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Abstract 

 

This paper addresses the question of optimal phenotypic plasticity as a response to 

environmental fluctuations while optimizing the cost/benefit ratio, where the cost is energetic 

expense of plasticity, and benefit is fitness. The dispersion matrix Σ of the genes’ response (H 

= ln|Σ|) is used: (i) in a numerical model as a metric of the phenotypic variance reduction in 

the course of fitness optimization, then (ii) in an analytical model, in order to optimize 

parameters under the constraint of limited energy availability. Results lead to speculate that 

such optimized organisms should maximize their exergy and thus the direct/indirect work 

they exert on the habitat. It is shown that the optimal cost/benefit ratio belongs to an interval 

in which differences between individuals should not substantially modify their fitness. 

Consequently, even in the case of an ideal population, close to the optimal plasticity, a certain 

level of genetic diversity should be long conserved, and a part, still to be determined, of intra-

populations genetic diversity probably stem from environment fluctuations. Species 

confronted to monotonous factors should be less plastic than vicariant species experiencing 

heterogeneous environments. Analogies with the MaxEnt algorithm of E.T. Jaynes (1957) are 

discussed, leading to the conjecture that this method may be applied even in case of 

multivariate but non multinormal distributions of the responses. 
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1. Introduction 
 

Phenotypic plasticity is a general and common feature, probably shared by most organisms. 

This concept refers to the ability of genetically identical organisms to change their phenotype 

in response to environmental changes in space and time. These changes are favoured because 

they reduce the fitness variance from generation to generation. As a matter of fact, the 

phenotypic plasticity enables individuals of a population to colonize various ecological 

systems, to extend the geographical area of the species and thus to reduce its probability of 

extinction. For instance, a plant grown in a sunny habitat will exhibit broader leaves and a 

shorter stem than a genetically identical plant grown in a shadowed place. This physiological 

effect, called etiolation, is an adaptive response to a particular state of the environment, i.e., 

the quality and the intensity of light the plant receives. Etiolation allows the plant shadowed 

by neighbours competing with them in the struggle for light and to survive in spite of 

unfavourable conditions. 

Environmental changes do not only affect permanently the phenotype produced by the 

genotype such as morphological and/or life-history traits. They can also induce several 

reversible variations of the phenotype (non permanent effects) throughout the life of 

individuals (Lynch and Jones, 1998). Non permanent effects were particularly studied by 

behavioural ecologists and many studies were focused upon the fact that organisms can 

adaptively adjust their behaviour to the environmental heterogeneity during their lifetime.  

 

The empirical concept of reaction norm (RN) is usually defined as “the set of phenotypes 

[including behavioural phenotypes (A/N)] that a single genotype produces in a given set of 

environments. Genotypes or individuals show phenotypic plasticity if their RN is non-

horizontal” (Dingemanse et al., 2009). As shown in fig. 1, RN elevation and slope (plasticity) 

can vary among genotypes, and it turns out that some species are more plastic than others 

when confronted with environmental changes (Via et al., 1995; DeWitt et al., 1998). In 

addition, some genes can considerably vary in their expression level, while others are more or 

less constant. These differences probably depend on the functions of the genes. 

 

 
 

Figure 1. Phenotypic plasticity and fitness. (a). Phenotypic plasticity can be described as the amount of change 

across environmental states. The set of parameters (a vector) of a polynomial regression (dotted line) is used to 

describe the reaction norm (RN). The horizontal RN depicts a null plasticity (from Via et al. 1995 (modified)). 

(b). The relationship between phenotypic values and fitness shows the limits of plasticity in regard to one 

environment. A given genotype makes a phenotypic error if its mean phenotype differs from the optimum. The 

cost of such an error is the difference between the expected fitness and the optimal fitness (from DeWitt et al. 

1998 (modified)). 

 

The benefit of adaptive plasticity is that organisms can match across more states of the 

environment in comparison to organisms able to produce a single phenotype only. Currently, 

it is advocated by several authors that the most plastic phenotypes are harboured by organisms 

competing in heterogeneous environments relatively to those living in homogenous 

environments (Ellers and Van Alphen, 1997; Van Kleunen and Fisher, 2005; Weinig, 2000; 

Snell-Rood et al., 2010).  

It is now clear that adaptive phenotypic alters a variety of interactions between individuals 

and their environment through life-traits and/or behaviour : indirect interactions in multi-
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species assemblages, direct interactions between species such as inducible defences/offenses 

(Miner et al., 2005; Ramos-Jiliberto, 2003; Ramos-Jiliberto et al., 2008) and niche 

construction (Donohue, 2005). Because phenotypic plasticity is able to modify such 

interactions, it ultimately affects ecological processes, such as population stability, trophic 

relationships, population dynamics, species coexistence within communities and biodiversity 

(Mouritsen and Poulin, 2005). Lastly, studies demonstrated that plasticity can promote 

stability and health of ecological systems experiencing environment fluctuations (Miner et al., 

2005 and references therein). 

However, organisms able to exhibit a perfect plasticity are unlikely to exist. Such perfect 

organisms should produce the best phenotype in every condition of the environment. Indeed, 

most of organisms fail to produce the exact optimal phenotype for various reasons: inability to 

produce it (due to evolution constraints), inability to get reliable cues on the state of the 

environment and inability to pay the plasticity cost (Auld et al., 2010). Energetic cost is a 

constraint which limits the evolution and the development of plasticity. In this respect, DeWitt 

et al. (1998) have listed a set of five main potential costs of phenotypic plasticity. Among 

them, these authors emphasize the “production cost”, which should be considered only if the 

cost of production by plastic genomes exceeds those for fixed genotypes producing the same 

phenotype. This means that the variance associated to the average genome expression has an 

energetic price. The wider the variance, the higher the cost.  However, the true nature of the 

undeniable cost of plasticity is still somewhat obscure and remains an open discussion. 

In this paper, we focus on the estimation of the best cost/benefit ratio of plasticity in the 

context of fluctuant (stochastic) environments. Since the energetic cost paid is positively 

correlated to the variance of the response to environmental fluctuations, the arising question 

is: what is the optimal variance of a phenotype undergoing a fluctuating environment which 

minimizes the cost/benefit ratio? 

First, we study the results obtained through the simulations of a model. Three genes are 

involved in a single phenotypic response driving the behaviour of a virtual wasp, which aims 

at maximising – by mean of a genetic algorithm – its progeny when confronted to a 

fluctuating environment.  We find that in the course of the optimisation process, according to 

theoretical works in the domain, the logarithm of the determinant of the dispersion matrix of 

the three genes is an indicator of the convergence. Second, we build an analytical model of 

three genes having analogies with the previous one. This model is an attempt of generalizing 

the previous empirical approach. The optimal response (i.e. the minimisation of the cost/score 

ratio) is then found using the Lagrange’s constrained optimization method, on the basis of a 

conjecture we made about the energy available and the covariance matrix of the 3 genes 

response. The analysis of the simulation results inductively corroborates the modelling 

assumptions of the analytical model and constitutes a qualitative cross validation of both 

models.  

On one hand, results concern some important conjectures already formulated by several 

authors about the origin of genetic diversity and phenotypic plasticity in various contexts. On 

the other hand, we argue that the method we used has some analogies with the MaxEnt 

algorithm (Jaynes, 1957a, 1957b) applied to a multidimensional system and likely provide an 

estimator of the maximum exergy the system can own in a specific context. However, it does 

not constitute a rigorous application of E.T Jaynes’ method, but rather a transposition of his 

ideas and some mathematical developments are still in course in order to identify theoretical 

underpinnings. 

 

2. Numerical model 

 
2.1. Model description  

 

2.1.1. Animal behaviour  



Optimal phenotypic plasticity in a stochastic environment  4 

 

The model refers to the foraging behaviour of a parasitoid
2
 insect (a small wasp). Some 

details of the algorithm are indicated in Fig. SD1. The model has been conceived as simple 

and neutral as possible. It is noteworthy that we did not aim at reproducing the behaviour and 

particular traits of a particular species but rather some general traits of thelytokous (i.e., 

without sexual reproduction), solitary (i.e., laying only one egg per host) and synovigenic 

females of parasitoid insects whose plasticity is likely a key factor of survival and fitness in 

fluctuant environments. It is based on the existence of a well documented trade-off between 

survival and reproduction resulting from competitive allocation of resources to either somatic 

maintenance or egg production.  In synovigenic species females have the ability to mature 

eggs throughout their life.  A dynamic control of egg load enables animals to retain some 

flexibility during the adult life and to minimize the risk of experiencing time or egg limitation. 

For simplification, we considered the case of female wasps that have an instantaneous 

vitellogenic activity. In addition, animals do not feed during the oviposition stage. 

Consequently, young females start their life with a limited amount of reserves.   

At initialization, a new wasp is instantiated. Immediately after the wasp has emerged, the 

animal (a female) has the task to lay its eggs.  To achieve this task, the female has to forage 

within an environment in which the resource (hosts) it is looking for (e.g. eggs from another 

species) is aggregated into many patches dispersed within an area. The behaviour of the wasp 

consists in both finding patches and attacking the greatest possible number of hosts. When a 

wasp encounters a patch of hosts, the cumulative number of hosts it attacks (Nt) obeys to a 

saturation function of time t, admitting as parameter the initial number of hosts within the 

patch (N0):  

 

N t  = N0(1-exp(-α t)), (1) 

where α is a parameter. 

 

Thus, the velocity for attacking hosts decreases in time, following a negative exponential 

function. According to the Marginal Value Theorem (Charnov, 1976), when its velocity has 

reached the average velocity calculated on the basis of the average environment richness, the 

wasp leaves the patch and tries to find a new one. Such an optimal patch-leaving policy was 

adopted since the goal of the model was to look for optimal reproductive strategies, and 

because most foraging animals, especially insect parasitoids, are usually behaving in good 

qualitative agreement with the theorem. The cycle “foraging for hosts on patches and 

travelling between patches” is repeated until the wasp has reached the end of its life or has 

exhausted its potential fecundity. 

 

2.2.2. Plasticity.  
Three processes driving the wasp behaviour are here represented by three real values coded 

on 32 bit-structures called genes. The wasp starts its life at an initial position along a linear 

trade-off (coded by gene G1) between its lifespan and its fecundity (fig. 2). Max lifetime and 

max fecundity are arbitrary fixed to 1000. Using different (realistic) values would lead to a 

change in scale without affecting qualitatively the results obtained. The animal is able to 

change its reproductive strategy throughout its life through gene G2, which defines the limits 

of its plasticity. The cost linearly reduces both fecundity and lifespan of the animal by means 

of a linear relationship with the value of G2. The wider is G2, the heavier will be the cost (in 

energy). The appropriateness of a non-symmetric plasticity cost was examined, but we 

decided to implement a symmetric cost so that the effects on the two characteristics are of the 

same order of magnitude and can be directly compared. In addition, the wasp can move within 

the range thanks to gene G3, which is a parameter of a linear estimator (McNamara and 

Houston, 1987), evaluated as follows: 

                                                 
2
An organism that lives at the expense of another (its host), impedes its growth and eventually kills it. Insect parasitoids, which are often 

very tiny, attack a single organism (plant or animal), from which they derive everything they need for their own growth and reproduction. 

One way a parasitoid does this is by laying its eggs in the body or eggs of the host insect (after Canadian Forest Service glossary). 
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The animal has an initial estimate of the encounter rate of 

between the lowest (i.e., 0.0) 

host on a new discovered patch) possible instantaneous host

The higher G3, the higher the effect of the past experience on the foraging strategy of the 

wasp. Every time step of its life, the animal uses 

range of possible values. Correlatively, the higher 

rate λi, the more the animal will invest in fecundity and the less in longevity. 

 

 

Figure 2. The life span-fecundity trade

the wasp along the fecundity-lifespan trade

throughout its life to optimize its fitness. G3: a parameter equivalent to sensitivity to the environment richness

(Eq.(2)). The energetic cost is the cost of the plasticity which is proportional to G2.

 

2.2.3. Optimization process  
Each wasp holds a single chromosome

simulation consists in finding the vector (

wasp, i.e., the number of eggs laid throughout its life.

means of a genetic algorithm 

and mutation rates were fixed to

the number of generations 500. The con

carefully verified by runs starting 

inter-patch travel time, probability to be born on a patch and

 

2.2.4. Environmental fluctuations 
The environment in which each simulated animal has to forage is defined by 

travel time T (dilution of patches) and by the average number of hosts on patches (

patch quality). Each animal of a popula

However, stochasticity is introduced 

experience environments in which each patch differs from each other by the number of hosts 

they own. The number of hosts per 

)50,100( 2

0 ==→ σNN . Second, the animals can randomly born inside or outside a patch 

with probabilities p and (1-p)

travel to accomplish. These features aim at simulating the fluctuation levels of the 

environment. The simulation of each wasp is repeated 

chromosome is obtained by aver

ty in a stochastic environment  

The animal has an initial estimate of the encounter rate of µ0 
that was fixed to the midpoint 

) and the highest (i.e., 1/t1, where t1 is the time to find the first 

host on a new discovered patch) possible instantaneous host-encounter rate.

, the higher the effect of the past experience on the foraging strategy of the 

Every time step of its life, the animal uses µi to decide which strategy to use within the 

range of possible values. Correlatively, the higher the instantaneous estimated host encounter 

, the more the animal will invest in fecundity and the less in longevity. 

 
fecundity trade-off of a parasitoïd wasp (Coquillard et al., 2010)

lifespan trade-off. G2: Range of the plasticity. The wasp can move within G2 

throughout its life to optimize its fitness. G3: a parameter equivalent to sensitivity to the environment richness

(Eq.(2)). The energetic cost is the cost of the plasticity which is proportional to G2. 

Each wasp holds a single chromosome, which encapsulates the three genes. The goal of the 

simulation consists in finding the vector (G1, G2, G3), which maximises the score of the 

the number of eggs laid throughout its life. The score maximization is obtained by 

means of a genetic algorithm based on the GENITOR model (Whitley, 1989)

were fixed to 60%  and 2.5% respectively. The population size is 300 and 

the number of generations 500. The convergence (stability of scores) of the algorithm was 

carefully verified by runs starting in various initial conditions (average richness of patches, 

obability to be born on a patch and energetic cost)

Environmental fluctuations  
The environment in which each simulated animal has to forage is defined by 

dilution of patches) and by the average number of hosts on patches (

patch quality). Each animal of a population should experience the same environment. 

is introduced in the model at two levels. First, the wasps can 

experience environments in which each patch differs from each other by the number of hosts 

they own. The number of hosts per patch is then drawn from a Gaussian distribution

. Second, the animals can randomly born inside or outside a patch 

). Thus, animals start their life with or without an inter

travel to accomplish. These features aim at simulating the fluctuation levels of the 

environment. The simulation of each wasp is repeated 20 times, and the score related to each 

chromosome is obtained by averaging 20 scores. Lastly, 20 replicates of each simulation are 

5 

(2) 

was fixed to the midpoint 

is the time to find the first 

ounter rate.  

, the higher the effect of the past experience on the foraging strategy of the 

to decide which strategy to use within the 

estimated host encounter 

, the more the animal will invest in fecundity and the less in longevity.  

al., 2010). G1: initial position of 

off. G2: Range of the plasticity. The wasp can move within G2 

throughout its life to optimize its fitness. G3: a parameter equivalent to sensitivity to the environment richness 

which encapsulates the three genes. The goal of the 

which maximises the score of the 

The score maximization is obtained by 

(Whitley, 1989). Crossing-over 

. The population size is 300 and 

vergence (stability of scores) of the algorithm was 

average richness of patches, 

). 

The environment in which each simulated animal has to forage is defined by both inter-patch 

dilution of patches) and by the average number of hosts on patches (N0, i.e., the 

tion should experience the same environment. 

in the model at two levels. First, the wasps can 

experience environments in which each patch differs from each other by the number of hosts 

patch is then drawn from a Gaussian distribution 

. Second, the animals can randomly born inside or outside a patch 

start their life with or without an inter-patch 

travel to accomplish. These features aim at simulating the fluctuation levels of the 

times, and the score related to each 

replicates of each simulation are 
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performed, each of them differing by the initial values of the populations’ chromosomes. The 

best values obtained in the population are recorded at 

used to compute the dispersion

simulation. 
 

2.3. Results 

A polynomial approach is usually used to describe the RN (

genotypes confronted to a defined set of environments

this context, the genetic dispersion

coefficients are related by: 

 
TXGXΣ = , 

 

where the matrix X contains a polynomial series of each variable 

of the environment. The relation between the vector of the states of the environments and the 

coefficients of the polynomial function for a given g

Xgz =  

Thus, we retained ln[det(Σ)] as a descriptor of the 

to the environment stochasticity in the simulator. 

i.e. H = ln[det(Σ)]. The results we present hereafter were obtained using a single

of parameters (maximal plasticity cost, inter

representative of the model behaviour

metric of the convergence. A complete analysis of the 

(Wajnberg et al, 2012). Results show that 

variance for each gene drastically diminishes but 

the simulation there still persist

residual variance is interpreted 

which prevents the algorithm converging 

 

Figure 3. Dispersion Matrix and Cost/score ratio.

and corresponding H value (♦) of the three genes 

diminishes toward an optimum value. 

 

 
Table I. Mean and standard 

convergence of the genetic algorithm 

 

 

Mean 

SD 

ty in a stochastic environment  

performed, each of them differing by the initial values of the populations’ chromosomes. The 

the population are recorded at each time step for each generation and 

dispersion matrix of the genes (see hereafter) over the 20 replicates of the 

A polynomial approach is usually used to describe the RN (i.e., the set of phenotypes) of 

genotypes confronted to a defined set of environments (Via et al., 1995; De Jong, 1995)

dispersion matrix Σ of character states and the matrix of polynomial 

a polynomial series of each variable x which measures the state 

of the environment. The relation between the vector of the states of the environments and the 

coefficients of the polynomial function for a given genotype is then: 

 

  

as a descriptor of the response variance of the 

to the environment stochasticity in the simulator. For simplicity we will call it the “H value”, 

The results we present hereafter were obtained using a single

of parameters (maximal plasticity cost, inter-patch travel time = 100, 

behaviour and well suited to test the validity of the H value as a 

A complete analysis of the results is the subject of 

Results show that when the algorithm converges to the best scores

each gene drastically diminishes but never vanish (fig 3). Indeed, at the end of 

the simulation there still persists a variance of both responses and scores (table II). This 

interpreted as the effect of the stochastic fluctuations o

converging toward a single and optimal value of the scores. 

Dispersion Matrix and Cost/score ratio. Left: convergence of the genetic algorithm to best scores (

) of the three genes system. Right: In the same time, the Cost/Score ratio 

diminishes toward an optimum value. Fitted curves are only indicative. 

and standard deviation of genes and scores obtained after the 

convergence of the genetic algorithm (500
th

 generation of the numerical model).

G1 G2 G3 Score 

587.02 21.41 0.47 373.26 

10.94 4.81 0.11 3.89  

6 

performed, each of them differing by the initial values of the populations’ chromosomes. The 

each generation and 

over the 20 replicates of the 

the set of phenotypes) of 

(Via et al., 1995; De Jong, 1995). In 

of character states and the matrix of polynomial 

(3) 

which measures the state 

of the environment. The relation between the vector of the states of the environments and the 

(4) 

variance of the genes confronted 

For simplicity we will call it the “H value”, 

The results we present hereafter were obtained using a single combination 

patch travel time = 100, p = 0.5) are 

and well suited to test the validity of the H value as a 

the subject of another paper 

algorithm converges to the best scores, the 

. Indeed, at the end of 

a variance of both responses and scores (table II). This 

as the effect of the stochastic fluctuations of the environment, 

optimal value of the scores.  

 
onvergence of the genetic algorithm to best scores (●) 

: In the same time, the Cost/Score ratio 

of genes and scores obtained after the 

numerical model). 
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3. Analytical model 

3.1. Model description 

By means of an analytical model we now attempt to generalize the results obtained in the 

previous section. Let {G1, G2, G3} be 3 genes that contribute to a phenotype in response to an 

environmental factor. Individual responses of the genes are modelled by means of a saturation 

function: 
itgytgy iGiGi

βα ))](exp(1[))(( max −−=   (5) 

where, yGi is the response of the gene Gi, 
max

Giy is the maximal response of Gi, αi and βi are, 

respectively, the velocity parameter and shape parameter of yGi and g(t) is the state of an 

environmental factor at the t instant. As a consequence, even if several genes share a 

unique α, but different shapes βi, the responses will quantitatively differ. This equation is of 

concave type and is one of the most commonly used to model genes’ responses. It results 

from Eq. (5) that there is no time-lag between experiencing a new signal g and the 

corresponding phenotype. Similarly, we are not considering the case of convex functions 

since they usually either describe the toxicity effect of some compounds (degradation of 

various metabolic pathways) or are the result of an inhibitory effect of an epistatic gene. 

Figure 2a exemplifies the responses of the genes to g, each response depending on αi and βi.  

In the following, it is considered that the velocity parameter αi is homologous to the variance 

(plasticity) of the gene i response:  αi ∝ σi². The equivalence between the parameter αi and the 

variance σi² of the response is justified by considering that a gene which holds a high 

variance/plasticity of its response has, on average, a higher response to the environment signal 

(plasticity in the breadth of adaptation (Gabriel et al., 2005; fig. 4b), whatever the value of the 

environment, than a gene that can only react to a small range of the environment. 

The energetic cost (Ei), associated to the i
th

 gene response, according to DeWitt (1998) and 

Svanbäck et al. (2009) is conceived as the sum of several components. Although these authors 

distinguish five plasticity costs, we aggregated these five items into two categories: the 

maintenance cost 
min

iE (i.e., sensory and regulatory mechanisms) and the cost associated to the 

variance of the phenotype (production costs, information acquisition costs, developmental 

instability costs and genetic costs). Svanback et al. use a linear function to quantify the 

energetic cost associated to the variance. Here, an exponential or a power function is 

preferred, since the variance is a second order moment. Lastly, an additional cost (ξ) paid for 

the response itself is considered. This cost should be equivalent to the cost paid by a fixed 

genotype to produce an equivalent phenotype. The resulting equation for cost takes the 

general form: 

 

))(())exp(min
tgyEE Giiiiiii ξατγ ++= , (6) 

where γ,τ and ξ are positive constants. 

 

The overall energetic cost E is then accounted as the sum of the 3 individual costs Ei, over the 

interval of time ∆t: 

 

))((
,

tgEE
ti

it ∑=∆  (7) 

We now introduce a constraint on variances, and consequently on costs, that can be 

understood either as a limitation of the available energy or as an elementary representation of 

an epistatic link between the genes: 

 

Z321 =++ ααα        (Z ≥ 0) (8) 
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Figure 4. Gene response and plasticity. 

= 4.0). The arrow indicates an example of variation due to the velocity parameter 

plasticity will have, on average, a smaller response than a gene owning a wider one, when confronted to a 

fluctuant environment over a large enough interval of time.

 

 

Let us suppose now that the environment is fluctuant through time

day/night temperature, inter-an

confronted with two kinds of fluctuant environments: 

 Periodic fluctuations.  

)sin()( ϕω += tatg ,   where a

 

Stochastic fluctuations.  

We tested (i) a uniform distribution

( ) min( ) (max( ) min(g t g g g= + −  

where U follows a uniform distribution on [0, 1[

),( 2σµ→N  with parameters 

steps. Examples are shown on fig. 3.

 

The response of the three genes 

interval of time ∆t (fig. 3): 

∑∂=∆
ti

iit tgyS
,

))((  

 

It is assumed that the higher is 

ty in a stochastic environment  

 
Gene response and plasticity. (a) Hypothetical example of gene response confined to a limited range (

indicates an example of variation due to the velocity parameter α . (b) A gene of narrow 

plasticity will have, on average, a smaller response than a gene owning a wider one, when confronted to a 

fluctuant environment over a large enough interval of time. 

the environment is fluctuant through time (e.g. for 

annual variation of pluviometry, etc.). The three

two kinds of fluctuant environments:  

a is the amplitude of the variation 

uniform distribution (white noise) of same amplitude (a) and 

)( ) min( ) (max( ) min(g t g g g  U ,  

follows a uniform distribution on [0, 1[,  and (ii) a Gaussian distribution

parameters drawn from the value of g(t) (Eq. (9)) calculated over 100

Examples are shown on fig. 3. 

The response of the three genes is thus a function S of the three gene responses

is the response, the higher is the fitness. 

8 

Hypothetical example of gene response confined to a limited range (β 

A gene of narrow 

plasticity will have, on average, a smaller response than a gene owning a wider one, when confronted to a 

. for seasonal effects, 

The three-genes system is 

(9) 

and extremes as (9): 

(10) 

distribution (red noise) 

calculated over 100 time 

responses, over the 

(11) 



Optimal phenotypic plasticity in a stochastic environment

 

 
Figure 5. Examples of the response of three genes over an interval of time 

fluctuations. Left: periodic environment (

 

It turns out now that the problem consists in finding the best combination

maximizes the response tS∆ , minimizes the 

there are an infinite number of 

goal, we formulate the following conjecture:

 

The phenotypic plasticity, measured by 

jointly contributing to the response to environment fluctuations

particular value Z of the available energy 

We recall that the determinant of a covariance matrix has the property: 

(Hadamard’s inequality) and that 

Thomas, 2006); see also 

(maximisation) of H = ln|ΣΣΣΣ| subject to

by means of the standard Lagrange’s 

 

3.2. Results 

 

We partially explored the model

and the constrained optimization of

varying from 0.2 to 4.  

 

Table II
 

Parameter 

a 

ω 
φ 

{β1, β2, β3} {2.0, 1.8, 1}

Z [0.2,…,
min

iE  

iξ  

iii ∂,,τγ  

t∆  

 

 

ty in a stochastic environment  

 

. Examples of the response of three genes over an interval of time ∆t = 25, submitted to environment 

fluctuations. Left: periodic environment (Eq. (9)). Right: stochastic environment (Eq. (10)

It turns out now that the problem consists in finding the best combination

minimizes the cost tE∆  and satisfies the constraint 

of possible combinations of αi for each value of 

formulate the following conjecture: 

The phenotypic plasticity, measured by the determinant of the dispersion

response to environment fluctuations, has its optimum for 

of the available energy which minimizes the E/S ratio. 

We recall that the determinant of a covariance matrix has the property: 

) and that ln|ΣΣΣΣ| is concave (a proof can be found in 

ee also fig. SD4). Consequently, we performed the optimisation 

subject to the constraint (8), {α1, α2, α3} taken as free variables, 

by means of the standard Lagrange’s constrained optimization method. 

the model: most of the parameters are fixed to neutral values

optimization of  H = ln|ΣΣΣΣ| is performed relaxing the constraint 

I. Parameters’ value used for computations 

Value Comments 

2 Amplitude of the periodic environment 

1 Phase of the periodic environment 

0 Phase shift of the periodic environment 

{2.0, 1.8, 1} Shape parameters of genes response 

[0.2,…, 4] Constraint on genes; step = 0.2 

i∀,0  Same minimal energetic cost for all gene

i∀,2.0   

i∀,1  No weight 

25 Time Interval  

9 

= 25, submitted to environment 

)). 

It turns out now that the problem consists in finding the best combination {α1, α2, α3} which 

the constraint (8). Notice that 

for each value of Z.  To reach this 

dispersion matrix of genes 

has its optimum for a 

We recall that the determinant of a covariance matrix has the property: ∏
=

≤<
n

i

ii

1

20 σΣ  

proof can be found in (Cover and 

we performed the optimisation 

taken as free variables, 

to neutral values (table II) 

relaxing the constraint (8), Z 

 

 

genes 



Optimal phenotypic plasticity in a stochastic environment

 

Figure 6. Optimal plasticity for the three genes model

(a, b, c) Optimal cost and score are neither minimal nor maximal, but are intermediate values representing the 

best compromise. The minimal ratios obtained were: E/S = 0.224 = 43

0.224 = 43.45/193.87 (uniform-stochastic environment); E/S = 0.224 = 42.97/191.38 (Gaussian

environment). (d) The contribution of each variance to the overall sum varies as Z is relaxed (vertical dashed l

corresponds to the optimal response Z = 1.25). 

the constraint Z (scales of vertical axis are arbitrary). Maximum 

1.25 (vertical line). 

 

Figure 6e depicts the effect of relaxing the constraint 

periodic environment; H ≈ 

(Gauss) environment) meets the 

calculations gave identical results (

compromise between the extreme values

parameters are respectively, {0.151, 0.374, 0.724

0.743} for the periodic and stochastic environment

organism to produce the best response in fluctuating

of energy (fig 6a, 6b and 6c). 

(αi)s’ do not evolve linearly with Z

ty in a stochastic environment  

the three genes model (example of Gaussian fluctuations of the environment)

Optimal cost and score are neither minimal nor maximal, but are intermediate values representing the 

best compromise. The minimal ratios obtained were: E/S = 0.224 = 43.67/194.97 (periodic environment); E/S = 

stochastic environment); E/S = 0.224 = 42.97/191.38 (Gaussian

The contribution of each variance to the overall sum varies as Z is relaxed (vertical dashed l

corresponds to the optimal response Z = 1.25). (e) Variation of H = ln[det(Σ)] and Cost/Score ratio in function of 

the constraint Z (scales of vertical axis are arbitrary). Maximum of H meets the minimal 

depicts the effect of relaxing the constraint (8) on H. The maxim

 1.77, stochastic (uniform) environment; H

meets the minimal cost/score ratio (E/S ≈ 

calculations gave identical results (Fig. SD4). The corresponding values 

compromise between the extreme values (Fig. SD2). The best combinations of

{0.151, 0.374, 0.724}, {0.150, 0.373, 0.726} 

stochastic environments. These combinations 

e the best response in fluctuating environments at the lowest 

). Figure 6d shows clearly that the relative contributions of the 

do not evolve linearly with Z (see also Fig. SD3). The variation depends on the shape 

10 

 
(example of Gaussian fluctuations of the environment). 

Optimal cost and score are neither minimal nor maximal, but are intermediate values representing the 

.67/194.97 (periodic environment); E/S = 

stochastic environment); E/S = 0.224 = 42.97/191.38 (Gaussian-stochastic 

The contribution of each variance to the overall sum varies as Z is relaxed (vertical dashed line 

and Cost/Score ratio in function of 

the minimal E/S ratio (0.224) at Z = 

. The maximum (H ≈ 2.28, 

H ≈ 4.18, stochastic 

 0.224). Numerical 

e corresponding values of E and S form a 

combinations of {α1, α2, α3} 

 and {0.143, 0.364, 

 should warrant the 

the lowest possible cost 

rly that the relative contributions of the 

depends on the shape 
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parameter βi of the yi responses. When the system is highly constrained, the gene G2 (β = 1.8) 

is the most solicited. Next, its contribution diminishes in parallel with G1 (β = 2) while the 

contribution of G3 (β = 1.0) increases when Z is relaxed. The variations of weights both in 

costs and scores   (γi, τi, δi, ξi) should likely modify this pattern. 

 

4. Discussion & Conclusion  

4.1. Optimal plasticity, optimal energy 

 

Results show that in the same time the numerical model converges to the best scores, the 

determinant of the dispersion matrix diminishes toward a residual value, which is of 

comparable magnitude (H = 4.61) to the one obtained with the analytical model using a 

Gaussian-stochastic environment (H= 4.18).  However, these similar outcomes cannot lead to 

clear and definite conclusions. Simply, we notice that in both cases, it persists (even after the 

convergence of the systems) a non negligible variance. It results from the latter consideration 

that the system never converges to a unique solution but to a set of solutions, each of them 

forming the best combination of the three variances associated to genes to give the best 

adaptive response to a particular environmental fluctuation in time. Residual value of H can 

thus be understood as a description of the optimal variance for best scores at lowest cost in the 

context of stochastic, but limited, environmental fluctuations.  

 

Since the “niche construction” process (Odling-Smee et al., 2003) refers to the ability of an 

organism to alter its environment, the plasticity of characters seems to be particularly 

involved in the modifications of habitats: 

1. Optimal phenotypic plasticity allows providing the best response and consequently 

performing a maximal direct work on the environment (e.g., seed dispersal or germination 

timing for plants, foraging activity or habitat choice for animals...) 

2. The minimization of the cost/benefit ratio allows saving a certain amount of energy 

(compared to a non-optimized organism) which can be reallocated to other physiological 

compartments resulting in an indirect work on the environment. 

Hence, according to the definition of exergy, one can assume that the optimum of phenotypic 

plasticity coincides with the optimum of exergy the organism can own (Jørgensen and 

Svirezhev, 2004) with respect to (i) the environmental signal the organism experiences and 

(ii) the genetic pathway involved in the response. 

 

Obviously, the E/S value obtained is a theoretical optimum of an ideal organism. However, 

only few individuals of populations are likely to respond optimally. For several reasons: intra-

population genetic variation, but also individuals are not in the same physiological state at a 

given time, to respond to environmental stimuli and therefore to devote the energy required 

for an optimal response. Hence, when an organism (or a population) has a very different 

plasticity than predicted by the H value, an accurate review of organisms living conditions 

must be made to determine which processes are acting to maintain them far from this value. 

Lastly, plasticity limits can probably lay in functional and internal constraints that reduce the 

benefit of plasticity in comparison with a perfect and optimal plasticity (see Gabriel et al., 

2005 for a discussion about the plasticity limits, and van Kleunen & Fisher (2005) for an 

analysis in the context of plants plasticity). 

 

The H value calculated is used to describe the volume in which the organism is likely to 

deploy its activity to ensure survival, at the lowest cost, in the limits of environmental 

fluctuations it encounters. In other words, the H value describes the activity (a state space) of 

the organism, under survival constraints, and provides a metric for the dispersion of the 

genes’ responses, taken as random variables. While many aspects of gene expression require 

an accurate knowledge of molecular mechanisms, the distribution of responses of genes is 
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largely explained by a simple model based on statistics rather than a theory of molecular 

biology. 

 

4.2. Plasticity and environmental variations 

The accurate knowledge of functional response equations of genes involved in a phenotype 

and the associated costs should allow, applying this method, to predict –ad minima– the 

environmental fluctuations to which may successfully face the organisms. This feature could 

help in predicting the potentiality of species to become invasive when artificially transplanted 

into exogenous ecosystems or, on the contrary, to fail to survive (Donohue et al., 2001). In 

addition, according to Kaneko (2009) who found a theoretic positive correlation between 

genetic variance and phenotypic variance over many genes, one can find through the results 

presented here a basis to better understand the sustainability of such a level of variation, in 

spite of the natural selection that should act in direction of a reduced plasticity in the context 

of fixed environments. Thus, according to van Kleunen & Fisher (2005) one can make the 

conjecture that species confronting harsh and monotonous factors close to their extremum 

(arid areas, cold climates, salted soils…) or mesic but stable factors (tropical forests: 

Figueiredo-Goulart et al., 2006), should be less plastic than vicariant species accustomed to 

environments that are heterogeneous in space and time (Ellers and van Alphen, 1997; Snell-

Rood et al., 2010; Tieleman, 2003). 

 

4.3. Environmental variations as a source of genetic diversity 

The results obtained here provide a restricted set of solutions close to the absolute optimum 

(in terms of cost and scores). This is clearly visible on fig. 6e, where acceptable solutions 

range approximately from Z = 1 to Z = 1.4. The numerical model does not contradict this 

observation since scores (= fitness) after convergence of the algorithm exhibit a residual 

variance (SD = 3.88). Consequently, individuals can adopt any one of nearly equiprobable 

solutions. Besides, it can be inferred that some small differences between the genes’ 

responses, or transitory variations of energy availability (Z), will be of feeble consequence on 

their fitness (Fig. SD2). Thus, even among individuals exhibiting a quasi-optimal phenotypic 

plasticity with respect to their environment, there might still persist a small, but hardly 

reducible, genetic variance, keeping an open door for further modifications of the genes’ 

apparatus. This is an important point, since, “…higher [genetic] biodiversity means that a 

wider spectrum of properties is available for survival under changing conditions” (Jørgensen 

& Svirezhev, 2004). Hence, we agree with Kaneko (2009) and Svanbäck et al.(2009) who 

advocate for environmental variations (among other processes) as a fundamental root of 

evolvability. 

In a same manner, Lande (2009) using a quantitative genetic model of plasticity found that 

major changes in the environment should first induce a substantial increase in genetic 

variance followed by a second phase where “the expected mean phenotype undergoes the last 

small fraction of the adaptation to the new expected optimum”. However, the author also 

indicates that on a long time scale, “stabilizing selection around the expected optimum in the 

new average environment would re-canalize the genetic variance”. But, this effect should 

remain a slow process. It results from these few considerations that a substantial part of 

genetic diversity could probably be hidden by an apparent homogeneity of the phenotypic 

plasticity in an ever changing world. 

 

Lastly, we have to underline that further theoretical or empirical investigations on phenotypic 

plasticity should pay greater attention to the effects of both grain of environmental variation 

(coarse to fine-grained) and intensity of selection. Particularly, the role of these two 

interacting constraints on plasticity versus specialization is still in debate (Snell-Rood et al., 

2010; Merilä et al. 2004) and its elucidation should be of greatest importance to clarify cost, 

limits, dynamics and properties of plasticity.   
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4.4. Alternative method   

An alternative to the maximization of the determinant of the covariance matrix (section 3) 

could have been the use of a Structurally Dynamic Model (SDM). The latter is a heuristic 

method recently applied with success to more than 20 ecological problems (particularly to the 

process of lake eutophication (Zhang et al, 2010)). In SDM, parameters of functions vary 

continuously in order to reproduce the adaptation of the system to forcing variables that are 

steadily moving through time. These changes are obtained by means of the optimisation of a 

goal function.  In most cases, the goal function used is, among others, the eco-exergy. The 

main idea of SDM is to find, at each step of the simulation, the set of parameters “that is 

better fitted for the prevailing conditions of the ecosystem” (Jørgensen, 2009). 

Obviously, there are many similarities between the present work and the adaptive 

programming way of SDM. However, we notice that: 

1. The present work mainly lies on statistics (we fitted some functional responses) rather 

than on detailed and realistic mechanistic relationships between the components of the 

system. 

2. The optimization procedure we used is deterministic (Lagrange’s constrained 

optimization method) and does not require prohibitive computing time. 

3. The method presented here is unable to reproduce any dynamics and to produce 

prognoses such as SDMs can do. The method can only predict what should be the ideal 

parameters of an ideal system experiencing a fluctuant environment, and the distribution 

of the responses of its components. 

 

Finally, it is clear that the choice of one of the two methods will depend on several 

considerations. A high complexity and an accurate knowledge of the main relationships 

between elements composing the system, objectives of the model such as shift of species 

composition and/or adaptation through time, the prognoses of the impact of environment 

modifications and the ability to elaborate a goal function should lead the modeller to the SDM 

choice.  

 

 

4.5. Phenotypic plasticity and the MaxEnt algorithm  

The most simple and convenient method for finding distribution functions, about which few is 

known, in statistical physics and information theory was proposed by E. T. Jaynes (1957a, 

1957b) (see Fig. SD5 for a succinct description of the method and Martyushev and Seleznev 

(2006) for a complete review about Maximum Entropy Production Principle (MEPP) and its 

substantiation by Jaynes’ Maximum Entropy Principle (MaxEnt)). Recently, the MaxEnt has 

been used to explain ecological patterns (Dewar and Porté, 2008; Harte et al., 2008; Azale et 

al., 2010; Banavar et al., 2010), biodiversity (Shipley et al., 2006) and foodweb distribution 

(Williams, 2009). However, some limitations in the application of the method to ecology have 

been pointed out (Banavar et al., 2010; Haegeman et al., 2009).  

In the present case, the problem consists in finding the unknown distribution of {α1, α2, α3} 

about which we only know the energetic cost this distribution induces. Let us suppose that the 

genes’ response is multinormal. In such conditions, H should be maximized, with respect to 

the distributions of the 3 genes’ responses given by (4), satisfying the constraint (7), where H 

(expressed in nats) is the differential entropy (Cover and Thomas, 2006) of the three genes 

(see below, Eq. (12)).  

A brief description of the MaxEnt algorithm is given in supplementary information. Entropy 

of multivariate distributions has not been the subject of many works to date. A multivariate 

normal distribution admits two parameters µ (a vector), which defines its centre and a 

positive-definite symmetric matrix ΣΣΣΣ, which is the dispersion matrix of the random vector X (
3ℜ∈X in this case). The entropy of a multivariate distribution has the property: 
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))2ln((
2

1
)( Σ≤ n

eH πX ,  (12) 

with equality iff X ~N (0, K), where n = 3 is the dimension of the distribution and K=EXX
t
 . 

 

Obviously, there are some strong similarities between the calculation of H = ln|Σ| we made 

and the differential entropy (Eq. (12)). In fact, both calculations lead to identical results under 

the assumption that responses are multinormal distributions p(Si), which is, unfortunately, not 

the case since environment fluctuations g(t) are not Gaussian (excepted in one case) and 

genes’ responses induced by the signal are calculated through saturation functions. 

This application can be considered as a transposition of the MaxEnt idea to a specific case, 

rather than a rigorous and standard application of the method. For two reasons at least: 1. We 

did not compute a true entropy since the dispersion matrix Σ is obtained from the gene 

responses and not from probability distributions.  2. Doing so, one does not make any 

assumption about the distributions p(Si). Indeed, in such case, it is only supposed that the 

desired maximum entropy should be inferior to the maximum entropy of a multinormal-zero-

mean distribution, whatever the distributions under study.  

The results presented here, somehow bode a new way of applying the MaxEnt, with some 

restrictions (concave functions) but theoretical underpinnings of such a scheme require now 

further developments. 
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