8,157 research outputs found

    Adaptive Ranking Based Constraint Handling for Explicitly Constrained Black-Box Optimization

    Full text link
    A novel explicit constraint handling technique for the covariance matrix adaptation evolution strategy (CMA-ES) is proposed. The proposed constraint handling exhibits two invariance properties. One is the invariance to arbitrary element-wise increasing transformation of the objective and constraint functions. The other is the invariance to arbitrary affine transformation of the search space. The proposed technique virtually transforms a constrained optimization problem into an unconstrained optimization problem by considering an adaptive weighted sum of the ranking of the objective function values and the ranking of the constraint violations that are measured by the Mahalanobis distance between each candidate solution to its projection onto the boundary of the constraints. Simulation results are presented and show that the CMA-ES with the proposed constraint handling exhibits the affine invariance and performs similarly to the CMA-ES on unconstrained counterparts.Comment: 9 page

    Optimization techniques in respiratory control system models

    Get PDF
    One of the most complex physiological systems whose modeling is still an open study is the respiratory control system where different models have been proposed based on the criterion of minimizing the work of breathing (WOB). The aim of this study is twofold: to compare two known models of the respiratory control system which set the breathing pattern based on quantifying the respiratory work; and to assess the influence of using direct-search or evolutionary optimization algorithms on adjustment of model parameters. This study was carried out using experimental data from a group of healthy volunteers under CO2 incremental inhalation, which were used to adjust the model parameters and to evaluate how much the equations of WOB follow a real breathing pattern. This breathing pattern was characterized by the following variables: tidal volume, inspiratory and expiratory time duration and total minute ventilation. Different optimization algorithms were considered to determine the most appropriate model from physiological viewpoint. Algorithms were used for a double optimization: firstly, to minimize the WOB and secondly to adjust model parameters. The performance of optimization algorithms was also evaluated in terms of convergence rate, solution accuracy and precision. Results showed strong differences in the performance of optimization algorithms according to constraints and topological features of the function to be optimized. In breathing pattern optimization, the sequential quadratic programming technique (SQP) showed the best performance and convergence speed when respiratory work was low. In addition, SQP allowed to implement multiple non-linear constraints through mathematical expressions in the easiest way. Regarding parameter adjustment of the model to experimental data, the evolutionary strategy with covariance matrix and adaptation (CMA-ES) provided the best quality solutions with fast convergence and the best accuracy and precision in both models. CMAES reached the best adjustment because of its good performance on noise and multi-peaked fitness functions. Although one of the studied models has been much more commonly used to simulate respiratory response to CO2 inhalation, results showed that an alternative model has a more appropriate cost function to minimize WOB from a physiological viewpoint according to experimental data.Postprint (author's final draft

    Optimal phenotypic plasticity in a stochastic environment minimizes the cost/benefit ratio

    Get PDF
    This paper addresses the question of optimal phenotypic plasticity as a response to environmental fluctuations while optimizing the cost/benefit ratio, where the cost is energetic expense of plasticity, and benefit is fitness. The dispersion matrix \Sigma of the genes' response (H = ln|\Sigma|) is used: (i) in a numerical model as a metric of the phenotypic variance reduction in the course of fitness optimization, then (ii) in an analytical model, in order to optimize parameters under the constraint of limited energy availability. Results lead to speculate that such optimized organisms should maximize their exergy and thus the direct/indirect work they exert on the habitat. It is shown that the optimal cost/benefit ratio belongs to an interval in which differences between individuals should not substantially modify their fitness. Consequently, even in the case of an ideal population, close to the optimal plasticity, a certain level of genetic diversity should be long conserved, and a part, still to be determined, of intra-populations genetic diversity probably stem from environment fluctuations. Species confronted to monotonous factors should be less plastic than vicariant species experiencing heterogeneous environments. Analogies with the MaxEnt algorithm of E.T. Jaynes (1957) are discussed, leading to the conjecture that this method may be applied even in case of multivariate but non multinormal distributions of the responses
    corecore