimates decoded from sEMG
signals of muscle groups embedded in the upper arm, chest, and
shoulder. In particular, the IMCJ method is used to estimate
the stiffness of the intact upper arm through agonist/antagonist
muscle pairs, while shoulder/chest muscles are employed to
estimate position references. Then, these stiffness and position
estimates are used to control a VSA prosthetic hand.

The feasibility of tele-impedance control through the
proposed human machine interface is demonstrated with two
human subject experiments, where the position and the stiffness
of the VSA prosthetic hand were successfully modulated. The

Frontiers in Neurorobotics | www.frontiersin.org 15 March 2022 | Volume 16 | Article 789341

https://youtu.be/fGFIKSSmtDg
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Hocaoglu and Patoglu sEMG-Based Natural Control Interface

results demonstrate that both position and stiffness estimations
from sEMG signals are adequate for the control of a VSA
transradial hand prosthesis.

Variable stiffness actuation hand prosthesis together with
the proposed control interface necessitates less effort and
concentration to control and is easier for the amputee to
learn to use. Impedance modulation takes place naturally
from task to task or while performing a task, i.e., ADL,
without requiring amputees’ attention, and this feature improves
the performance of the prosthesis while interacting with
unstructured environments.

The human subject experiments presented in this study have
been performed on able volunteers. Our future studies include
validation of the results on amputees. While special attention
has been given to the selection of muscle groups used for sEMG
based control, such that the same muscle groups can be recruited
for transradial amputees, possible complications may arise in
amputees due to muscle weakness stemming from infrequent
use of the remnant limbs in ADL. Along these lines, the lack of
verifications with amputees is a limitation of this study.

Second, the position and impedance regulation experiments
have been performed on carefully controlled environments,
as tight control of the experimental conditions was necessary
to ensure that the results are statistically reliable with no
confounding factors. Furthermore, sEMG based position and
stiffness models can only provide rough estimations of human
behavior. This study aims to provide easy control of a variable
stiffness prosthetic hand instead of actually copying human
behavior. While the same level of accuracy with the human arm
may not be achieved in real-life use, our experiments with healthy
volunteers presented in section 3.4 provide evidence that the level
of control that can be achieved during grasping different objects
is adequate to provide the required level of performance.

As part of future study, different control modes may be
introduced to the system, for instance, to avoid the need for
voluntary contraction once an object is successfully grasped.
Additional feedback pathways, such as vibrotactile feedback, may
be added to the system to decrease the need for visual feedback
during grasping. Furthermore, sEMG related coefficients can be
identified online to avoid the need for calibration of device.
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