2,731 research outputs found

    Peer Methods for the Solution of Large-Scale Differential Matrix Equations

    Full text link
    We consider the application of implicit and linearly implicit (Rosenbrock-type) peer methods to matrix-valued ordinary differential equations. In particular the differential Riccati equation (DRE) is investigated. For the Rosenbrock-type schemes, a reformulation capable of avoiding a number of Jacobian applications is developed that, in the autonomous case, reduces the computational complexity of the algorithms. Dealing with large-scale problems, an efficient implementation based on low-rank symmetric indefinite factorizations is presented. The performance of both peer approaches up to order 4 is compared to existing implicit time integration schemes for matrix-valued differential equations.Comment: 29 pages, 2 figures (including 6 subfigures each), 3 tables, Corrected typo

    Spatial Manifestations of Order Reduction in Runge-Kutta Methods for Initial Boundary Value Problems

    Full text link
    This paper studies the spatial manifestations of order reduction that occur when time-stepping initial-boundary-value problems (IBVPs) with high-order Runge-Kutta methods. For such IBVPs, geometric structures arise that do not have an analog in ODE IVPs: boundary layers appear, induced by a mismatch between the approximation error in the interior and at the boundaries. To understand those boundary layers, an analysis of the modes of the numerical scheme is conducted, which explains under which circumstances boundary layers persist over many time steps. Based on this, two remedies to order reduction are studied: first, a new condition on the Butcher tableau, called weak stage order, that is compatible with diagonally implicit Runge-Kutta schemes; and second, the impact of modified boundary conditions on the boundary layer theory is analyzed.Comment: 41 pages, 9 figure

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure

    Efficient implementation of symplectic implicit Runge-Kutta schemes with simplified Newton iterations

    Get PDF
    We are concerned with the efficient implementation of symplectic implicit Runge-Kutta (IRK) methods applied to systems of (non-necessarily Hamiltonian) ordinary differential equations by means of Newton-like iterations. We pay particular attention to symmetric symplectic IRK schemes (such as collocation methods with Gaussian nodes). For a ss-stage IRK scheme used to integrate a dd-dimensional system of ordinary differential equations, the application of simplified versions of Newton iterations requires solving at each step several linear systems (one per iteration) with the same sdƗsdsd \times sd real coefficient matrix. We propose rewriting such sdsd-dimensional linear systems as an equivalent (s+1)d(s+1)d-dimensional systems that can be solved by performing the LU decompositions of [s/2]+1[s/2] +1 real matrices of size dƗdd \times d. We present a C implementation (based on Newton-like iterations) of Runge-Kutta collocation methods with Gaussian nodes that make use of such a rewriting of the linear system and that takes special care in reducing the effect of round-off errors. We report some numerical experiments that demonstrate the reduced round-off error propagation of our implementation
    • ā€¦
    corecore