1,129 research outputs found

    A New Contraction-Based NMPC Formulation Without Stability-Related terminal Constraints

    Full text link
    Contraction-Based Nonlinear Model Predictive Control (NMPC) formulations are attractive because of the generally short prediction horizons they require and the needless use of terminal set computation that are commonly necessary to guarantee stability. However, the inclusion of the contraction constraint in the definition of the underlying optimization problem often leads to non standard features such as the need for multi-step open-loop application of control sequences or the use of multi-step memorization of the contraction level that may induce unfeasibility in presence of unexpected disturbance. This paper proposes a new formulation of contraction-based NMPC in which no contraction constraint is explicitly involved. Convergence of the resulting closed-loop behavior is proved under mild assumptions.Comment: accepted in short version IFAC Nolcos 2016. submitted to Automatica as a technical communiqu

    Robust predictive feedback control for constrained systems

    Get PDF
    A new method for the design of predictive controllers for SISO systems is presented. The proposed technique allows uncertainties and constraints to be concluded in the design of the control law. The goal is to design, at each sample instant, a predictive feedback control law that minimizes a performance measure and guarantees of constraints are satisfied for a set of models that describes the system to be controlled. The predictive controller consists of a finite horizon parametric-optimization problem with an additional constraint over the manipulated variable behavior. This is an end-constraint based approach that ensures the exponential stability of the closed-loop system. The inclusion of this additional constraint, in the on-line optimization algorithm, enables robust stability properties to be demonstrated for the closed-loop system. This is the case even though constraints and disturbances are present. Finally, simulation results are presented using a nonlinear continuous stirred tank reactor model

    Enlarging the domain of attraction of MPC controllers

    Get PDF
    This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an enlargement without an extra cost. In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the computation of the sequence. This strategy guarantees closed loop-stability ensuring the enlargement of the domain of attraction and the local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.Ministerio de Ciencia y Tecnología DPI2002-04375-c03-0

    Economic MPC with a contractive constraint for nonlinear systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134956/1/rnc3549.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134956/2/rnc3549_am.pd

    On the computation of invariant sets for constrained nonlinear systems: An interval arithmetic approach

    Get PDF
    This paper deals with the computation of control invariant sets for constrained nonlinear systems. The proposed approach is based on the computation of an inner approximation of the one step set, that is, the set of states that can be steered to a given target set by an admissible control action. Based on this procedure, control invariant sets can be computed by recursion. We present a method for the computation of the one-step set using interval arithmetic. The proposed specialized branch and bound algorithm provides an inner approximation with a given bound of the error; this makes it possible to achieve a trade off between accuracy of the computed set and computational burden. Furthermore an algorithm to approximate the one step set by an inner bounded polyhedron is also presented; this allows us to relax the complexity of the obtained set, and to make easier the recursion and storage of the sets.Ministerio de Ciencia y Tecnología DPI2004-07444-c04-01Ministerio de Ciencia y Tecnología DPI2003-04375-c03-01Ministerio de Ciencia y Tecnología DPI2003-07146-c02-0

    Predictive feedback control using a multiple model approach

    Get PDF
    A new method of designing predictive controllers for SISO systems is presented. The controller selects the model used in the design of the control law from a given set of models according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a feedback control law that ensures robust stability of the closed–loop system and gives better performance for the current operating point. The overall multiple model predictive control scheme quickly identifies the closest linear model to the dynamics of the current operating point, and carries out an automatic reconfiguration of the control system to achieve a better performance. The results are illustrated with simulations of a continuous stirred tank reactor
    corecore