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Abstract

Usually, in particle filters applied to video tracking, a simple geometrical shape,
typically an ellipse, is used in order to bound the object being tracked. Although it is
a good tracker, it tends to a bad object representation, as most of the world objects
are not simple geometrical shapes. A better way to represent the object is by using
a region-based approach, such as the Region Based Particle Filter (RBPF) [1]. This
method exploits a hierarchical region based representation associated with images
to tackle both problems at the same time: tracking and video object segmentation.

By means of RBPF the object segmentation is resolved with high accuracy, but
new problems arise. The object representation is now based on image partitions
instead of pixels. This means that the amount of possible combinations has now
decreased, which is computationally good, but an error on the regions taken for
the object representation leads to a higher estimation error than methods working
at pixel level. On the other hand, if the level of regions detail in the partition is
high, the estimation of the object turns to be very noisy, making it hard to accurately
propagate the object segmentation.

In this thesis we present new tools to the existing RBPF. These tools are focused
on increasing the RBPF performance by means of guiding the particles towards a
good solution while maintaining a particle filter approach. The concept of hierarchi-
cal flow is presented and exploited, a Bayesian estimation is used in order to assign
probabilities of being object or background to each region, and the reduction, in an
intelligent way, of the solution space Ω, to increase the RBPF robustness while re-
ducing computational effort. Also changes on the already proposed co-clustering in
the RBPF approach are proposed.

Finally, we present results on the recently presented DAVIS database [2]. This
database comprises 50 High Definition video sequences representing several chal-
lenging situations. By using this dataset, we compare the RBPF with other state-of-
the-art methods.
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1 Introduction

1.1 Introduction

A classical approach on particle filters in video object tracking is to use geometrical
shapes as particles to estimate an object position, typically ellipses. Although the
use of simple geometrical shapes largely simplify the problem, particle filters still
present high complexity in terms of the amount of possible solutions to the estima-
tion problem, as their solution space Ω is really huge; Ω represents the parameter-
ization of every possible ellipse that can be represented in a frame. Usually, this
is palliated by convoluting a Gaussian kernel over the object estimation, to reduce
the dimensionality of the problem, in order to keep the particles near the object of
interest.

In our case, [1] defines a particle as a union of regions to improve the object
estimation; not only to provide the object position but also to segment the object
accurately. This new definition of particle increases the problem complexity, hence
some steps of classical particle filters are put under revision as the behavior of the
overall algorithm is different. For instance, it is typical in such filters to apply some
Gaussian noise in order to perturbate the particles in a random manner, but for this
case it is not possible, and new perturbation approaches are studied.

Applying the Region Based Particle Filter (RBPF) a better estimation of the object
is achieved, but the problem of dimensionality remains. For each particle a world
of possible solutions is presented as sets of regions instead of geometrical shapes.
It is true that such space has been reduced in comparison to the classical particle
filters, as the combination of all the regions is lower than the combination of all the
possible representations of an ellipse, but, still, the amount of possible solutions is
really huge. Also, the reduction of Ω has to be done in an intelligent manner, as
removing a good possible solution of this space could be critical to the overall object
estimation.

This thesis focuses on providing new tools to the existing RBPF. These tools are
focused on increasing the RBPF performance by means of guiding the particles to-
wards a good solution while maintaining a particle filter approach. Hierarchical flow
and a Bayesian estimation, which lead to a reduction, in an intelligent way, of the so-
lution space Ω dimensionality are some of the tools introduced to the RBPF in this
thesis.

1.2 Contribution

The main contribution of this thesis is to provide new tools to the already presented
Region Based Particle Filter (RBPF). These new tools are both to improve the accuracy
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of this method and to reduce the solution space in order to provide an intelligent
search to get to a good final object estimation. Moreover, the algorithm has been
reprogrammed and optimized to fit the new tools to the RBPF.

Finally, this master thesis includes results on the newly proposed DAVIS dataset
[2]. Also the code will be public on github in order to be evaluated and published at
DAVIS web page between other state-of-the-art results.

1.3 Thesis outline

The structure of this thesis is organized as follows.

Chapter 2 provides state-of-the-art methods on object tracking while making in-
ference on some computer vision applications related to our work.

Chapter 3 is devoted to the Region Based Particle Filter, and provides some tools
used in such method. In this chapter the proposed changes to the existing RBPF are
emphasized, as they are the main objective of this thesis.

Chapter 4 contains the evaluation of the DAVIS database. It is divided on 2 sec-
tions, training and evaluation. In this chapter, test results and performance compar-
ison with the state-of-the-art methods are provided.

Finally, in chapter 5, the conclusions of the thesis are summarized and the future
work is presented.

https://github.com/agirbau/RBPF
http://davischallenge.org/
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2 Background

2.1 Computer Vision applications

Computer vision applications may vary from a wide range. To provide examples of
such applications we can state robotics, autonomous cars, surveillance... Our aim
is the analysis of objects in video sequences. This computer vision application aims
to provide information about an object of interest to a computer; to extract informa-
tion about it at different levels. For us, such levels of object analysis are tracking
and video object segmentation, to provide the object position and the object shape
accurately. An approach on solving this kind of problems are the particle filters.

Generic particle filters [3] estimate an object as a geometrical shape, typically
an ellipse. Although these methods are easily implemented and can work in real
time, their accuracy may not be good enough for certain applications. In this thesis a
method for doing both (tracking and video segmentation) is used in order to provide
the position of the object and its accurate shape at the same time; this method is
called Region Based Particle Filter (RBPF).

Based on exploiting the segmentation of a pair of images, RBPF [1] aims to prop-
agate an object mask over a video sequence in an accurate manner, at a superpixel
level.

2.2 State of the art

RBPF is based on segmenting an object of interest through a video sequence start-
ing from an initial mask defined either by a user or a computer. Methods like this,
which take in account an initial or several user interactions, are called semi-supervised
methods. Some of these state-of-the-art methods, with which we compare to, are
published on [2]. All of them have available public code.

A common approach to solve the video tracking and object segmentation prob-
lem is to perform an optimization of an energy defined over a graph structure [4].
To model long-range spatiotemporal connections along the video, some approaches
use fully connected graphs [5]; others model the spatiotemporal consistency over a
pair of frames optimizing over a graph structure of an image patch containing the
object [6] or over non-successive frames [7].

Although these methods produce large coherence in the segmentation of objects,
the computational complexity may be intractable in some cases. This complexity
is efficiently reduced by means of minimizing the energy using a graph-cut over a
bilateral space in [8], while the temporal consistency is maintained.
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Another approach to model the temporal consistency is to make use of tempo-
rally consistent superpixels [9] in order to propagate them to the next frame while
maintaining the temporal correlation. Our approach is to relate coherent combina-
tions of regions from consecutive partitions in order to estimate the shape of the
object with a single optimization.

Some of the presented methods make use of the full video sequence [5] [8], a
subset of frames [4] or, like us, a frame-by-frame approach, where only the previous
and the current frames are taken in account [1] [7] [6] [9].
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3 Region-Based Particle Filter

3.1 System Overview

Many problems in science require estimation of the state of a system that changes
over time. This state is not known or cannot be directly accessed (hidden state), so
we need an estimation of it. This estimation is calculated via a sequence of noisy
measurements. In the Bayesian approach to dynamic state estimation the goal is to
construct the posterior probability density function (pdf) of the state based on a set of
observed noisy measurements.

Particle filters are a generic type of Monte Carlo (MC) methods, which are charac-
terized by obtaining numerical results by repeated random sampling. MC methods
are mainly used in three distinct problem classes: optimization, numerical integra-
tion, and generating draws from a probability distribution. For our problem, the last
usage of the MC approach is the one to follow.

FIGURE 3.1: Bayesian estimation scheme. xk represents the hidden state that can
be estimated via the measurement z1:k

The Sequential Importance Sampling (SIS) algorithm is a recursive MC method
that forms the basis of the generic particle filter algorithm. Recursive Bayesian filter-
ing may also be implemented using this technique. The key idea of this algorithm
is to represent the objective pdf p(xk|z1:k), where xk is the state estimation in time k
∀k ∈ N and z1:k are the measurements from time 1 to time k, defined in the tracking
problem by a set of random samples with their associated weights. The posterior
p(xk|z1:k) can be approximated as:

p(xk|z1:k) ≈
Ns∑
i=1

w
(i)
k · δ(x1:k − x

(i)
1:k) (3.1)

where weights w(i)
k are chosen using importance sampling [10]. As the posterior is

computed sequentially, weights can be expressed as [3]:

w
(i)
k ∝ w

(i)
k−1

p(zk|x
(i)
k ) · p(x(i)k |x

(i)
k−1)

q(x
(i)
k |x

(i)
k−1, zk)

(3.2)
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where q(x(i)k |x
(i)
k−1, zk) is called importance sampling.

A typical particle filter is the color-based particle filter. In this classical approach,
the state xk is parameterized as a geometrical shape, e.g. an ellipse with parameters
{x, y, w, h}, being (x, y) the position of the center and (w, h) its width and height.

xk = {x, y, w, h} (3.3)

zk = Ik (3.4)

where (x, y) is the object position, (w, h) are the axis lengths of the geometrical shape,
and Ik is the image or frame at time k.

The most common particle filter used for tracking is the Sampling Importance Re-
sampling (SIR) filter proposed by [11]. In this SIR filter, the choice of importance
density is q(x(i)k |x

(i)
k−1, zk) = p(x

(i)
k |x

(i)
k−1). This choice states that each particle at time

k is drawn from a function that only depends on the particle at k−1. If we substitute
to equation 3.2:

w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ) (3.5)

Also a resampling step is applied at every time instant. A new set of particles
S

′
k = {x

′(1)
k , x

′(2)
k , ..., x

′(Ns)
k } is created by resampling with replacementNs times from

the approximate discrete representation of p(x(i)k−1|z1:k−1). The result is an i.i.d sam-
pling of the function introduced in equation 3.1. Then, the weights become to be
represented by a uniform distribution w

(i)
k = 1/Ns, and the expression to compute

the new weights in k becomes:

w
(i)
k ∝ p(zk|x

(i)
k ) (3.6)

SIR method tracks objects comparing the histogram of the pixels that lay inside
a geometrical shape, representing the object state and the histogram of the object
model.

As it is explained in equation 3.3, a typical approach on classical particle filters is
to get as the state representation a geometrical shape. Therefore, the solution space
Ω turns to be really big, taking in account all the possible combinations a simple
figure like an ellipse would have (in terms of positioning and shape). More detailed
information on theory about classical particle filters can be found at [3] and [1].

3.1.1 State and measurement definition

Let us define a new representation of both the state and measurement for the track-
ing problem in terms of regions. In our work, states are formed by a union of regions
from the image partition while measurements consider both the image and its asso-
ciated partition.
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xk =

nok⋃
r

Rrk (3.7)

zk = [Ik, Pk] (3.8)

where Pk =
⋃nk
r=1R

r
k is a partition of the image Ik, nk is the number of regions that

form the partition and nok is the number of regions that characterize the object with
nok ≤ nk.

Given that the state estimation xk is formed using a set of regions from an image
partition Pk, several object representations that could be computed at pixel level
are not allowed. This means that, in comparison with the classical particle filter
approach at pixel level, the solution space Ω is largely reduced. If all the possible
unions of regions are considered, the solution space size is:

|Ω| =
nk∑
n=1

nk!

n!(nk − n)!
(3.9)

where nk represents the amount of regions in the partition. These possible solutions
are represented in a summation because, even the solution space is huge, it is still
finite.

In this approach the SIR methodology is also used. Also the histogram compar-
ison is used in order to represent the object state and the pdf of the object model.
The color histogram of the pixels inside a mask generated by the union of regions is
used as it is a direct mapping to a pdf, as in the Bayesian approach to dynamic state
estimation the goal is to construct such pdf.

This method relies on estimating the state from the initial frame in time k = 0 to
any possible k inside the video sequence. For doing so, the initial object model Ok
for k = 0 is computed from taking the color histogram from an initial known state
(defined by the user or the ground truth). The initial background model Bk is also
computed as it will be used in section 3.4. Both models will be updated at every time
step if the mean weight w(i)

k of the particles P (i=1:Ns)
k is higher than a threshold wth.

The model update is settled as:

Ok = (1− α)Ok−1 + αh(AMk−1) (3.10)

where α is the forgetting factor and it is defined as 0 ≤ α ≤ 1, h(AMk−1) is the histogram
of the estimated mask of the object state in equation 3.22. The background model Bk
is updated by means of a bounding box over AMk−1, taking the pixels outside the
estimated mask.

3.2 Hierarchical segmentation

The state representation on RBPF leads to a discussion. In the area of segmentation,
hierarchical techniques have proven to produce the best frameworks. A hierarchy
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gives the representation of an image at different detail levels. In this work we use
Convolutional Oriented Boundaries (COB) [12] to produce a hierarchical segmentation
on every frame. In previous work, Globalized Probability of Boundary (gPb) [13] was
used to provide the image partition. A proposal of this thesis is to use COB instead
of gPB, as COB provides a better contour estimation to our problem; it focuses on the
object outer boundaries while reducing inner contours, instead on evaluating every
contour independently. This new approach leads to a possible solution on making
the system faster and more robust, and on reducing the solution space Ω by means
of hierarchical flow.

We define hierarchical flow as the movement through different hierarchical levels
of a partition. This makes us able to access to the information on several hierarchical
levels in order to, somehow, exploit it.

A question arises: which is the optimal hierarchy level to this estimation prob-
lem? Is there an optimal level? Several factors will have to be taken in account:
which hierarchical level leads to the best state estimation? Which reduces the com-
putational cost (traduced in time spent in the process)? And which provides best
robustness to the system?

Some examples on this would be: the lower the hierarchy level, the best possible
state estimation (as the resolution in terms of regions would be the highest possible),
but more computational effort and noise in the system. On the other hand, the higher
in the hierarchy, the worse the estimation will be but much less time will be spent to
do the calculations, as the contour elements will be reduced in front of a lower-level
partition of the hierarchy.

FIGURE 3.2: Different level of partition hierarchy. From left to right from the lowest
hierarchy level λ = 0 to a higher one (rightmost) λ = 0.15 We can observe the amount
of combinations (complexity) and the noise the lowest hierarchy offers and the segmen-
tation errors at a higher (rightmost) one. The upper figures are the images with the
partition overlay and the lower ones represent the segmentation hierarchy by means of

the UCM map.

Our segmentation is built in the concept of Ultrametric Contour Map (UCM) [13].
This technique, combined with COB, generates contours with a certain strength or
energy λ. We flow through the hierarchy by thresholding the UCM map by a λth,
generating a new segmentation based on a cut (λ ≥ λth) on the hierarchy.

In order to get to a good segmentation provided by a hierarchy level we build
two new segmentations based on two cuts: λ(J) and λ(J,w), where J corresponds to
the Jaccard index and w to the weight associated to a mask introduced below. These
metrics provide a limit on the hierarchical flow in order to not to get to an invalid cut
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that would generate a bad partition representation for a correct object estimation.
Two segmentations are computed for robustness and computation purposes; the
partition will be represented by the highest possible level on the hierarchy (typically
achieved by λ(J,w)) unless this level leads to a bad propagation on the co-clustering
step. Further details are explained over this section and co-clustering section 3.3.

FIGURE 3.3: Partitions generated with mergings of regions from the initial leaves
partition Pλ=0 (leftmost figure).

These new segmentations are computed using the Jaccard index J and the mask
AMk−1 weight wk−1, where AMk−1 represents the estimated state in k − 1. First, AMk−1 is
propagated via optical flow (OF) to the next time step k.

MOF
k = OF (AMk−1) (3.11)

After this, the propagated maskMOF
k is adapted to the regions of the partition, as

it was propagated on pixel level. This is done via thresholding on the amount of pix-
els propagated inside a region against the amount of pixels of the same region. The
partition corresponding to this new mask MRλ

k will be the leaves partition, which is
the lowest-level hierarchy at cut λ = 0. The reference weight wref is computed by
means of comparing MRλ=0

k color histogram to the object model Ok−1 using equa-
tions 3.20 and 3.21.

MRλ
k = P λk (MOF

k ) (3.12)

where Pkλ is the partition in time k giving a cut on the hierarchy provided by λ.

FIGURE 3.4: Propagation from k−1 to k by means of Optical Flow. Then, the fitting
to the partition Pk is performed.

Once the propagated-confined maskMRλ
k is calculated, the Jaccard index ofMRλ

k

against MOF
k will be denoted as the reference Jaccard index Jref .

J(MOF
k ,MRλ

k ) =
|MOF

k ∩MRλ
k |

|MOF
k ∪MRλ

k |
(3.13)
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This relation between masks will be used as our comparison metric for next steps.
After this,MRλ

k with λ = 0 will be used as a starting point. For each step λ+∆λ,MRλ
k

will be recalculated by means of thresholding using equation 3.12. The resulting
mask MRλ

k for a certain λ will produce a Jaccard index Jλ on its relation to MOF
k

using equation 3.13. If the relation between Jaccards is Jλ
Jref

< Jth, where Jth is the
permitted difference between both Jaccards, then λ(J) is settled as the previous λ,
where the relation between Jaccards was higher than Jth.

FIGURE 3.5: Representation of hierarchical movement. From a low hierarchy level λ = 0
at the left picture to higher ones. When the partition representation leads to a bad object

representation the process stops and takes the last result as the partition.

For the second cut, λ(J,w), the procedure is the same as λ(J), but taking in ac-
count the weight wλ the mask would have in comparison with the object model
Ok−1. If wλ

wref
< wth, being wth the allowed difference between both weights, will

mean that the mask represents a worse estimation than the MRλ
k computed before

and the process will stop, being λ(J,w) equal to the previous λ. On the other hand,
if wλ

wref
> 1 will mean that the estimation is better than the one that produced wref

and the process will continue, actualizing wref = wλ. There is a condition on the Jac-
card though. If the relation between Jaccards Jλ

Jref
goes below a threshold J

′
th, where

J
′
th < Jth, then the sequence will stop and λ(J,w) will be equal to the previous λ.

3.3 Co-clustering

A huge difference between classical particle filters and RBPF is in the propagation
step. Classical particle filters propagation is implicit in the perturbation step, as the
particles are not constrained to an specific movement. However, these particles are
a simple geometrical shape, and they can be perturbed in a quite easy way (just by
applying noise to their position and shape).

In the RBPF approach a propagation step to relate regions from Pk−1 and Pk is
required, as a propagation by means of the classical particle filter perturbation is
not possible. Contour-based joint clustering (co-clustering) [14] provides a joint seg-
mentation between 2 different segmentations, and [1] a method to reduce the huge
computational effort it requires. As in this case we tackle the tracking and segmenta-
tion problem at the same time step, we use this tool to propagate every particle from
consecutive image pairs (from k − 1 to k) in order to predict the object movement.
For a detailed explanation on this algorithm [15] describes all the steps followed by
the co-clustering method and provides examples on each one.
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3.3.1 Particle Support Partition

To propagate all the particles at the same time, [1] presents a very nice approach. A
new partition called particle support partition PSk−1 is defined. This support partition
will gather the information of all the particles in order to propagate them in one step.
PSk−1 is defined as the intersection between all the particles in time k − 1.

PSk−1 =

Ns⋂
i=1

P
(i)
k−1 (3.14)

where Ns is the number of particles.

FIGURE 3.6: Particle support partition generated to do a propagation in one step.
Some internal object regions fused during the co-clustering step.

3.3.2 Changes in co-clustering

The changes in the co-clustering algorithm proposed in this thesis are mostly focused
on reducing its computational time and to increase its robustness. Also, a change in
the co-clustering method was introduced in [16], which proposed a multi-resolution
hierarchical co-clustering having in account the similarities between regions of the
same partition Pk−1 (Intra similarities) and the similarities between partitions of a
pair of images Pk−1 and Pk (Inter similarities).

The proposed changes on co-clustering in this thesis are 2: introduce motion es-
timation on the co-clustering process and flow through the segmentation hierarchy in
order to simplify the propagation problem.

Co-clustering matches regions from Pk−1 and Pk by means of contour compar-
ison. The motion estimation is done via Optical Flow (OF), and serves as a rough
propagation of the pixels of interest. These pixels are the pixels conforming the con-
tours of the regions of the partition Pk−1. This helps the co-clustering algorithm as
it gives a first estimation on where a contour pixel on Pk−1 may find its correspon-
dence at Pk, hence allowing us to reduce the amount of surrounding pixels to look
for the corresponding contour pixel between Pk−1 and Pk.

Also, another proposal on co-clustering is to exploit the hierarchical information
provided by COB [12]. In figure 3.2 it can be seen that the amount of calculations
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is much higher at lower hierarchical levels, as more contour elements are present in
the partition. These contour elements are erased by means of adjacent region fusion
as the threshold on the contour energy λ increases. 3 attempts on co-clustering will
be realized at different hierarchy levels, on λ = λ(J,w), λ = λ(J), and λ = 0. The
reasoning behind this is robustness on the co-clustering step, because, sometimes, an
object region may fuse to background in Pk on a high hierarchy level (for instance
on the cut λ = λ(J,w)), leading to a bad propagation. If that happens, a new prop-
agation try on a lower hierarchy level (λ = λ(J)) will be computed. If the problem
persists, the partition with the most dense region representation ( λ = 0) will be used
in order to propagate the particles from Pk−1 to Pk.

Finally, after the propagation, the partition P λk that will be used in further steps is
computed having in account the different particles and a step factor (∆λ) that will im-
pede a fusion between 2 very different consecutive energy levels. The propagated
particle support partition PSk will be used to do the hierarchical flow with the re-
striction on not being able to fuse any of its regions. This way a global hierarchy cut,
having in account all the particles and its diversity, is done.

3.4 Prediction and perturbation

In this section we present both prediction and perturbation of the particles. The first
step prediction tries to ensure a minimum quality of the particles estimation. Then, in
the second step perturbation, randomness is introduced to provide diversity among
particles.

After the co-clustering step, the object estimation represented by each propa-
gated particle is formed by a set of regions from Pk. Each particle represents a point
in the solution space Ω. These points are the initial prediction to our estimation
problem, but not the final solution.

The particles propagation provide an initial solution to the estimation problem,
but it requires additional steps to improve it. Those steps are the prediction, which,
in a deterministic way, tries to provide a first improvement to the propagation, and
the perturbation, which tries to ensure diversity between particles via randomness or
noise.

FIGURE 3.7: Each point on the space represents a particle. The left figure represents
the prediction step, trying to guide the particles towards a good solution. The right
figure represents the perturbation step, whose aim is to apply noise to the particles

in order to provide diversity between them.
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3.4.1 Bayesian estimation

Bayes theorem will be used to calculate both object and background probabilities.
Such probability is stated as follows:

p(xk ∈ θk|θk−1) =
p(θk−1|xk ∈ θk) · p(xk ∈ θk)

p(θk−1)
(3.15)

where xk represents every pixel, θk the model (Object or Background), and θk−1 is
the previous time step distribution.

3.4.2 Prediction

The Prediction step is our proposal to do a first approach towards the final solu-
tion. Parting from the co-clustering result, some regions for every particle will be
added/removed in a deterministic way. This reasoning comes from the fact that
some regions, due to their color distribution, will be very likely to be part of the ob-
ject, regarding the object modelOk−1, and some others to the background, regarding
the background model Bk−1. These changes are proposed as we assume that they
will increment the particle quality, leading it closer to a good solution.

Let us consider a particle x(i)k =
⋃nok
r Rrk, where Rrk is a region from the partition

Pk. Then, considering both the object model Ok−1 and the background model Bk−1,
the object and background probability of a region using Bayes Theorem in equation
3.15 will be:

p(Rrk ∈ Ok|Ok−1) =
p(Ok−1|Rrk ∈ Ok) · p(Rrk ∈ Ok)

p(Ok−1)
(3.16)

p(Rrk ∈ Bk|Bk−1) =
p(Bk−1|Rrk ∈ Bk) · p(Rrk ∈ Bk)

p(Bk−1)
(3.17)

For the object probabilities in equation 3.16: p(Rrk ∈ Ok) is the prior probability
of the object, computed via Optical Flow and convolving the result with a Gaus-
sian Kernel to provide a smoother prior with an upper-bound of 0.8 and a lower-
bound of 0.2, p(Ok−1) is the prior probability of any pixel to be into the object, and
p(Ok−1|Rrk ∈ Ok) is the probability of the object model obtained at the previous time
instant assuming that the region Rrk under analysis belongs to the object. This last
equation is computed as the average likelihood of the model considering all the re-
gion pixels:

p(Ok−1|Rrk ∈ Ok) =
1

N r
k

∑
i,j∈Rrk

p(Ok−1|Ik(i, j) ∈ Ok) (3.18)

where N r
k is the number of region pixels and Ik is the image (frame) under analysis.

The same statements above are applied to obtain the background probabilities.

Once the probability of belonging to object/background is computed for every
region of the partition, a direct comparison for every propagated particle is done.
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FIGURE 3.8: Left figure represents the probability to tag the regions as foreground
(object) and the right one represents the probability of a region to be background.
The brighter the value, the higher the probability of belonging to one or the other.

This way, the regions with very high/low probability of existing in the model ob-
ject/background will be taken in account to be added/removed to each particle. To
infer the relation between object and background probabilities for each region, Bayes
factor B is used [17]. It is computed as:

Br
k = 2 · ln(

p(Rrk ∈ Ok|Ok−1)
p(Rrk ∈ Bk|Bk−1)

) (3.19)

where Br
k is the Bayes factor of the region r from partition Pk.

For each particle, all its nearby regions with a large B are included into the parti-
cle. On the contrary, regions compounding the particle with very negative B will be
considered as background and removed from the particle. Also the particle weight
variation ∆w

(i)
k will be taken in account for every particle change proposal. This

protects the particle to several changes that fulfill the condition on resembling much
more to a model (object/background) than to the other, but makes the overall weight
decrease. This is due to the fact that, when doing the comparison between a model
and a region in our Bayesian estimation approach, only that region is taken in ac-
count, making not possible to get more information about the overall particle distri-
bution. This means that, for some regions, the probability of belonging to a model
(object/background) may be high due to the region’s color distribution, but that
change (adding/removing the region) might be bad for the overall particle, because
that amount of color inside the color histogram representing the model is already
filled by another set of regions.

3.4.3 Perturbation

Next step is the perturbation of the updated particles. This step introduces diversity
between particles in order to create multiple hypotheses, leading to a good estima-
tion of the object when combined. Statistically, by means of random changes to the
particles, a good solution to the estimation problem should be achieved.

For the RBPF this would suppose to work at the lowest partition hierarchy level
(an erroneous region can be fatal in a higher cut on the hierarchy) and to use a huge
amount of particles. Trying to keep a guidance on the algorithm in order to reduce
the sample space Ω for providing better results and a reduction on the computation
cost, in this work we look for random changes to a particle that make its weight



3.5. Evaluation 31

increase, assuming that this will lead to a not-so-diverse solution but to a good esti-
mation of the state.

Each particle x(i)k is perturbed as follows. First, a distance between the particle
and each region of the partition is estimated. This distance is the Euclidean distance
between the centroid of each region inside a particle and the surrounding regions
(those regions which are not inside the particle). Regions which are closer than D
pixels will be considered as candidates to be added to the particle. This decision
is made to reduce the amount of regions which are unlikely to be part of the final
estimation (as they are far away from the main blob), and thus reduce undesired
noise and computational time.

Applying both equations 3.16 and 3.17 with a prior p(Rrk ∈ Ok) = 1
2 , a proba-

bility for each region to correspond to the object or to the background is calculated.
Then, some regions are randomly chosen to be added or removed for each particle
x
(i)
k , based on the object/background probabilities. Every selected region will be

accepted or discarded with probability 1/2.

FIGURE 3.9: Left: example on prediction result. The regions marked in red are the ones to
remove deterministically for one particle; if some region was about to be added it would
appear in green. Right: example on perturbation result. Marked regions are the proposed

changes to one particle. Purple represent regions to remove and blue are the ones to add.

3.5 Evaluation

Each particle x(i)k will have an associated weight w(i)
k . The particle weight is com-

puted as a distance measurement between distributions. In this work, we consider
the Bhattacharya coefficient as the measure between distributions associated with
the propagated mask of each particle and the model distribution. Distributions of
particles and models are generated by normalized histograms of the corresponding
RGB mask associated to the particle or the model.

Let h(x
(i)
k ) be the histogram of those pixels belonging to the mask associated

with the particle x(i)k , and qk−1 be the object model Ok−1 histogram. Then, the Bhat-
tacharya coefficient of the particle i is computed as:

ρ
(i)
k (qk−1, h(x

(i)
k )) =

Nb∑
b=1

√
h(b)(x

(i)
k ) · q(b)k−1 (3.20)

where Nb is the number of bins per channel. In this work, RGB space color has been
used with Nb = 20 bins per channel.
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By means of this distance, particles with color distribution resembling the model’s
distribution will have a lower Bhattacharya coefficient ρ . Then, the weight w(i)

k of
particle x(i)k is denoted as:

w
(i)
k = e−

ρ
(i)
k
σ (3.21)

where σ is set to 0.4 in this work.

3.6 Resampling

The Sequential Importance Sampling (SIS) algorithm performs the recursive propaga-
tion of the particles and their associated weights as each measurement is received
sequentially over time. A common problem with the SIS particle filter is that, after a
few iterations, all but one particle will have negligible weight and one particle will
concentrate all the probability mass. This is an undesired situation, as a single par-
ticle will not correctly represent the function p(x1:k|z1:k) in almost any case. This is
called the degeneracy problem [3]. To avoid this, resampling of the particles is applied
at every time step.

Given a set of Ns particles Sk = {x(1)k , x
(2)
k , ..., x

(Ns)
k }, another set with the same

number of particles S
′
k = {x

′(1)
k , x

′(2)
k , ..., x

′(Ns)
k } is created. The new set of particles

S
′
k is created by randomly sampling the set Sk with replacement on every particle.

In this process, particles with high weights may be chosen several times in front of
particles with lower weights.

3.7 Estimation

The estimation of the object is obtained as the average weighted state hypotheses,
represented by the particles. Each particle has an associated mask M (i)

k , which cor-
responds to the union of regions the particle contains. Then, the average mask AMk
is computed as:

AMk =

Ns∑
i=1

w
(i)
k ·M

(i)
k (3.22)

where Ns is the total number of particles and w(i)
k is the weight of the particle. Those

pixel values that accomplish AMk > To will be denoted as the final state estimation
(or object estimation).
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FIGURE 3.10: From left to right: particle stacking, represented byAMk , final state estimation
xk, represented by AMk > To, and overlay between the final estimated mask and the image

Ik.
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4 Results and Evaluation

4.1 DAVIS database

Our experiments are tested on the DAVIS (Densely Annotated VIdeo Segmentation)
database [2], which consists on 50 video sequences spanning multiple occurrences
of common video object segmentation challenges such as occlusions, motion-blur
and appearance changes. Each video is accompanied by densely annotated, pixel-
accurate and per-frame ground truth segmentation.

To compare our method with other state-of-the-art methods, the results are pre-
sented using the Jaccard Index between the annotation and the result generated by
our method, as DAVIS provides the results on every method through this measure.
We compare RBPF with other semi-supervised methods, which are the ones that re-
quire a human or machine interaction to provide the object mask in one or several
frames. In our case, the first frame object segmentation is required.

4.2 Training

Several testing on RBPF has been made. As the method is time and computational
resources consuming a subset of 5 sequences have been chosen in order to train
the system. These sequences contain different attributes, such as non-linear defor-
mation, edge ambiguities, motion blur or appearance changes among others. The
following experiments were introduced by several questions: do we really need a
particle filter approach? Does the randomness really improve the estimation, or
could we just use the Bayesian approach in its deterministic form? Could it be that
the co-clustering is good enough to estimate the object over the sequence with the
new hierarchical flow we presented? Based on these questions we designed a set of
experiments:

1. Co-clustering only: The initial mask is propagated through the sequence with-
out any other change to the particles, only propagation via co-clustering.

2. Generic RBPF: Follows the initial thought on RBPF, which is propagating and,
randomly, perturbating the particles.

3. Deterministic RBPF: Not considering the perturbation (random) step, only the
propagation and the prediction (deterministic) step. This algorithm might not
be considered a particle filter, but some tests on it were made as it is inspired
on particle filters.

4. RBPF: The Region Based Particle Filter we propose with a combination be-
tween propagation, prediction, and perturbation.
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The training consisted on taking a subset of sequences from DAVIS (Dog, Rollerblade,
Soapbox, Tennis, and Train), and choosing the parameters by means of the obtained
results.

In table 4.1 the results are presented as follows: co-cl is the mask propagation us-
ing solely the co-clustering technique all over the sequence, rnd refers to the generic
RBPF, where is propagating and pertubating the particles, det is deterministically ap-
proach the object estimation, and combo is the combination between the deterministic
and random techniques. As seen in this table, the combination between techniques
is the one that produces the highest Jaccard. Further explanation on these results is:

1. Co-clustering only: By only propagating a mask over the sequence, the prop-
agating errors (e.g. an undesired fusion between a pair of regions) will not be
possibly corrected. This means that this error will be propagated all along the
sequence. On the other hand, if several conditions are fulfilled, such as the
object contours are well-defined all over the sequence, this may lead to a better
result than the other approaches.

The reason for this is the no-comparison between the object model and the
mask to propagate. Co-clustering is based on comparing contours and try-
ing to fit them on the next frame partition. If the object needs a faster model
update due to abrupt changes on the object, the prediction and perturbation
step might fail (they will try to find patterns of the previous model). On these
situations, applying only the co-clustering step may lead to better results.

The reason for this is that some sequences would need a faster model up-
date. Most of the cases where co-clustering performs better than the other
approaches are when the object begins being very small and increases its size
abruptly, making it impossible for the model to be updated in time.

2. Generic RBPF: In order to properly test this approach, a span over several
amount of particles may be needed. Due to computational limitations we
could only test the whole database with a maximum amount of 50 particles,
leading to a high variance in some sequences. Also, specific training would be
needed in order to tune the parameters for this specific experiment.

Furthermore, for this approach, working at a higher hierarchical cut may not
lead to a good estimation in several cases. The reason for this is that the errors
produced on a higher hierarchy level are much worse than the ones produced
on a low hierarchy level.

A solution to this is proposed on next chapter, where a multiple hierarchical
levels segmentation is proposed as further investigation.

3. Deterministic RBPF: It proves that guiding particles towards a good estima-
tion, leading to a reduction on the solution space Ω, produces quite good re-
sults. Also, only a single particle is required, and even this method is not con-
sidered to be a particle filter, it is used to compare the RBPF to this approach.

On the other hand, the lack of diversity among particles, provided by the ran-
domness on a particle filter, might be a strong point against this approach. If
a bad change is proposed by the deterministic step, there is no way that some
of the particles change this decision. The results on this can be improved by
means of randomness in order to introduce this diversity among particles.
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4. RBPF: It can be seen that this approach has the best results overall the sequence
for the 4 proposed tests. By means of combining the 3 other approaches the
best results are obtained. We have led the algorithm to a good estimation while
keeping diversity among particles.

Also tests on the amount of particles had been made. The final configuration
to compare our method with other state-of-the-art methods in DAVIS was set to
50 particles (as a tradeoff between results and time consumed), and combining co-
clustering, prediction, and perturbation.

4.3 Evaluation

The evaluation of the whole database has been made choosing the best configu-
ration for the training sequences. This configuration is the combination between
deterministic RBPF and generic RBPF. We compare our method (RBPF) with the
semi-supervised state-of-the-art methods benchmark in the DAVIS web page. These
methods are TSP [9], SEA [6], HVS [4], JMP [7], FCP [5] and BVS [8].

4.3.1 Qualitative results

Some qualitative results from the DAVIS database are presented.

FIGURE 4.1: Some qualitative results on the dataset. The sequences names are Bear,
Car-shadow, Rollerblade, and Soccerball.

4.3.2 Evaluation

The average evaluation between the semi-supervised methods presented on DAVIS is
showed in table 4.2. We can state than, on average, RBPF performs better than all the
other semi-supervised methods presented in DAVIS. On table 4.3 detailed evaluation
on Jaccard index for every sequence is provided.
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TABLE 4.1: Training: Testing between the 4 proposed techniques on DAVIS. Jaccard index, higher is better.

Sequence co-cl rnd det combo
Bear 0.846 0.850 0.892 0.923
Blackswan 0.914 0.919 0.911 0.910
Bmx-Bumps 0.140 0.132 0.312 0.314
Bmx-Trees 0.080 0.239 0.252 0.308
Boat 0.021 0.659 0.573 0.530
Breakdance 0.020 0.198 0.527 0.407
Breakdance-Flare 0.173 0.661 0.735 0.762
Bus 0.553 0.673 0.683 0.689
Camel 0.586 0.590 0.611 0.609
Car-Roundabout 0.752 0.810 0.922 0.916
Car-Shadow 0.891 0.937 0.952 0.951
Car-Turn 0.937 0.934 0.949 0.949
Cows 0.767 0.862 0.891 0.893
Dance-Jump 0.391 0.418 0.684 0.584
Dance-Twirl 0.141 0.354 0.357 0.353
Dog 0.327 0.370 0.757 0.684
Dog-Agility 0.288 0.290 0.346 0.542
Drift-Chicane 0.781 0.340 0.580 0.489
Drift-Straight 0.510 0.486 0.566 0.568
Drift-Turn 0.898 0.900 0.895 0.895
Elephant 0.326 0.334 0.806 0.806
Flamingo 0.734 0.820 0.807 0.807
Goat 0.720 0.769 0.780 0.780
Hike 0.668 0.891 0.890 0.890
Hockey 0.121 0.276 0.585 0.585
Horsejump-High 0.487 0.476 0.660 0.634
Horsejump-Low 0.413 0.487 0.592 0.581
Kite-Surf 0.442 0.618 0.550 0.589
Kite-Walk 0.695 0.703 0.747 0.751
Libby 0.250 0.454 0.447 0.615
Lucia 0.817 0.847 0.825 0.800
Mallard-Fly 0.558 0.579 0.586 0.587
Mallard-Water 0.561 0.843 0.868 0.864
Motocross-Bumps 0.629 0.286 0.303 0.241
Motocross-Jump 0.505 0.340 0.347 0.318
Motorbike 0.232 0.603 0.476 0.573
Paragliding 0.857 0.859 0.864 0.863
Paragliding-Launch 0.588 0.597 0.590 0.609
Parkour 0.143 0.267 0.589 0.508
Rhino 0.625 0.676 0.681 0.680
Rollerblade 0.194 0.553 0.628 0.848
Scooter-Black 0.571 0.591 0.628 0.683
Scooter-Gray 0.329 0.320 0.198 0.374
Soapbox 0.573 0.417 0.650 0.820
Soccerball 0.092 0.908 0.886 0.907
Stroller 0.258 0.806 0.775 0.807
Surf 0.897 0.888 0.895 0.893
Swing 0.112 0.404 0.586 0.679
Tennis 0.267 0.635 0.820 0.777
Train 0.023 0.341 0.641 0.810
MEAN 0.474 0.584 0.662 0.679
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TSP SEA HVS JMP FCP BVS RBPF
MeanM ↑ 0.358 0.556 0.596 0.607 0.631 0.665 0.679

J Recall O ↑ 0.388 0.606 0.698 0.693 0.778 0.764 0.760
Decay D ↓ 0.385 0.355 0.197 0.372 0.031 0.260 0.191
MeanM ↑ 0.346 0.533 0.576 0.586 0.546 0.656 0.658

F Recall O ↑ 0.329 0.559 0.712 0.656 0.604 0.774 0.723
Decay D ↓ 0.388 0.339 0.202 0.373 0.039 0.236 0.183

TABLE 4.2: Overall results of region similarity (J ) and contour accuracy (F) for each of the
semi-supervised methods. The results show that, on average, our RBPF approach preforms

better than the other semi-supervised state-of-the-art methods presented on DAVIS.
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TABLE 4.3: Detailed comparison between semi-supervised methods on DAVIS. Jaccard index, higher is better.

Sequence OURS BVS FCP JMP HVS SEA TSP
Bear 0.923 0.955 0.906 0.929 0.938 0.912 0.778
Blackswan 0.910 0.943 0.908 0.930 0.916 0.933 0.872
Bmx-Bumps 0.314 0.434 0.300 0.336 0.428 0.198 0.290
Bmx-Trees 0.308 0.382 0.248 0.229 0.179 0.113 0.095
Boat 0.530 0.644 0.613 0.705 0.782 0.793 0.656
Breakdance 0.407 0.500 0.567 0.478 0.550 0.329 0.056
Breakdance-Flare 0.762 0.727 0.723 0.430 0.499 0.131 0.040
Bus 0.689 0.863 0.832 0.668 0.809 0.752 0.515
Camel 0.609 0.669 0.734 0.640 0.876 0.649 0.654
Car-Roundabout 0.916 0.851 0.717 0.726 0.777 0.708 0.614
Car-Shadow 0.951 0.578 0.723 0.645 0.699 0.775 0.636
Car-Turn 0.949 0.844 0.724 0.834 0.810 0.909 0.323
Cows 0.893 0.895 0.812 0.756 0.779 0.707 0.595
Dance-Jump 0.584 0.745 0.522 0.490 0.680 0.662 0.132
Dance-Twirl 0.353 0.492 0.471 0.444 0.318 0.117 0.099
Dog 0.684 0.723 0.774 0.673 0.722 0.581 0.313
Dog-Agility 0.542 0.345 0.453 0.699 0.457 0.354 0.079
Drift-Chicane 0.489 0.033 0.457 0.243 0.331 0.119 0.018
Drift-Straight 0.568 0.402 0.668 0.618 0.295 0.513 0.198
Drift-Turn 0.895 0.299 0.606 0.717 0.276 0.667 0.162
Elephant 0.806 0.850 0.655 0.750 0.742 0.553 0.666
Flamingo 0.807 0.881 0.717 0.530 0.811 0.583 0.666
Goat 0.780 0.661 0.677 0.731 0.580 0.535 0.444
Hike 0.890 0.755 0.874 0.664 0.877 0.776 0.679
Hockey 0.585 0.829 0.647 0.677 0.698 0.714 0.413
Horsejump-High 0.634 0.801 0.676 0.586 0.765 0.638 0.236
Horsejump-Low 0.581 0.601 0.607 0.663 0.551 0.498 0.291
Kite-Surf 0.589 0.425 0.577 0.500 0.405 0.486 0.366
Kite-Walk 0.751 0.870 0.682 0.509 0.765 0.498 0.447
Libby 0.615 0.776 0.316 0.295 0.553 0.226 0.070
Lucia 0.800 0.901 0.801 0.836 0.776 0.626 0.377
Mallard-Fly 0.587 0.606 0.541 0.536 0.436 0.557 0.200
Mallard-Water 0.864 0.907 0.687 0.751 0.704 0.865 0.623
Motocross-Bumps 0.241 0.401 0.306 0.761 0.534 0.470 0.133
Motocross-Jump 0.318 0.341 0.511 0.583 0.099 0.387 0.123
Motorbike 0.573 0.563 0.713 0.506 0.687 0.451 0.340
Paragliding 0.863 0.875 0.866 0.951 0.907 0.863 0.735
Paragliding-Launch 0.609 0.640 0.571 0.589 0.537 0.577 0.301
Parkour 0.508 0.756 0.322 0.342 0.240 0.121 0.070
Rhino 0.680 0.782 0.794 0.716 0.812 0.736 0.694
Rollerblade 0.848 0.588 0.450 0.726 0.461 0.138 0.098
Scooter-Black 0.683 0.337 0.504 0.626 0.624 0.793 0.378
Scooter-Gray 0.374 0.508 0.483 0.123 0.433 0.241 0.133
Soapbox 0.820 0.789 0.449 0.758 0.684 0.783 0.247
Soccerball 0.907 0.844 0.820 0.097 0.065 0.653 0.029
Stroller 0.807 0.767 0.597 0.656 0.662 0.464 0.369
Surf 0.893 0.492 0.843 0.941 0.759 0.821 0.814
Swing 0.679 0.784 0.648 0.115 0.104 0.511 0.098
Tennis 0.777 0.737 0.623 0.765 0.576 0.481 0.074
Train 0.810 0.872 0.841 0.873 0.846 0.854 0.648
MEAN 0.679 0.665 0.631 0.607 0.596 0.556 0.358
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Region Based Particle Filter has proven to be competitive against state-of-the-art meth-
ods. Also, we have proven that, by guiding the algorithm towards a good solution
(or what we assume is a good solution), better results are generated. On most cases
this guidance is translated into a reduction on the solution space of possibilities Ω.

This algorithm, however, does not run in real time. This means that its appli-
cations would be set as post-processing tools. Some applications for this technique
would be in cinema or advertisements, e.g. to focus a region of interest, modify the
light or color and propagate this change over the video sequence, or from 2D to 3D
layer conversion, e.g. track every layer in 2D and map it to the 3D space in a video
sequence.

Some possible next steps to take in consideration (or considered during the the-
sis) are:

Multiple hierarchal cuts for partition representation: In [16] the concept of mul-
tiple cuts over the same partition hierarchy appears. A very nice approach to provide
a tradeoff between complexity and a good estimation in a RBPF would be having
multiple resolution in the same partition. An example to this would be a partition
where most of the interior of the main object is fused, while having a crown of more
dense superpixels over its outlying contours, reducing the solution space Ω while
providing a better possible estimation. This technique would offer a blend cut (mul-
tiple λ) over the partition tree in contrast to the method used in this thesis, which is
a rigid cut (a single λ) over a hierarchical tree to generate the partition.

Region mapping on partition hierarchies: Mapping between 2 partitions is
done by means of co-clustering. It would be very interesting to construct a hier-
archy tree containing the region and contour information. That way, both partitions
could be related by means of directly clustering the nodes on their hierarchy trees.
Furthermore, if the previous step to take in consideration Multiple hierarchal cuts for
partition representation is applied in combination with this proposal, a fast and accu-
rate partition relation method could be generated.

Temporal contour consistency: Some problems on the co-clustering come from
the energy inconsistency of some contours. Each segmentation for every frame pro-
duced by COB [12] is done independently from each other. If a temporal window
on these partitions was introduced, maybe the temporal inconsistency would disap-
pear. On our side, we could detect such contours and modify their energy on the
hierarchical tree.

Model update depending on sequence characteristics: As it can be inferred
from the co-clustering only approach conclusions in the training section 4.2, the model
update might be dependent on the type of sequence the algorithm is facing, as some
sequences may need a high-paced model update, while others may need a slower
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one. A proposed next step on this would be finding a metric to determine if the
forgetting factor α in equation 3.10 for the model update should be high or low,
depending on the sequence characteristics.

CNN descriptors: RBPF is based on color descriptors. This is due their invari-
ance in rotation or scaling and that color histograms can be directly mapped onto a
pdf. As particle filters try to estimate the state pdf it is a straightforward solution.
However, color features are useful in some scenarios, where the background and
foreground are quite different or the object model does not change abruptly, but on
many others fail. A considered next step is to change to Convolutional Neural Nets
(CNN) features, as the information that can be extracted from them is much richer
than the solely color information. Some tests were made using GoogLeNet [18]. They
were unsuccessful, but gave us an idea where to aim if we wanted to use such de-
scriptors.

Personal evaluation: Nowadays we can see a boom in Deep Learning for ev-
ery application. In the next CVPR (2017) several new tracking algorithms will be
presented, outperforming, I’m sure, the current state-of-the-art. A discussion on
Neural Nets arises. Those statistical methods are as blind as a Particle Filter would
be, but are able to handle that big solution space by means of huge amount of data
and training. Will those methods need in a near future some intelligent guidance as
we provided to the RBPF or will they overcome in this Big Data world the future
presents us?
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