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Abstract

This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of
guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the
terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of
attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the
domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an
enlargement without an extra cost.

In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive
terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set
of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the
one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the
computation of the sequence. This strategy guarantees closed loop stability ensuring the enlargement of the domain of attraction and the
local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.
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1 Introduction

One of the main factors of the success of MPC both in indus-
try and academia is the ease with which it incorporates con-
straints in both the states and the inputs of the system. Fur-
thermore, a theoretical framework for analyzing such topics
as stability, robustness, optimality, etc. for nonlinear systems
has recently been developed: see (Mayne, Rawlings, Rao &
Scokaert 2000) for a survey, or (Camacho & Bordons 1999)
for process industry application issues.

One of the most important results in the stability analysis
of MPC is the addition of a terminal constraint based on
an invariant set (Michalska & Mayne 1993). This technique
improves previous terminal equality constraint results, but
requires commutation to a local controller when the state
reaches the terminal region. This problem is overcome by
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adding a terminal cost to the functional to be optimized
(Chen & Allgöwer 1998, Mayne et al. 2000).

The domain of attraction of the MPC controller is the set
of states which can be steered to the terminal region inN
steps or less, whereN is the control horizon. The size of
the domain of attraction depends on the size of the termi-
nal region and the chosen control horizon. Increasing both
of them yields a bigger domain of attraction. The most used
procedure to enlarge the domain of attraction is to increase
the prediction horizonN. This leads to a greater number of
decision variables and, therefore, to a greater computational
effort. However, enlarging the size of the terminal set pro-
vides a larger domain of attraction with the same computa-
tional cost.

The enlargement of the terminal set has been used for
constrained linear systems in (De Doná, Seron, Mayne
& Goodwin 2002, Limon, Gomes da Silva, Alamo &
Camacho 2003), where the saturated local control law has
been considered. In (Chen, Ballance & O’Reilly 2001)
the terminal set is enlarged by using a local LDI repre-
sentation for the nonlinear system and by solving off-line
an LMI optimization problem. In (Cannon, Deshmukh &
Kouvaritakis 2003), a local LDI representation is also used,
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and a polytopic terminal set and an associated terminal
cost are computed. In (Magni, De Nicolao, Magnani &
Scattolini 2001), the enlargement of the domain of attrac-
tion is achieved by considering a prediction horizon larger
than the control horizon.

This paper presents a method to enlarge the domain of attrac-
tion of MPC by increasing the size of the terminal region. It
is achieved by a new idea: replacing the terminal constraint
by a contractive constraint given by a sequence of reachable
sets to a given invariant set. This is a sequence of sets (not
necessarily invariant) where the system can be admissibly
steered from one set to the following, ultimately reaching
the target invariant set. This sequence of sets is computed
off line by recursion based on the positively invariant set. It
is shown that this sequence can be computed using an inner
approximation of the one step set to relax the computational
burden of exact computation. The proposed controller guar-
antees the enlargement of the domain of attraction, asymp-
totic stability and local optimality of the closed loop sys-
tem. Furthermore, it can be directly translated to the robust
MPC formulation by using a sequence of robustly reachable
sets. It is worth remarking that the optimization problem,
and hence the on line computational effort, of the proposed
MPC is similar to the original one.

2 System description

Consider a system described by a nonlinear invariant discrete
time model

x+ = f (x,u) (1)

wherex ∈ IRn is the system state,u ∈ IRm is the current
control vector andx+ is the successor state. The system is
subject to constraints on both states and control actions, and
they are given by

x∈ X (2)
u∈U (3)

whereX is a closed set andU a compact set, both of them
containing the origin.

Consider a sequence of control actionsu to be applied to
the system at current statex. Then, the predicted state of
the system at timej, if the initial state isx (at time 0)
and the control sequenceu is applied, will be denoted as
x( j) = ϕ( j;x,u).

3 Computation of a sequence of reachable sets.

In the following some well established definitions and re-
sults on invariance set theory (see (Blanchini 1999)) are pre-
sented:

Consider an autonomous systemx+ = f (x), then the set
Ω ⊂ IRn is a positively invariant setif f (x) ∈ Ω, for all
x∈Ω. A setΩ⊂ IRn is acontrol invariant setfor the system
(1) subject to constraint (3) if for allx ∈ Ω, there exists
an admissible inputu = u(x) ∈ U such that f (x,u) ∈ Ω.
Let Ω ⊂ IRn be a positively (or control) invariant set for a
system (1) subject to constraint (2) and (3), then thei-step
stabilizable setXi(Ω) is the set of admissible states which
can be steered to the target setΩ in i steps or less by a
sequence of admissible control actions.

A interesting definition in invariant set theory is the so-
called one-step set: letΩ ⊂ IRn, then theone-step setof
Ω, Q(Ω), for the system (1) subject to (3), is the set of
states which can be steered in one step to the target set
Ω by an admissible control action, i.e.Q(Ω) = {x ∈ IRn :
∃u(x) ∈U such thatf (x,u) ∈Ω}. If the system is controlled
by u = h(x), the closed loop system is constrained to the
admissible setXh = {x∈ X : h(x) ∈U} and the closed-loop
one-step set is given byQh(Ω) = {x∈ Xh : f (x,h(x)) ∈Ω}.
It is easy to see thatQh(Ω)⊆Q(Ω).

This set operation allows us to claim that a given setΩ is
a control invariant set if and only ifΩ ⊆ Q(Ω). Moreover,
the one step set has the following properties: a) ifΩ1⊆Ω2,
thenQ(Ω1)⊆Q(Ω2) and b)Q(Ω1∪Ω2) = Q(Ω1)∪Q(Ω2).
In the following lemma, some interesting properties of the
i-step stabilizable set are given.

Lemma 1 ConsiderX0(Ω) = Ω⊆ X, then

(i) Xi(Ω) = Q(Xi−1(Ω))∩X, for i ≥ 1.
(ii) Xi(Ω)⊇ Xi−1(Ω) andXi(Ω) is a control invariant set.

(iii) Xi(Xj(Ω)) = Xi+ j(Ω).
(iv) Xi(Ω1∪Ω2) = Xi(Ω1)∪Xi(Ω2).

3.1 Obtaining a sequence of reachable sets.

The objective of this section is to present a general and prac-
tical procedure to compute a contractive sequence of reach-
able sets,{Ωi}, based on the terminal setΩ. We denote as
sequence of reachable setsa sequence of sets where the sys-
tem state can be steered from one setΩi to the following,
Ωi−1, in an admissible way, finally reaching the target invari-
ant setΩ. This problem has been studied in (Bertsekas 1971)
where it is demonstrated that the maximal sequence that can
be obtained is the stabilizable setXi(Ω). The computation of
this sequence is based on the calculation of the one-step set.

The computation of invariant sets, and hence of the one-step
set, is an open field (see (Blanchini 1999) for a compilation
of the existing results). Efficient procedures exist to com-
pute it for linear systems subject to polytopic constraints,
for systems with polytopic constraints described by linear
differential inclusions (Blanchini 1999). However, for non-
linear systems there is not a general procedure for this.
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In order to relax the complexity of computation, the one-
step set can be replaced by an inner approximation to it,
i.e. Qap(Ω) ⊆ Q(Ω). This relaxation makes sense for the
sake of the tractability of the procedure used to compute it.
UsingQap(·), and based on the invariant setΩ, a contractive
sequence of reachable sets can be computed by the following
recursion:

Ωi = Qap(Ωi−1)∩X, with Ω0 = Ω (4)

This sequence of sets has the following properties:

Lemma 2 Let {Ωi} be a sequence of sets obtained by (4),
then

(i) Ωi ⊆ Xi(Ω). In fact, if Qap(·) = Q(·), thenΩi = Xi(Ω).
(ii) If Ωi−1 ⊆ Ωi then Ωi and Ωi−1 are control invariant

sets.
(iii) XN−1(Ωi)⊆ XN(Ωi−1), for all N≥ 1 and i ≥ 1.

Proof:

(i) Ω1 = Qap(Ω) ∩ X ⊆ Q(Ω) ∩ X = X1(Ω). Consider
that Ωi−1 ⊆ Xi−1(Ω), then Ωi = Qap(Ωi−1) ∩ X ⊆
Q(Ωi−1)∩X ⊆Q(Xi−1(Ω))∩X = Xi(Ω).

(ii) Ωi−1 ⊆Ωi = Qap(Ωi−1)∩X ⊆Q(Ωi−1)⊆Q(Ωi), and
the proof is derived from the geometric condition for
invariance.

(iii) The computed sequence satisfies thatΩi ⊆Q(Ωi−1)∩
X = X1(Ωi−1). Then XN−1(Ωi) ⊆ XN−1(X1(Ωi−1)) =
XN(Ωi−1). 2

Note that the obtained sequence inherits some properties
from the stabilizable sets, but, it is not guaranteed thatΩi
includes either the setΩi−1 or Ω, given the approximate
character ofQap(·). Consequently, the obtained sequence is
a sequence of reachable sets (not necessarily invariant sets)
to the target setΩ. This result allows us to design algorithms
less computationally demanding for determining a sequence
of invariants sets or merely reachable sets. Similar ideas have
been used for the computation of positively invariant sets
of nonlinear systems based on an LDI approximation of the
system by solving an LMI (Chen et al. 2001). In (Cannon
et al. 2003), using an LDI representation of the nonlinear
systems, a sequence of polytopic invariant sets is computed
and an interpolation based controller is proposed. An algo-
rithm for computing a polytopic setQap(Ω) for nonlinear
systems based on interval arithmetics is presented in (Bravo,
Limon, Alamo & Camacho 2003). The approximation can
be obtained with a given bound on the error, which allows
a trade off between the accuracy of the approximation and
the computational burden to be found.

4 The MPC technique

MPC is a well established control strategy capable of ob-
taining an optimal control law that takes into account con-
straints on the state and on the control actions. Moreover,
under mild assumptions, it is possible to guarantee closed
loop asymptotic stability (Mayne et al. 2000). The control
law KN(x) is obtained by solving the following constrained
optimization problem

min
u

VN(x,u) =
N−1

∑
i=0

`(x(i),u(i))+F(x(N))

s.t. x(i) ∈ X, u(i) ∈U, i = 0, · · · ,N−1
x(N) ∈Ω

wherex(i) = ϕ(i;x,u), and applying the optimal solution to
the system in a receding horizon way. This finite horizon
nominal MPC optimization problem with terminal cost and
terminal constraint is the most general way of formulating
the MPC controller, and in the following this formulation
will be denoted asstandard MPC. Taking into account that
the optimal minimizeru∗(x) only depends on the actual state
x and the receding horizon policy, the control law is given
by u= KN(x) = u∗(0). This control law stabilizes the system
asymptotically under the following assumptions:

Theorem 3 (Mayne et al. 2000) Letu = h(x) be a control
law such thatΩ ⊆ Xh = {x∈ X : h(x) ∈U} is a positively
invariant set for the closed loop system. LetF(x) be a Lya-
punov function associated to the system inΩ, such that for
all x∈Ω, F( f (x,h(x)))−F(x)≤−`(x,h(x)) then, the MPC
control law stabilizes the system asymptotically for all ini-
tial states such that the optimization problem is feasible.

Under these assumptions, the optimal cost functionV∗
N(x) is

a Lyapunov function for the closed loop system and its do-
main of attraction is the N-step stabilizable set to the termi-
nal regionΩ, XN(Ω). The domain of attractionXN(Ω) can
be enlarged by two methods: either increasing the predic-
tion horizonN (since a greater prediction horizonN1 > N2
yields XN2(Ω) ⊆ XN1(Ω)) or considering a bigger termi-
nal set (sinceΩ1 ⊆ Ω2 leads toXN(Ω1) ⊆ XN(Ω2)). The
first way increases the number of decision variables, and
hence, the computational burden of the optimization prob-
lem to be solved on-line, whilst in the second the optimiza-
tion problem is similar. This second method is more conve-
nient and it has been used in several papers such as (Magni
et al. 2001, Chen et al. 2001, Limon, Gomes da Silva, Alamo
& Camacho 2003).

5 MPC based on a contractive terminal constraint

Let us consider a system given by (1), subject to constraints
on states (2) and on control actions (3). Under the assump-
tion that a sequence ofNr reachable sets{Ωi} is available,
the following optimization problem is established at sample
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instantk,

min
u

VN(xk,u)

s.t. x(i) ∈ X, u(i) ∈U, i = 0, · · · ,N−1
x(N) ∈Ω j , j = max(Nr −k,0) (5)

wherex(i) = ϕ(i;xk,u). This problem is similar to the stan-
dard formulation, but substituting the terminal constraint by
the contractive constraint (5). The terminal set at time0 is
ΩNr , and for the firstNr sample times, the indexj in Ω j is
reduced untilk = Nr , when the terminal set isΩ. Therefore,
the control law derived from this problem is time-varying
for the firstNr sample times. Fork≥ Nr the control law is
the same as that of the (time-invariant) MPC with terminal
setΩ.

Note that the optimization problem can be solved on line
with similar computational cost and that the main computa-
tion required is the calculation of the contractive sequence
{Ωi}, which is done off line. In the following theorem it is
proved that the proposed MPC controller stabilizes the sys-
tem asymptotically inXN(ΩNr ).

Theorem 4 Let a system given by (1) be subject to con-
straint on state (2) and on control actions (3). LetΩ be
a positively invariant set of the system and letF(x) be an
associated Lyapunov function such that the assumptions of
theorem 3 are satisfied. Let{Ωi} be a sequence ofNr reach-
able sets withΩ0 = Ω. Then the system controlled by the
proposed MPC is asymptotically stable, with a domain of
attractionXN(ΩNr ).

Proof: First, the feasibility of the controller is proved by in-
duction. Letxk anduk denote the state and the control action
applied to the system at sampling timek. Let us consider
that the problem is feasible atk = i, that is,xi ∈ XN(ΩNr−i);
then there is a sequence ofN control actions which steers
the state toΩNr−i . Thus, given that no mismatches exist bet-
ween the nominal and the real system,xi+1 ∈ XN−1(ΩNr−i).
Taking into account lemma 2, it yieldsxi+1 ∈ XN(ΩNr−i−1).
Then, the optimization problem is feasible atk= i +1. Thus,
if x0 ∈XN(ΩNr ) then by induction it is inferred that the con-
troller is feasible for allk < Nr . SincexNr ∈ XN(Ω), and be-
cause the terminal set isΩ for k≥Nr , then the optimization
problem will be feasible all the time in virtue of theorem 3.

The stability is derived from the fact that the system evolves
to XN(Ω) after Nr samples. Fork ≥ Nr , the optimization
problem is the same as the standard MPC and, given that the
assumptions of theorem 3 are satisfied, the system evolves
asymptotically to the origin. 2

Note that, if the assumptions proposed in (Scokaert, Mayne
& Rawlings. 1999) hold fork≥ Nr , then the optimality of
the solution is not necessary to guarantee the asymptotic
stability.

Remark 5 (Enlargement of the domain of attraction)

(i) If Ω ⊂ ΩNr then the proposed controller enlarges the
domain of attraction of the controller, i.e.XN(Ω) ⊆
XN(ΩNr ).

(ii) If the setΩNr does not includeΩ, then the enlargement
can be guaranteed by a simple procedure: consider
any initial statex0 ∈ XN(

SNr
i=0 Ωi), then a j such that

x∈ XN(Ω j) can be found and the contraction can be
begun from it.

(iii) If the one-step set is computed accurately for obtaining
the sequence{Ωi}, thenXN(ΩNr ) = XN+Nr (Ω). Hence,
the domain of attraction of the proposed controller is
the same as that obtained by standard MPC with pre-
diction horizonN+Nr , but considering onlyN control
actions as decision variables.

Remark 6 (Local optimality) Since fork ≥ Nr the opti-
mization problem of the proposed controller is the same as
that of MPC with terminal regionΩ, its solution is the same
and retains the local optimality of standard MPC. Further-
more, it has been proved that under the stabilizing condi-
tions of theorem 3, there is a neighborhood of the origin
(which contains the terminal regionΩ) where the terminal
constraint is no longer active and can be removed from the
optimization problem (Limon, Alamo & Camacho 2003).
Consequently, in this region the optimality of the solution
depends on the chosen terminal cost, but not on the (con-
tractive) terminal region.

Remark 7 (Robustness)Thanks to its asymptotic stability,
the proposed MPC controller retains a certain degree of
robustness for those uncertainties that are small enough,
as in the case of the standard formulation of MPC (Limon,
Alamo & Camacho 2002, Scokaert, Rawlings & Meadows
1997). If a robust design of the MPC is carried out, for
instance by means of a closed-loop formulation (Mayne et al.
2000), then the proposed idea can still be applied. The only
requirement that should be added is that the sequence of
terminal sets be a sequence of robustly reachable sets to the
robust invariant terminal region. Thus, the computation of
the approximate one step set must be robust; that is, for all
possible uncertainties.

The proposed MPC is related to that presented in (Magni
et al. 2001), as both of them enlarge the domain of attraction
of the MPC by considering a larger terminal set. However,
both approaches are different, and in some way, complemen-
tary. In Magni’s MPC a prediction horizon,Np, larger than
the control horizon,Nc, is considered and the local control
law is used to predict the evolution fromNc to Np. This is
equivalent to considering a terminal cost given by

FNc,Np(x(Nc)) =
Np−1

∑
i=Nc

`(x(i),h(x(i)))+F(x(Np)) (6)

wherex(i) = f (x(i−1),h(x(i−1))) for i = Nc + 1, · · · ,Np
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and the terminal region given byΩNp−Nc derived from (4)
usingQap(·) = Qh(·). The main novelty is that this set is not
computed explicitly, but implicitly described by the defining
equations and added as terminal constraint in the optimiza-
tion problem.

The MPC proposed in this paper exploits the notion of con-
trol invariance: the terminal set is replaced by a sequence
of reachable sets computed off-line from (4) using an ap-
proximate tractable approachQap(·) to the one step setQ(·).
SinceQh(Ω) ⊆ Q(Ω) for any Ω, our approach can poten-
tially provide a larger domain of attraction than Magni’s one
(as can be seen in the examples); this depends on how good
the approximationQap(·) is with relation toQh(·). Note also
that if the terminal cost (6) is considered, both approaches
provide the same solution in a neighborhood of the origin.
It is worth noting that the extension to the robust case of the
MPC proposed in this paper is achieved in a less involved
way than Magni’s extension.

6 Examples

Example 1: Consider a second order unstable linear system
given byx+ = A·x+B·u where

A =

[
1.2775−1.3499

1.0 0.0

]
B =

[
1.0

0.0

]

the constraints are‖x‖∞ ≤ 5, |u| < 1. The cost is given by
`(x,u) = ‖x‖2

2 +‖u‖2
2.

The system is controlled by an LQR control law and the
associated maximal positively invariant set isΩ (see Fig.1).
Based onΩ, the contractive sequence ofNr = 5 control
invariant sets has been calculated accurately, and thenΩi =
Xi(Ω). The prediction and control horizon is considered to
beN = 3. In Fig.1 the domain of attraction of the proposed
MPC,X3(Ω5), and the one of the original MPC (even with a
larger prediction horizon)X3(Ω) are depicted by a solid line.
In this caseX3(Ω5) = X8(Ω), and therefore the proposed
controller is able to stabilize withN = 3any state stabilizable
by the original MPC withN = 8. In this figure the trajectories
of the states of the system are plotted. As can be seen, the
state evolves asymptotically to the origin.

Example 2: Consider the system used in (Chen & Allgöwer
1998) described by

ẋ1 = x2 +u·(µ+(1−µ)·x1)
ẋ2 = x1 +u·(µ−4·(1−µ)·x2)

where the parameterµ is 0.5. The input is constrained to
|u| ≤ 2. The system has been discretized using a 4th order
Runge-Kutta method with a sampling time of0.1 time-units.
The stage cost is given bỳ(x,u) = 0.5 ‖x‖2

2 +‖u‖2
2.

−4 −3 −2 −1 0 1 2 3 4
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X
3
(Ω)Ω

Fig. 1. Evolution of the system of example 1

The system is locally asymptotically stabilized by a local lin-
ear controlleru= h(x) with an associated Lyapunov function
F(x) = 16.5926(x2

1+x2
2)+23.1852x1x2 in the positively in-

variant setΩ = {x∈ IR2 : F(x)≤ 0.7}. Both of them satisfy
the assumptions of theorem 3. A sequence of 10 reachable
sets has been computed off line using as approximation of
the one-step set the one proposed in (Bravo et al. 2003).
Based on this sequence, the proposed MPC technique has
been applied to the system with a control horizon ofNc = 3.
The considered terminal cost is given by (6) considering a
prediction horizon of 33. The sequence of sets and the closed
loop state portrait are shown in figure 2.

−1 0 1
−4

−3

−2

−1

0

1

x
1

x 2

A 

B 

C 

D 

E 

F 

Fig. 2. The sequence of reachable sets and state portrait of the
system of example 2

It is worth remarking that none of the depicted initial states
are feasible for a standard MPC with prediction and control
horizon of 3. If Magni’s MPC is used withNp = 33 and
Nc = 3, then the initial states A,B,E and F are feasible, while
C and D are only feasible for the proposed MPC.

7 Conclusions

In this paper a formulation of MPC to enlarge the domain of
attraction without increasing the prediction horizon is pre-
sented. It is based on substituting the standard invariant ter-
minal region by a sequence of reachable sets, and hence, the
terminal constraint by a contractive terminal constraint. This
sequence of sets can be computed by a proposed method
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based on the calculation of an inner approximation of the
one-step set. The proposed controller stabilizes the system
under the same assumptions as the MPC with terminal con-
straint, guaranteeing the enlargement of the domain of at-
traction as well as the local optimality. It is also shown that
this idea can be straightforwardly translated to the robust
case.
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