10,216 research outputs found

    Understanding and Diagnosing Visual Tracking Systems

    Full text link
    Several benchmark datasets for visual tracking research have been proposed in recent years. Despite their usefulness, whether they are sufficient for understanding and diagnosing the strengths and weaknesses of different trackers remains questionable. To address this issue, we propose a framework by breaking a tracker down into five constituent parts, namely, motion model, feature extractor, observation model, model updater, and ensemble post-processor. We then conduct ablative experiments on each component to study how it affects the overall result. Surprisingly, our findings are discrepant with some common beliefs in the visual tracking research community. We find that the feature extractor plays the most important role in a tracker. On the other hand, although the observation model is the focus of many studies, we find that it often brings no significant improvement. Moreover, the motion model and model updater contain many details that could affect the result. Also, the ensemble post-processor can improve the result substantially when the constituent trackers have high diversity. Based on our findings, we put together some very elementary building blocks to give a basic tracker which is competitive in performance to the state-of-the-art trackers. We believe our framework can provide a solid baseline when conducting controlled experiments for visual tracking research

    Real-time, long-term hand tracking with unsupervised initialization

    Get PDF
    This paper proposes a complete tracking system that is capable of long-term, real-time hand tracking with unsupervised initialization and error recovery. Initialization is steered by a three-stage hand detector, combining spatial and temporal information. Hand hypotheses are generated by a random forest detector in the first stage, whereas a simple linear classifier eliminates false positive detections. Resulting detections are tracked by particle filters that gather temporal statistics in order to make a final decision. The detector is scale and rotation invariant, and can detect hands in any pose in unconstrained environments. The resulting discriminative confidence map is combined with a generative particle filter based observation model to enable robust, long-term hand tracking in real-time. The proposed solution is evaluated using several challenging, publicly available datasets, and is shown to clearly outperform other state of the art object tracking methods

    Accurate video object tracking using a region-based particle filter

    Get PDF
    Usually, in particle filters applied to video tracking, a simple geometrical shape, typically an ellipse, is used in order to bound the object being tracked. Although it is a good tracker, it tends to a bad object representation, as most of the world objects are not simple geometrical shapes. A better way to represent the object is by using a region-based approach, such as the Region Based Particle Filter (RBPF). This method exploits a hierarchical region based representation associated with images to tackle both problems at the same time: tracking and video object segmentation. By means of RBPF the object segmentation is resolved with high accuracy, but new problems arise. The object representation is now based on image partitions instead of pixels. This means that the amount of possible combinations has now decreased, which is computationally good, but an error on the regions taken for the object representation leads to a higher estimation error than methods working at pixel level. On the other hand, if the level of regions detail in the partition is high, the estimation of the object turns to be very noisy, making it hard to accurately propagate the object segmentation. In this thesis we present new tools to the existing RBPF. These tools are focused on increasing the RBPF performance by means of guiding the particles towards a good solution while maintaining a particle filter approach. The concept of hierarchical flow is presented and exploited, a Bayesian estimation is used in order to assign probabilities of being object or background to each region, and the reduction, in an intelligent way, of the solution space , to increase the RBPF robustness while reducing computational effort. Also changes on the already proposed co-clustering in the RBPF approach are proposed. Finally, we present results on the recently presented DAVIS database. This database comprises 50 High Definition video sequences representing several challenging situations. By using this dataset, we compare the RBPF with other state-ofthe- art methods
    • …
    corecore