1,949 research outputs found

    Novel contrast-enhanced ultrasound imaging in prostate cancer

    Get PDF
    The purposes of this paper were to present the current status of contrast-enhanced transrectal ultrasound imaging and to discuss the latest achievements and techniques now under preclinical testing. Although grayscale transrectal ultrasound is the standard method for prostate imaging, it lacks accuracy in the detection and localization of prostate cancer. With the introduction of contrast-enhanced ultrasound (CEUS), perfusion imaging of the microvascularization became available. By this, cancer-induced neovascularisation can be visualized with the potential to improve ultrasound imaging for prostate cancer detection and localization significantly. For example, several studies have shown that CEUS-guided biopsies have the same or higher PCa detection rate compared with systematic biopsies with less biopsies needed. This paper describes the current status of CEUS and discusses novel quantification techniques that can improve the accuracy even further. Furthermore, quantification might decrease the user-dependency, opening the door to use in the routine clinical environment. A new generation of targeted microbubbles is now under pre-clinical testing and showed avidly binding to VEGFR-2, a receptor up-regulated in prostate cancer due to angiogenesis. The first publications regarding a targeted microbubble ready for human use will be discussed. Ultrasound-assisted drug delivery gives rise to a whole new set of therapeutic options, also for prostate cancer. A major breakthrough in the future can be expected from the clinical use of targeted microbubbles for drug delivery for prostate cancer diagnosis as well as treatmen

    Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets

    Get PDF
    Prostate cancer is poorly visualized on ultrasonography (US) so that current biopsy requires either a templated technique or guidance after fusion of US with magnetic resonance imaging. Here we determined the ability for photoacoustic tomography (PAT) and US followed by texture-based image processing to identify prostate biopsy targets. K-means clustering feature learning and testing was performed on separate datasets comprised of 1064 and 1197 nm PAT and US images of intact, ex vivo human prostates. 1197 nm PAT was found to not contribute to the feature learning, and thus, only 1064 nm PAT and US images were used for final feature testing. Biopsy targets, determined by the tumor-assigned pixels' center of mass, located 100% of the primary lesions and 67% of the secondary lesions. In conclusion, 1064 nm PAT and US texture-based feature analysis provided successful prostate biopsy targets

    Prostate cancer:clinical implications of new diagnostic means

    Get PDF

    A Systematic Review of the Current Status of Magnetic Resonance-Ultrasound Images Fusion Software Platforms for Transperineal Prostate Biopsies

    Get PDF
    Prostate cancer; Robot-assisted prostate biopsyCáncer de próstata; Biopsia de próstata asistida por robotCàncer de pròstata; Biòpsia de pròstata assistida per robotGiven this new context, our objective is to recognize the suitability of the currently available software for image fusion and the reported series using the transperineal route, as well as to generate new evidence on the complementarity of the directed and systematic biopsies, which has been established through the transrectal approach. Evidence acquisition: This systematic review, registered in Prospero (CRD42022375619), began with a bibliographic search that was carried out in PubMed, Cochrane, and Google Scholar databases. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) criteria and the studied eligibility based on the Participants, Intervention, Comparator, and Outcomes (PICO) strategy were followed. Warp analysis of selected studies was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. In addition, a Google search of all currently available fusion platforms was performed. Our Google search found 11 different commercially available robots to perform transperineal image fusion biopsies, of which 10 devices have published articles supporting their diagnostic effectiveness in transperineal prostate biopsies. Results: A total of 30 articles were selected and the characteristics and results of the biopsies of 11,313 patients were analyzed. The pooled mean age was 66.5 years (63–69). The mean pooled PSA level was 7.8 ng/mL (5.7–10.8). The mean pooled prostate volume was 45.4 cc. (34–56). The mean pooled PSA density was 0.17 (0.12–0.27). The overall cancer detection rate for all prostate cancers was 61.4%, while for csPCa it was 47.8%. PCa detection rate was more effective than that demonstrated in the systematic transrectal biopsy. However, the detection of csPCa in the systematic biopsy was only 9.5% in the reported series. To standardize our review, we grouped prostate cancer screening results according to the population studied and the software used. When the same populations were compared between elastic and rigid software, we found that rigid biopsies had a higher csPCa detection rate than biopsies with elastic fusion systems. Conclusion: Platforms performing prostate biopsy using transperineal image fusion have better detection rates of csPCa than systematic transrectal biopsies. Rigid fusion systems have a better csPCa detection rate than elastic ones. We found no diagnostic differences between the different types of robotic systems currently available. The complementarity of systematic biopsy has also been demonstrated in transperineal imaging fusion biopsies
    corecore