2,123 research outputs found

    Theoretical aspects and modelling of cellular decision making, cell killing and information-processing in photodynamic therapy of cancer

    Get PDF
    BACKGROUND: The aim of this report is to provide a mathematical model of the mechanism for making binary fate decisions about cell death or survival, during and after Photodynamic Therapy (PDT) treatment, and to supply the logical design for this decision mechanism as an application of rate distortion theory to the biochemical processing of information by the physical system of a cell. METHODS: Based on system biology models of the molecular interactions involved in the PDT processes previously established, and regarding a cellular decision-making system as a noisy communication channel, we use rate distortion theory to design a time dependent Blahut-Arimoto algorithm where the input is a stimulus vector composed of the time dependent concentrations of three PDT related cell death signaling molecules and the output is a cell fate decision. The molecular concentrations are determined by a group of rate equations. The basic steps are: initialize the probability of the cell fate decision, compute the conditional probability distribution that minimizes the mutual information between input and output, compute the cell probability of cell fate decision that minimizes the mutual information and repeat the last two steps until the probabilities converge. Advance to the next discrete time point and repeat the process. RESULTS: Based on the model from communication theory described in this work, and assuming that the activation of the death signal processing occurs when any of the molecular stimulants increases higher than a predefined threshold (50% of the maximum concentrations), for 1800s of treatment, the cell undergoes necrosis within the first 30 minutes with probability range 90.0%-99.99% and in the case of repair/survival, it goes through apoptosis within 3-4 hours with probability range 90.00%-99.00%. Although, there is no experimental validation of the model at this moment, it reproduces some patterns of survival ratios of predicted experimental data. CONCLUSIONS: Analytical modeling based on cell death signaling molecules has been shown to be an independent and useful tool for prediction of cell surviving response to PDT. The model can be adjusted to provide important insights for cellular response to other treatments such as hyperthermia, and diseases such as neurodegeneration

    Photoactivatable metal complexes : from theory to applications in biotechnology and medicine

    Get PDF
    This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal–carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)—a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers

    Targeted Photodynamic Therapy and Photochemical Internalization of Human Head and Neck Cancer:a preclinical study in vitro and in vivo

    Get PDF
    Photodynamic therapy (PDT) is a treatment modality based on a tumour-localising photosensitizer and light exposure to induce necrosis and apoptosis of tumour cells. It is used to treat head and neck cancer, but its inadequate selectivity and specificity lead to phototoxicity of normal tissues. Targeted PDT employs a conjugate, a dye and an antibody (against a tumour-overexpressing molecule), to enhance selectivity and specificity of PDT. Photochemical internalisation (PCI) uses the principle of PDT for light-enhanced cytosolic release of anti-cancer drugs that are entrapped in the endo/lysosomal vesicles of cancer cells. The aims of this thesis were to improve selectivity and specificity of PDT and PCI with cetuximab-IR700DX conjugate. The thesis started with studying killing effects of targeted PDT in human head and neck tumour cell lines. Such therapeutic effects were then confirmed in a xenografted human head and neck tumour in a mouse skin-fold window-chamber model in vivo. A low light fluence rate enhanced such targeted PDT effects. The thesis was ended with investigating bleomycin-based PCI with temoporfin and gelonin-based PCI with targeted PDT in the human tumour cell lines in vitro

    Killing Hypoxic Cell Populations in a 3D Tumor Model with EtNBS-PDT

    Get PDF
    An outstanding problem in cancer therapy is the battle against treatment-resistant disease. This is especially true for ovarian cancer, where the majority of patients eventually succumb to treatment-resistant metastatic carcinomatosis. Limited perfusion and diffusion, acidosis, and hypoxia play major roles in the development of resistance to the majority of front-line therapeutic regimens. To overcome these limitations and eliminate otherwise spared cancer cells, we utilized the cationic photosensitizer EtNBS to treat hypoxic regions deep inside in vitro 3D models of metastatic ovarian cancer. Unlike standard regimens that fail to penetrate beyond ∼150 µm, EtNBS was found to not only penetrate throughout the entirety of large (>200 µm) avascular nodules, but also concentrate into the nodules' acidic and hypoxic cores. Photodynamic therapy with EtNBS was observed to be highly effective against these hypoxic regions even at low therapeutic doses, and was capable of destroying both normoxic and hypoxic regions at higher treatment levels. Imaging studies utilizing multiphoton and confocal microscopies, as well as time-lapse optical coherence tomography (TL-OCT), revealed an inside-out pattern of cell death, with apoptosis being the primary mechanism of cell killing. Critically, EtNBS-based photodynamic therapy was found to be effective against the model tumor nodules even under severe hypoxia. The inherent ability of EtNBS photodynamic therapy to impart cytotoxicity across a wide range of tumoral oxygenation levels indicates its potential to eliminate treatment-resistant cell populations

    Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy

    Get PDF
    Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.Fil: Roguin, Leonor Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Chiarante, Nicolás Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Garcia Vior, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Marino, Veronica Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentin

    14th Annual Pacific Research Day Abstracts

    Get PDF

    Indocyanine Green Nanoparticles : Are They Compelling for Cancer Treatment?

    Get PDF
    Indocyanine green (ICG) is a Food and Drug Administration\u2013approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment. Our purpose is to provide a short but exhaustive overview of clinical outcomes that these nanocomposites would provide, discussing opportunities, limitations, and possible impacts with regard to the main clinical needs in oncology

    The role of minimally invasive endoscopic techniques in the diagnosis, treatment and prevention of lung cancer

    Get PDF
    Squamous cell carcinoma of the lung arises from pre-invasive progenitors in the central airways. The archetypal model appears to be a stepwise morphological progression until there is invasion of the basement membrane. However, their natural history is not well understood and their treatment remains controversial, with radical therapies being offered to individuals who may never develop cancer. Autofluorescence bronchoscopy gives us the ability to follow the natural history of these lesions, with the prospect that early detection may improve survival. In this thesis, the natural history of pre-invasive disease is described in a prospective longitudinal cohort study. The data identifies a ‘high-risk’ cohort of patients with severe dysplasia and carcinoma in situ, in whom close surveillance detects multiple interval lung cancers at an early stage. The data from this indicates the need of a minimally invasive bronchoscopic treatment for these patients. A further prospective clinical trial evaluates the role of photodynamic therapy in individuals with early invasive carcinomas of the airway who were unfit for conventional lung cancer treatment. Photodynamic laser therapy (PDT) proved to be an effective therapy for patients with small and superficial lesions. However, PDT has not been tested in randomised controlled trials, so a randomised clinical trial (the PEARL trial) was designed to evaluate whether treating high-grade preinvasive lesions will avert progression into invasive carcinoma. Endoscopic laser resection of primary lung carcinoid tumours was also evaluated. This thesis demonstrates that laser can be used to effectively ablate carcinoid tumours. Treatment was particular effective in small intraluminal carcinoid tumours and may be an alternative to surgical resection. Finally, the role of sedation in interventional bronchoscopy was assessed in a prospective study for patients undergoing endobronchial ultrasound and transbronchial needle aspiration. This thesis demonstrates that endoscopist led sedation is comparable to anaesthetic led sedation, but identified the need for a randomised controlled trial

    Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation

    Get PDF
    Background: Local microbial infections induced by multiple-drug-resistant bacteria in the orthopedic field can be intractable, therefore development of new therapeutic modalities is needed. Photodynamic therapy (PDT) is a promising alternative modality to antibiotics for intractable microbial infections, and we recently reported that PDT has the potential to accumulate neutrophils into the infected site which leads to resolution of the infection. PDT for cancer has long been known to be able to stimulate the innate and adaptive arms of the immune system. Methodology/Principal Findings: In the present study, a murine methicillin-resistant Staphylococcus aureus (MRSA) arthritis model using bioluminescent MRSA and polystyrene microparticles was established, and both the therapeutic (Th-PDT) and preventive (Pre-PDT) effects of PDT using methylene blue as photosensitizer were examined. Although Th-PDT could not demonstrate direct bacterial killing, neutrophils were accumulated into the infectious joint space after PDT and MRSA arthritis was reduced. With the preconditioning Pre-PDT regimen, neutrophils were quickly accumulated into the joint immediately after bacterial inoculation and bacterial growth was suppressed and the establishment of infection was inhibited. Conclusions/Significance: This is the first demonstration of a protective innate immune response against a bacterial pathogen produced by PDT.National Institutes of Health (U.S.) (Grant number R01AI050875

    New insights into photodynamic therapy using porphyrin precursors

    Get PDF
    corecore