2,040 research outputs found

    Efficient LDPC Codes over GF(q) for Lossy Data Compression

    Full text link
    In this paper we consider the lossy compression of a binary symmetric source. We present a scheme that provides a low complexity lossy compressor with near optimal empirical performance. The proposed scheme is based on b-reduced ultra-sparse LDPC codes over GF(q). Encoding is performed by the Reinforced Belief Propagation algorithm, a variant of Belief Propagation. The computational complexity at the encoder is O(.n.q.log q), where is the average degree of the check nodes. For our code ensemble, decoding can be performed iteratively following the inverse steps of the leaf removal algorithm. For a sparse parity-check matrix the number of needed operations is O(n).Comment: 5 pages, 3 figure

    Density Evolution and Functional Threshold for the Noisy Min-Sum Decoder

    Full text link
    This paper investigates the behavior of the Min-Sum decoder running on noisy devices. The aim is to evaluate the robustness of the decoder in the presence of computation noise, e.g. due to faulty logic in the processing units, which represents a new source of errors that may occur during the decoding process. To this end, we first introduce probabilistic models for the arithmetic and logic units of the the finite-precision Min-Sum decoder, and then carry out the density evolution analysis of the noisy Min-Sum decoder. We show that in some particular cases, the noise introduced by the device can help the Min-Sum decoder to escape from fixed points attractors, and may actually result in an increased correction capacity with respect to the noiseless decoder. We also reveal the existence of a specific threshold phenomenon, referred to as functional threshold. The behavior of the noisy decoder is demonstrated in the asymptotic limit of the code-length -- by using "noisy" density evolution equations -- and it is also verified in the finite-length case by Monte-Carlo simulation.Comment: 46 pages (draft version); extended version of the paper with same title, submitted to IEEE Transactions on Communication

    VLSI Implementation of a Rate Decoder for Structural LDPC Channel Codes

    Get PDF
    AbstractThis paper proposes a low complexity low-density parity check decoder (LDPC) design. The design mainly accomplishes a message passing algorithm and systolic high throughput architecture. The typical mathematical calculations are based on the observation that nodes with high log likelihood ratio provide almost same information in every iteration and can be considered as stationary, we propose an algorithm in which the parity check matrix H is updated to a reduced complexity form every time a stationary node is encountered which results in lesser number of numerical computations in subsequent iterations. In this paper, we contemplately focuses on computational complexity and the decoder design significantly benefits from the high throughput point of view and the various improvisations introduced at various levels of abstraction in the decoder design. Threshold Controlled Min Sum Algorithm implements the LDPC decoder design for a code compliant with wired and wireless applications. A high performance LDPC decoder has been designed that achieves a throughput of 0.890 Gbps. The whole design of LDPC Decoder is designed, simulated and synthesized using Xilinx ISE 13.1 EDA Tool

    Modified belief propagation decoders applied to non-CSS QLDGM codes.

    Get PDF
    Quantum technology is becoming increasingly popular, and big companies are starting to invest huge amounts of money to ensure they do not get left behind in this technological race. Presently, qubits and operational quantum channels may be thought of as far-fetched ideas, but in the future, quantum computing will be of critical importance. In this project, it is provided a concise overview of the basics of coding theory and how they can be used in the design of quantum computers. Specifically, Low Density Parity Check (LDPC) codes are focused, as they can be integrated within the stabilizer construction to build effective quantum codes. Following this, it is introduced the specifics of the quantum paradigm and present the most common family of quantum codes: stabilizer codes. Finally, it is explained the codes that have been used in this project, discussing what type of code they are and how they are designed. In this last section, it is also presented the ultimate goal of the project: using modified belief propagation decoders that had previously been tested for QLDPCs, for the proposed non-CSS QLDGM codes of this project

    Configurable LDPC Decoder Architecture for Regular and Irregular Codes

    Get PDF
    Low Density Parity Check (LDPC) codes are one of the best error correcting codes that enable the future generations of wireless devices to achieve higher data rates with excellent quality of service. This paper presents two novel flexible decoder architectures. The first one supports (3, 6) regular codes of rate 1/2 that can be used for different block lengths. The second decoder is more general and supports both regular and irregular LDPC codes with twelve combinations of code lengths −648, 1296, 1944-bits and code rates-1/2, 2/3, 3/4, 5/6- based on the IEEE 802.11n standard. All codes correspond to a block-structured parity check matrix, in which the sub-blocks are either a shifted identity matrix or a zero matrix. Prototype architectures for both LDPC decoders have been implemented and tested on a Xilinx field programmable gate array.NokiaNational Science Foundatio
    • …
    corecore