1,576 research outputs found

    Quantitative Susceptibility Mapping in the Human Brain

    Get PDF
    Magnetic resonance imaging (MRI) offers a good tissue contrast and the ability to visualize many disease related morphologies. The work presented in this thesis investigates the study of underlying structure of the brain using quantitative methods with a special emphasis on quantitative susceptibility mapping (QSM). Magnetic susceptibility reflects the interaction of a material to the magnetic field and measures in biological tissues the magnetic susceptibility of inclusions. The reconstruction of QSM requires further processing steps as the magnetic field produced by the sources needs to be disentangled from the orders of magnitude bigger background field. The produced field also depends not only on the shape and the orientation, but also on the anisotropy of susceptibility and the microstructural compartmentalization of the biological source. For this reason, reconstruction methods need to be capable to calculate accurate values for different brain regions as well as applicable in the everyday clinical diagnosis. Within the framework of the thesis a data acquisition protocol based on a multiple-echo gradient echo sequence as well as a post-processing protocol was implemented. One of the processing steps, the background removal method, was applied to preserve the brain regions close to the cerebrospinal fluid (CSF). This method outperforms state of the art methods in this regions but is computationally intensive. Different brain regions were studied using quantitative methods with special emphasis on the QSM. A new method, modulated closed form solution, with extremely fast computational time is proposed. The comparison with other single orientation methods revealed similar results and the highest correlation to the state-of-the-art method (COSMOS) in the deep gray matter. The R2* maps calculated from the same dataset are also able to distinguish the deep gray matter structures with a similar quality. However, QSM shows a higher sensitivity in early stage multiple sclerosis lesions as well as white matter-gray matter structures. In the human cortex the obtained cortical maps show enhancement of primary sensory cortex, which is known to be highly myelinated, on three evaluated quantitative contrasts R1,R2* and susceptibility. The contrasts based on the relaxation rates, R1 and R2*, show a monotonically decrease from the white matter to the CSF imitating the decrease in iron and myelin. The susceptibility behaviour is more complex as iron and myelin content introduce an opposing sensitivity, allowing to study iron and myelin content when combining the three contrasts. The microstructural organization of white matter influences the R2*, R2 as well as field map from which QSM is calculated. This structure leads to an orientation dependence of the studied contrasts and for QSM the spherical assumption is not valid anymore. Therefore a new QSM method is introduced, which includes the Lorentzian correction in white matter. Main fibres such as forceps major and minor were analysed for the three different quantitative contrasts. The anisotropic component associated with susceptibility is similar for the relaxation rates whereas the isotropic component of R2* shows a higher variability. The resulting deep gray matter structure of the new QSM method remained similar to the state-of-the-art method when comparing the isotropic component but calculates physically meaningful susceptibility maps with improved contrast between known fibre bundles

    Accelerated mapping of magnetic susceptibility using 3D planes-on-a-paddlewheel (POP) EPI at ultra-high field strength

    Get PDF
    With the advent of ultra-high field MRI scanners in clinical research, susceptibility based MRI has recently gained increasing interest because of its potential to assess subtle tissue changes underlying neurological pathologies/disorders. Conventional, but rather slow, three-dimensional (3D) spoiled gradient-echo (GRE) sequences are typically employed to assess the susceptibility of tissue. 3D echo-planar imaging (EPI) represents a fast alternative but generally comes with echo-time restrictions, geometrical distortions and signal dropouts that can become severe at ultra-high fields. In this work we assess quantitative susceptibility mapping (QSM) at 7T using non-Cartesian 3D EPI with a planes-on-a-paddlewheel (POP) trajectory, which is created by rotating a standard EPI readout train around its own phase encoding axis. We show that the threefold accelerated non-Cartesian 3D POP EPI sequence enables very fast, whole brain susceptibility mapping at an isotropic resolution of 1mm and that the high image quality has sufficient signal-to-noise ratio in the phase data for reliable QSM processing. The susceptibility maps obtained were comparable with regard to QSM values and geometric distortions to those calculated from a conventional 4min 3D GRE scan using the same QSM processing pipeline

    Structure Prior Effects in Bayesian Approaches of Quantitative Susceptibility Mapping

    Get PDF

    Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group

    Get PDF
    This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting

    Inferring Geodesic Cerebrovascular Graphs: Image Processing, Topological Alignment and Biomarkers Extraction

    Get PDF
    A vectorial representation of the vascular network that embodies quantitative features - location, direction, scale, and bifurcations - has many potential neuro-vascular applications. Patient-specific models support computer-assisted surgical procedures in neurovascular interventions, while analyses on multiple subjects are essential for group-level studies on which clinical prediction and therapeutic inference ultimately depend. This first motivated the development of a variety of methods to segment the cerebrovascular system. Nonetheless, a number of limitations, ranging from data-driven inhomogeneities, the anatomical intra- and inter-subject variability, the lack of exhaustive ground-truth, the need for operator-dependent processing pipelines, and the highly non-linear vascular domain, still make the automatic inference of the cerebrovascular topology an open problem. In this thesis, brain vessels’ topology is inferred by focusing on their connectedness. With a novel framework, the brain vasculature is recovered from 3D angiographies by solving a connectivity-optimised anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Assuming vessels joining by minimal paths, a connectivity paradigm is formulated to automatically determine the vascular topology as an over-connected geodesic graph. Ultimately, deep-brain vascular structures are extracted with geodesic minimum spanning trees. The inferred topologies are then aligned with similar ones for labelling and propagating information over a non-linear vectorial domain, where the branching pattern of a set of vessels transcends a subject-specific quantized grid. Using a multi-source embedding of a vascular graph, the pairwise registration of topologies is performed with the state-of-the-art graph matching techniques employed in computer vision. Functional biomarkers are determined over the neurovascular graphs with two complementary approaches. Efficient approximations of blood flow and pressure drop account for autoregulation and compensation mechanisms in the whole network in presence of perturbations, using lumped-parameters analog-equivalents from clinical angiographies. Also, a localised NURBS-based parametrisation of bifurcations is introduced to model fluid-solid interactions by means of hemodynamic simulations using an isogeometric analysis framework, where both geometry and solution profile at the interface share the same homogeneous domain. Experimental results on synthetic and clinical angiographies validated the proposed formulations. Perspectives and future works are discussed for the group-wise alignment of cerebrovascular topologies over a population, towards defining cerebrovascular atlases, and for further topological optimisation strategies and risk prediction models for therapeutic inference. Most of the algorithms presented in this work are available as part of the open-source package VTrails

    Applications of MRI Magnetic Susceptibility Mapping in PET-MRI Brain Studies

    Get PDF
    Magnetic susceptibility mapping (SM) uses magnetic resonance imaging (MRI) phase images to produce maps of the magnetic susceptibility (χ) of tissues. This work focuses on the applications of SM-based imaging to PET-MRI, the hybrid imaging modality which combines positron emission tomography (PET) with MRI. First, the potential of using SM to aid PET attenuation correction (AC) is explored. AC for PET-MRI is challenging as PET-MRI provides no information regarding the electron density of tissues. Recently proposed SM methods for calculating the χ in regions of no MRI signal are used to segment air, bone and soft tissue in order to create AC maps. In the head, SM methods are found to produce inferior air/bone segmentations to high-performing AC methods, but result in more accurate AC than ultrashort-echo (UTE)-based air/bone segmentations, and may be able to provide additional information in subjects with atypical anatomy. Secondly, a SM pipeline for inclusion in a PET-MRI study into biomarkers for Alzheimer’s disease (AD) is developed. In the Insight46 study 500 healthy subjects from the 1946 MRC National Survey of Health and Development are undergoing a comprehensive PET-MRI protocol at two time-points. SM processing methods are compared and optimised, and a method for processing images with oblique imaging planes is developed. The effect of using different tools for automated segmentation of regions of interest (ROIs) on reported regional χ values is analysed. The ROIs resulting from different tools are found to result in large differences in χ values. FIRST is chosen as the most appropriate ROI segmentation tool for this study based on anatomical accuracy as assessed by a neuroradiologist. Initial analysis of χ values from 100 subjects using data from the first time-point is carried out. No significant association with regional χ values is found for amyloid status, PET radiotracer uptake, or APOE genotype

    Motion robust acquisition and reconstruction of quantitative T2* maps in the developing brain

    Get PDF
    The goal of the research presented in this thesis was to develop methods for quantitative T2* mapping of the developing brain. Brain maturation in the early period of life involves complex structural and physiological changes caused by synaptogenesis, myelination and growth of cells. Molecular structures and biological processes give rise to varying levels of T2* relaxation time, which is an inherent contrast mechanism in magnetic resonance imaging. The knowledge of T2* relaxation times in the brain can thus help with evaluation of pathology by establishing its normative values in the key areas of the brain. T2* relaxation values are a valuable biomarker for myelin microstructure and iron concentration, as well as an important guide towards achievement of optimal fMRI contrast. However, fetal MR imaging is a significant step up from neonatal or adult MR imaging due to the complexity of the acquisition and reconstruction techniques that are required to provide high quality artifact-free images in the presence of maternal respiration and unpredictable fetal motion. The first contribution of this thesis, described in Chapter 4, presents a novel acquisition method for measurement of fetal brain T2* values. At the time of publication, this was the first study of fetal brain T2* values. Single shot multi-echo gradient echo EPI was proposed as a rapid method for measuring fetal T2* values by effectively freezing intra-slice motion. The study concluded that fetal T2* values are higher than those previously reported for pre-term neonates and decline with a consistent trend across gestational age. The data also suggested that longer than usual echo times or direct T2* measurement should be considered when performing fetal fMRI in order to reach optimal BOLD sensitivity. For the second contribution, described in Chapter 5, measurements were extended to a higher field strength of 3T and reported, for the first time, both for fetal and neonatal subjects at this field strength. The technical contribution of this work is a fully automatic segmentation framework that propagates brain tissue labels onto the acquired T2* maps without the need for manual intervention. The third contribution, described in Chapter 6, proposed a new method for performing 3D fetal brain reconstruction where the available data is sparse and is therefore limited in the use of current state of the art techniques for 3D brain reconstruction in the presence of motion. To enable a high resolution reconstruction, a generative adversarial network was trained to perform image to image translation between T2 weighted and T2* weighted data. Translated images could then be served as a prior for slice alignment and super resolution reconstruction of 3D brain image.Open Acces

    Magnetoelectric Sensor Systems and Applications

    Get PDF
    In the field of magnetic sensing, a wide variety of different magnetometer and gradiometer sensor types, as well as the corresponding read-out concepts, are available. Well-established sensor concepts such as Hall sensors and magnetoresistive sensors based on giant magnetoresistances (and many more) have been researched for decades. The development of these types of sensors has reached maturity in many aspects (e.g., performance metrics, reliability, and physical understanding), and these types of sensors are established in a large variety of industrial applications. Magnetic sensors based on the magnetoelectric effect are a relatively new type of magnetic sensor. The potential of magnetoelectric sensors has not yet been fully investigated. Especially in biomedical applications, magnetoelectric sensors show several advantages compared to other concepts for their ability, for example, to operate in magnetically unshielded environments and the absence of required cooling or heating systems. In recent years, research has focused on understanding the different aspects influencing the performance of magnetoelectric sensors. At Kiel University, Germany, the Collaborative Research Center 1261 “Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics”, funded by the German Research Foundation, has dedicated its work to establishing a fundamental understanding of magnetoelectric sensors and their performance parameters, pushing the performance of magnetoelectric sensors to the limits and establishing full magnetoelectric sensor systems in biological and clinical practice
    • …
    corecore