6,582 research outputs found

    Simulation of flows with violent free surface motion and moving objects using unstructured grids

    Get PDF
    This is the peer reviewed version of the following article: [Löhner, R. , Yang, C. and Oñate, E. (2007), Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Meth. Fluids, 53: 1315-1338. doi:10.1002/fld.1244], which has been published in final form at https://doi.org/10.1002/fld.1244. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.A volume of fluid (VOF) technique has been developed and coupled with an incompressible Euler/Navier–Stokes solver operating on adaptive, unstructured grids to simulate the interactions of extreme waves and three-dimensional structures. The present implementation follows the classic VOF implementation for the liquid–gas system, considering only the liquid phase. Extrapolation algorithms are used to obtain velocities and pressure in the gas region near the free surface. The VOF technique is validated against the classic dam-break problem, as well as series of 2D sloshing experiments and results from SPH calculations. These and a series of other examples demonstrate that the ability of the present approach to simulate violent free surface flows with strong nonlinear behaviour.Peer ReviewedPostprint (author's final draft

    Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension

    Get PDF
    This thesis is devoted to the development of new, Generalized Interpolation Material Point Method (GIMP)-based algorithms for handling surface tension and contact (wetting) in fluid-solid interaction (FSI) problems at small scales. In these problems, surface tension becomes so dominant that its influence on both fluids and solids must be considered. Since analytical solutions for most engineering problems are usually unavailable, numerical methods are needed to describe and predict complicated time-dependent states in the solid and fluid involved due to surface tension effects. Traditional computational methods for handling fluid-solid interactions may not be effective due to their weakness in solving large-deformation problems and the complicated coupling of two different types of computational frameworks: one for solid, and the other for fluid. On the contrary, GIMP, a mesh-free algorithm for solid mechanics problems, is numerically effective in handling problems involving large deformations and fracture. Here we extend the capability of GIMP to handle fluid dynamics problems with surface tension, and to develop a new contact algorithm to deal with the wetting boundary conditions that include the modeling of contact angle and slip near the triple points where the three phases -- fluid, solid, and vapor -- meet. The error of the new GIMP algorithm for FSI problems at small scales, as verified by various benchmark problems, generally falls within the 5% range. In this thesis, we have successfully extended the capability of GIMP for handling FSI problems under surface tension in a one-solver numerical framework, a unique and innovative approach.Chapter 1. Introduction -- Chapter 2. Using the generalized interpolation material point method for fluid dynamics at low reynolds numbers -- Chapter 3. On the modeling of surface tension and its applications by the generalized interpolation material point method -- Chapter 4. Using the generalized interpolation material point method for fluid-solid interactions induced by surface tension -- Chapter 5. Conclusions

    Multifluid flows with weak and strong discontinuous interfaces using an elemental enriched space

    Get PDF
    In a previous paper, the authors presented an elemental enriched space to be used in a finite-element framework (EFEM) capable of reproducing kinks and jumps in an unknown function using a fixed mesh in which the jumps and kinks do not coincide with the interelement boundaries. In this previous publication, only scalar transport problems were solved (thermal problems). In the present work, these ideas are generalized to vectorial unknowns, in particular, the incompressible Navier-Stokes equations for multifluid flows presenting internal moving interfaces. The advantage of the EFEM compared with global enrichment is the significant reduction in computing time when the internal interface is moving. In the EFEM, the matrix to be solved at each time step has not only the same amount of degrees of freedom (DOFs) but also the same connectivity between the DOFs. This frozen matrix graph enormously improves the efficiency of the solver. Another characteristic of the elemental enriched space presented here is that it allows a linear variation of the jump, thus improving the convergence rate, compared with other enriched spaces that have a constant variation of the jump. Furthermore, the implementation in any existing finite-element code is extremely easy with the version presented here because the new shape functions are based on the usual finite-element method shape functions for triangles or tetrahedrals, and once the internal DOFs are statically condensed, the resulting elements have exactly the same number of unknowns as the nonenriched finite elements.Peer ReviewedPreprin

    Implementation of mass/heat transfer boundary conditions on a moving boundary

    Get PDF

    A CutFEM method for two-phase flow problems

    Full text link
    In this article, we present a cut finite element method for two-phase Navier-Stokes flows. The main feature of the method is the formulation of a unified continuous interior penalty stabilisation approach for, on the one hand, stabilising advection and the pressure-velocity coupling and, on the other hand, stabilising the cut region. The accuracy of the algorithm is enhanced by the development of extended fictitious domains to guarantee a well defined velocity from previous time steps in the current geometry. Finally, the robustness of the moving-interface algorithm is further improved by the introduction of a curvature smoothing technique that reduces spurious velocities. The algorithm is shown to perform remarkably well for low capillary number flows, and is a first step towards flexible and robust CutFEM algorithms for the simulation of microfluidic devices

    A space-time discontinuous Galerkin finite element method for two-fluid problems

    Get PDF
    A space-time discontinuous Galerkin finite element method for two fluid flow problems is presented. By using a combination of level set and cut-cell methods the interface between two fluids is tracked in space-time. The movement of the interface in space-time is calculated by solving the level set equation, where the interface geometry is identified with the 0-level set. To enhance the accuracy of the interface approximation the level set function is advected with the interface velocity, which for this purpose is extended into the domain. Close to the interface the mesh is locally refined in such a way that the 0-level set coincides with a set of faces in the mesh. The two fluid flow equations are solved on this refined mesh. The procedure is repeated until both the mesh and the flow solution have converged to a reasonable accuracy.\ud The method is tested on linear advection and Euler shock tube problems involving ideal gas and compressible bubbly magma. Oscillations around the interface are eliminated by choosing a suitable interface flux
    corecore