Enlarging the domain of attraction of MPC controllers
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Abstract

This paper presents a method for enlarging the domain of attraction of nonlinear model predictive control (MPC). The usual way of
guaranteeing stability of nonlinear MPC is to add a terminal constraint and a terminal cost to the optimization problem such that the
terminal region is a positively invariant set for the system and the terminal cost is an associated Lyapunov function. The domain of
attraction of the controller depends on the size of the terminal region and the control horizon. By increasing the control horizon, the
domain of attraction is enlarged but at the expense of a greater computational burden, while increasing the terminal region produces an
enlargement without an extra cost.

In this paper, the MPC formulation with terminal cost and constraint is modified, replacing the terminal constraint by a contractive
terminal constraint. This constraint is given by a sequence of sets computed off-line that is based on the positively invariant set. Each set
of this sequence does not need to be an invariant set and can be computed by a procedure which provides an inner approximation to the
one-step set. This property allows us to use one-step approximations with a trade off between accuracy and computational burden for the
computation of the sequence. This strategy guarantees closed loop stability ensuring the enlargement of the domain of attraction and the
local optimality of the controller. Moreover, this idea can be directly translated to robust MPC.
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1 Introduction adding a terminal cost to the functional to be optimized
(Chen & Allgower 1998, Mayne et al. 2000).

One of the main factors of the success of MPC both in indus-
try and academia is the ease with which it incorporates con- The domain of attraction of the MPC controller is the set
straints in both the states and the inputs of the system. Fur-of states which can be steered to the terminal regioN in
thermore, a theoretical framework for analyzing such topics steps or less, wherl is the control horizon. The size of
as stability, robustness, optimality, etc. for nonlinear systems the domain of attraction depends on the size of the termi-
has recently been developed: see (Mayne, Rawlings, Rao &nal region and the chosen control horizon. Increasing both
Scokaert 2000) for a survey, or (Camacho & Bordons 1999) of them yields a bigger domain of attraction. The most used
for process industry application issues. procedure to enlarge the domain of attraction is to increase
the prediction horizoiN. This leads to a greater number of
One of the most important results in the stability analysis decision variables and, therefore, to a greater computational
of MPC is the addition of a terminal constraint based on €ffort. However, enlarging the size of the terminal set pro-
an invariant set (Michalska & Mayne 1993). This technique Vides a larger domain of attraction with the same computa-
improves previous terminal equality constraint results, but tional cost.
requires commutation to a local controller when the state
reaches the terminal region. This problem is overcome by The enlargement of the terminal set has been used for
constrained linear systems in (De gnSeron, Mayne

- . . & Goodwin 2002, Limon, Gomes da Silva, Alamo &
* Aprel fth ted at IFAC World ' ' '
c;on8$£%§ \zgr;'gglgna 'Zgi?ne)r was presented a o' camacho 2003), where the saturated local control law has
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and a polytopic terminal set and an associated terminal Consider an autonomous systeth = f(x), then the set
cost are computed. In (Magni, De Nicolao, Magnani & Q C IR" is a positively invariant seif f(x) € Q, for all
Scattolini 2001), the enlargement of the domain of attrac- x€ Q. A setQ C IR" is acontrol invariant sefor the system
tion is achieved by considering a prediction horizon larger (1) subject to constraint (3) if for ak € Q, there exists
than the control horizon. an admissible inputi = u(x) € U such thatf(x,u) € Q.

Let Q C IR" be a positively (or control) invariant set for a
This paper presents a method to enlarge the domain of attracSystem (1) subject to constraint (2) and (3), thenitktep
tion of MPC by increasing the size of the terminal region. It Stabilizable setX;(Q) is the set of admissible states which
is achieved by a new idea: replacing the terminal constraint can be steered to the target <2tin i steps or less by a
by a contractive constraint given by a sequence of reachablesequence of admissible control actions.
sets to a given invariant set. This is a sequence of sets (not
necessarily invariant) where the system can be admissiblyA interesting definition in invariant set theory is the so-
steered from one set to the following, ultimately reaching called one-step set: l€@ C IR", then theone-step sebf
the target invariant set. This sequence of sets is computed), Q(Q), for the system (1) subject to (3), is the set of
off line by recursion based on the positively invariant set. It states which can be steered in one step to the target set
is shown that this sequence can be computed using an inneQ by an admissible control action, i.&(Q) = {x€ IR":
approximation of the one step set to relax the computational Ju(x) € U such that (x,u) € Q}. If the system is controlled
burden of exact computation. The proposed controller guar- by u = h(x), the closed loop system is constrained to the
antees the enlargement of the domain of attraction, asymp-admissible seX;, = {xe X :h(x) €U} and the closed-loop
totic stability and local optimality of the closed loop sys- one-step set is given b@n(Q) = {x € X, : f(x,h(x)) € Q}.
tem. Furthermore, it can be directly translated to the robust |t is easy to see tha®n(Q) C Q(Q).
MPC formulation by using a sequence of robustly reachable
sets. It is worth remarking that the optimization problem,
and hence the on line computational effort, of the proposed
MPC is similar to the original one.

This set operation allows us to claim that a given Qeis

a control invariant set if and only 2 C Q(Q). Moreover,
the one step set has the following properties: &4fC Qo,
thenQ(Q1) C Q(Q2) and b)Q(Q1 UQ2) = Q(Q1) UQ(Q2).

5 Svstem d inti In the following lemma, some interesting properties of the

ystem description i-step stabilizable set are given.

Consider a system described by a nonlinear invariant discrete ¢ ma 1 ConsiderXy(Q) = Q C X, then
time model -

g 1 () X(Q)=Q(X-1(Q))NX, fori>1.
Xt =fxu) @) (i) X(Q) 2 X—_1(Q) and X;(Q) is a control invariant set.
., . (i) X (X}(Q)) = %(Q).
wherex € IR" is the system statey € IR™ is the current (iv) Xi(Q1UQ2) =X (Q1) UX(Qy).

control vector and* is the successor state. The system is
subject to constraints on both states and control actions, and

they are given by 3.1 Obtaining a sequence of reachable sets.

xe X 2

ueu 3) The objective of this section is to present a general and prac-

tical procedure to compute a contractive sequence of reach-
) able sets{Q;}, based on the terminal s& We denote as
whereX is a closed set and a compact set, both of them  sequence of reachable setsequence of sets where the sys-
containing the origin. tem state can be steered from one Qeto the following,
Q;_1, in an admissible way, finally reaching the target invari-
Consider a sequence of control actianso be applied to ant sefQ. This problem has been studied in (Bertsekas 1971)
the system at current state Then, the predicted state of where it is demonstrated that the maximal sequence that can
the system at timg, if the initial state isx (at time 0) be obtained is the stabilizable 3¢tQ). The computation of
and the control sequenceis applied, will be denoted as this sequence is based on the calculation of the one-step set.
X(J) = d(j;x.u).
The computation of invariant sets, and hence of the one-step
set, is an open field (see (Blanchini 1999) for a compilation
of the existing results). Efficient procedures exist to com-
pute it for linear systems subject to polytopic constraints,
In the following some well established definitions and re- for systems with polytopic constraints described by linear
sults on invariance set theory (see (Blanchini 1999)) are pre-differential inclusions (Blanchini 1999). However, for non-
sented: linear systems there is not a general procedure for this.

3 Computation of a sequence of reachable sets.



In order to relax the complexity of computation, the one- 4 The MPC technique

step set can be replaced by an inner approximation to it,

.. Qap(Q) € Q(Q). This relaxation makes sense for the \pc is a well established control strategy capable of ob-
sake of the tractability of the procedure used to compute it. 5ining an optimal control law that takes into account con-

UsingQap(-), and based on the invariant $&ta contractive  gyraints on the state and on the control actions. Moreover,
sequence of reachable sets can be computed by the following,nqer mild assumptions, it is possible to guarantee closed

recursion: loop asymptotic stability (Mayne et al. 2000). The control
law Kn(X) is obtained by solving the following constrained
Qi = Qap(Qi_1) N X, with Qo = Q (4) optimization problem
. . . N-1
This sequence of sets has the following properties: minVa(x.u) = S 2(x(i). u(i E(x(N
NV (x, u) .Zo (x(),u(i)) +F(x(N))

Lemma 2 Let {Q;} be a sequence of sets obtained by (4), st. x(i)eX,u(i)eU,i=0,---
then x(N) € Q

(i) Qi CX(Q).Infact, ifQap(-) =Q(-), thenQ; = X (Q). wherex(i) = ¢(i;x,u), and applying the optimal solution to
(i) If Q_1 C Qj thenQ; and Qj_; are control invariant  the system in a receding horizon way. This finite horizon
sets. nominal MPC optimization problem with terminal cost and

(i) Xn-1(Q) CXN(Qi-1), forall N> 1andi > 1. terminal constraint is the most general way of formulating
the MPC controller, and in the following this formulation
will be denoted astandard MPC Taking into account that
the optimal minimizen*(x) only depends on the actual state
x and the receding horizon policy, the control law is given
by u= Kn(x) = u*(0). This control law stabilizes the system
asymptotically under the following assumptions:

Proof:

(i) Q1 = Qap(Q)NX C Q(Q) N X = X(Q). Consider
that Qi1 C X_1(Q), then Qj = Qap(Qi-1) N X C Theorem 3 (Mayne et al. 2000) Leti = h(x) be a control
- Q(Qi-) X € QX-1(Q)NX = X(Q). law such thatQ C X" = {x € X : h(x) € U} is a positively
(if) t%i—l € Qi = Qap(Qi-1)NX € Q(Qi—1) € Q(Qi), and 4 jant set for the closed loop system. Edk) be a Lya-
e proof is derived from the geometric condition for 1 function associated to the systenRinsuch that for

invariance.
. all xe Q, F(f(x,h(x))) —F(x) < —¢(x,h(x)) then, the MPC
(i) ;I'(hs c):(orr;zputedﬁﬁquence gnsges ma%i( Qg(z.Qifl)E control law stabilizes the system asymptotically for all ini-
= X1(Qi-1). ThenXn-1(Qi) € Xn-1(X(Qi-1)) = tial states such that the optimization problem is feasible.

XN(Qi,l). O

Under these assumptions, the optimal cost funcjfx) is

a Lyapunov function for the closed loop system and its do-

main of attraction is the N-step stabilizable set to the termi-
Note that the obtained sequence inherits some propertiesnal regionQ, Xy (Q). The domain of attractiodXy(Q) can
from the stabilizable sets, but, it is not guaranteed fhat  be enlarged by two methods: either increasing the predic-
includes either the se®;j_1 or Q, given the approximate tion horizonN (since a greater prediction horizdéf > Ny
character ofQap(-). Consequently, the obtained sequence is yields Xy,(Q) € Xy, (Q)) or considering a bigger termi-
a sequence of reachable sets (not necessarily invariant setg)al set (sinceQ; C Q, leads toXn(Q1) € Xn(Q2)). The
to the target se®@. This result allows us to design algorithms first way increases the number of decision variables, and
less computationally demanding for determining a sequencehence, the computational burden of the optimization prob-
of invariants sets or merely reachable sets. Similar ideas havdem to be solved on-line, whilst in the second the optimiza-
been used for the computation of positively invariant sets tion problem is similar. This second method is more conve-
of nonlinear systems based on an LDI approximation of the nient and it has been used in several papers such as (Magni
system by solving an LMI (Chen et al. 2001). In (Cannon etal. 2001, Chen etal. 2001, Limon, Gomes da Silva, Alamo
et al. 2003), using an LDI representation of the nonlinear & Camacho 2003).
systems, a sequence of polytopic invariant sets is computed
and an interpolation based controller is proposed. An algo- ) ) )
rithm for computing a polytopic seap(Q) for nonlinear 5 MPC based on a contractive terminal constraint
systems based on interval arithmetics is presented in (Bravo,
Limon, Alamo & Camacho 2003). The approximation can Let us consider a system given by (1), subject to constraints
be obtained with a given bound on the error, which allows on states (2) and on control actions (3). Under the assump-
a trade off between the accuracy of the approximation andtion that a sequence & reachable set§Q;} is available,
the computational burden to be found. the following optimization problem is established at sample



instantk,

min W (%, U)

st. x(i) e X,u(i)eU,i=0,---,N—-1

X(N) € Qj, j =maxN —k,0) ®)
wherex(i) = ¢(i; X, u). This problem is similar to the stan-
dard formulation, but substituting the terminal constraint by
the contractive constraint (5). The terminal set at tibris
Qy,, and for the firsiN, sample times, the indeiin Q; is
reduced untik = N, when the terminal set Q. Therefore,
the control law derived from this problem is time-varying
for the firstN, sample times. Fok > N; the control law is
the same as that of the (time-invariant) MPC with terminal
setQ.

Note that the optimization problem can be solved on line

Remark 5 (Enlargement of the domain of attraction)

(i) If Q C Qn, then the proposed controller enlarges the
domain of attraction of the controller, i.eXy(Q) C

XN (N, )

If the setQy, does not includ€, then the enlargement
can be guaranteed by§ simple procedure: consider
any initial statexp € Xn( iN:’OQi), then aj such that

x € Xn(Qj) can be found and the contraction can be
begun from it.

If the one-step set is computed accurately for obtaining
the sequencéQ;}, thenXy(Qn, ) = Xn+n, (Q). Hence,
the domain of attraction of the proposed controller is
the same as that obtained by standard MPC with pre-
diction horizonN + N;, but considering onlyN control
actions as decision variables.

(ii)

(iii)

with similar computational cost and that the main computa- Remark 6 (Local optimality) Since fork > N: the opti-
tion required is the calculation of the contractive sequence Mization problem of the proposed controller is the same as

{Q;i}, which is done off line. In the following theorem it is

proved that the proposed MPC controller stabilizes the sys-

tem asymptotically iy (Qn, ).

Theorem 4 Let a system given by (1) be subject to con-
straint on state (2) and on control actions (3). L@t be
a positively invariant set of the system and feix) be an

that of MPC with terminal regioi, its solution is the same
and retains the local optimality of standard MPC. Further-
more, it has been proved that under the stabilizing condi-
tions of theorem 3, there is a neighborhood of the origin
(which contains the terminal regio2) where the terminal
constraint is no longer active and can be removed from the
optimization problem (Limon, Alamo & Camacho 2003).

associated Lyapunov function such that the assumptions ofconsequently, in this region the optimality of the solution

theorem 3 are satisfied. LE€E; } be a sequence of reach-
able sets withQg = Q. Then the system controlled by the
proposed MPC is asymptotically stable, with a domain of
attraction Xy (Qn; )-

Proof: First, the feasibility of the controller is proved by in-
duction. Letx, anduy denote the state and the control action
applied to the system at sampling tirkeLet us consider
that the problem is feasible kt=1, that is,x; € Xn(Qn,—i);
then there is a sequence Nfcontrol actions which steers
the state tdn, _i. Thus, given that no mismatches exist bet-
ween the nominal and the real systemg € Xn—1(Qnr—i)-
Taking into account lemma 2, it yieldg,1 € Xn(Qn,—i—1)-
Then, the optimization problem is feasiblekat i + 1. Thus,

if X0 € Xn(Qn, ) then by induction it is inferred that the con-
troller is feasible for alk < N;. Sincexy, € Xn(Q), and be-
cause the terminal set @ for k > N;, then the optimization
problem will be feasible all the time in virtue of theorem 3.

depends on the chosen terminal cost, but not on the (con-
tractive) terminal region.

Remark 7 (Robustness)Thanks to its asymptotic stability,
the proposed MPC controller retains a certain degree of
robustness for those uncertainties that are small enough,
as in the case of the standard formulation of MPC (Limon,
Alamo & Camacho 2002, Scokaert, Rawlings & Meadows
1997). If a robust design of the MPC is carried out, for
instance by means of a closed-loop formulation (Mayne et al.
2000), then the proposed idea can still be applied. The only
requirement that should be added is that the sequence of
terminal sets be a sequence of robustly reachable sets to the
robust invariant terminal region. Thus, the computation of
the approximate one step set must be robust; that is, for all
possible uncertainties.

The proposed MPC is related to that presented in (Magni
et al. 2001), as both of them enlarge the domain of attraction
of the MPC by considering a larger terminal set. However,

The stability is derived from the fact that the system evolves both approaches are different, and in some way, complemen-

to Xn(Q) after N, samples. Fok > N;, the optimization

tary. In Magni's MPC a prediction horizoiN,, larger than

problem is the same as the standard MPC and, given that théhe control horizonNc, is considered and the local control
assumptions of theorem 3 are satisfied, the system evolvedaw is used to predict the evolution froh to Np. This is

asymptotically to the origin. O

Note that, if the assumptions proposed in (Scokaert, Mayne Fy, N, (X(Nc)) =

& Rawlings. 1999) hold fok > N;, then the optimality of

equivalent to considering a terminal cost given by

Np—1

; £(x(0),h(x(0))) +F (x(Np)) (6)

the solution is not necessary to guarantee the asymptotic

stability.

wherex(i) = f(x(i —1),h(x(i—1))) for i =Nc+1,---,Np



and the terminal region given @y, n, derived from (4)
usingQap(-) = Qn(-). The main novelty is that this set is not
computed explicitly, but implicitly described by the defining
equations and added as terminal constraint in the optimiza-
tion problem.

The MPC proposed in this paper exploits the notion of con-
trol invariance: the terminal set is replaced by a sequence
of reachable sets computed off-line from (4) using an ap-
proximate tractable approayp(-) to the one step s€(-).
Since Qr(Q) C Q(Q) for any Q, our approach can poten-
tially provide a larger domain of attraction than Magni’s one

Fig. 1. Evolution of the system of example 1

(as can be seen in the examples); this depends on how good

the approximatior@ap(-) is with relation toQn(-). Note also
that if the terminal cost (6) is considered, both approaches
provide the same solution in a neighborhood of the origin.
It is worth noting that the extension to the robust case of the
MPC proposed in this paper is achieved in a less involved
way than Magni’'s extension.

6 Examples

Example 1 Consider a second order unstable linear system
given byx™ = A-x-+B-u where

|

the constraints aréx||. <5, |u] < 1. The cost is given by
£(x,u) = [[x3 + [lul}3.

10
0.0

1.2775-1.3499
10 0.0

The system is controlled by an LQR control law and the
associated maximal positively invariant sefigsee Fig.1).
Based onQ, the contractive sequence df = 5 control
invariant sets has been calculated accurately, and®@en
Xi(Q). The prediction and control horizon is considered to
beN = 3. In Fig.1 the domain of attraction of the proposed
MPC, X3(Qs5), and the one of the original MPC (even with a
larger prediction horizon¥3(Q) are depicted by a solid line.
In this caseX3(Qs) = Xg(Q), and therefore the proposed
controller is able to stabilize witN = 3 any state stabilizable
by the original MPC witiN = 8. In this figure the trajectories

The system is locally asymptotically stabilized by a local lin-
ear controlleu = h(x) with an associated Lyapunov function

F () = 16.5926(x2 4 X3) +23.1852x; %, in the positively in-
variant seQ = {x € IR? : F(x) < 0.7}. Both of them satisfy

the assumptions of theorem 3. A sequence of 10 reachable
sets has been computed off line using as approximation of
the one-step set the one proposed in (Bravo et al. 2003).
Based on this sequence, the proposed MPC technique has
been applied to the system with a control horizoiNgt= 3.

The considered terminal cost is given by (6) considering a
prediction horizon of 33. The sequence of sets and the closed
loop state portrait are shown in figure 2.

1

\

\w"“\\'}}\yi—"

Fig. 2. The sequence of reachable sets and state portrait of the
system of example 2

It is worth remarking that none of the depicted initial states

of the states of the system are plotted. As can be seen, there feasible for a standard MPC with prediction and control

state evolves asymptotically to the origin.

Example 2 Consider the system used in (Chen & Allger
1998) described by

X1 =Xz + U (H+ (1 —p)-X)
Xo =X1 4+ U (H—4(1—p)-x2)

where the parametar is 0.5. The input is constrained to
lu| < 2. The system has been discretized usind"ao4der
Runge-Kutta method with a sampling time®1 time-units.
The stage cost is given bifx,u) = 0.5 x5+ ||ul3.

horizon of 3. If Magni’s MPC is used witiN, = 33 and
Nc = 3, then the initial states A,B,E and F are feasible, while
C and D are only feasible for the proposed MPC.

7 Conclusions

In this paper a formulation of MPC to enlarge the domain of
attraction without increasing the prediction horizon is pre-
sented. It is based on substituting the standard invariant ter-
minal region by a sequence of reachable sets, and hence, the
terminal constraint by a contractive terminal constraint. This
sequence of sets can be computed by a proposed method



based on the calculation of an inner approximation of the
one-step set. The proposed controller stabilizes the system
under the same assumptions as the MPC with terminal con-
straint, guaranteeing the enlargement of the domain of at-
traction as well as the local optimality. It is also shown that
this idea can be straightforwardly translated to the robust
case.
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