27,652 research outputs found

    Multivariate Statistical Process Control Charts: An Overview

    Get PDF
    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as principal components analysis (PCA) and partial lest squares (PLS). Finally, we describe the most significant methods for the interpretation of an out-of-control signal.quality control, process control, multivariate statistical process control, Hotelling's T-square, CUSUM, EWMA, PCA, PLS

    Poisson regression charts for the monitoring of surveillance time series

    Get PDF
    This paper presents a Poisson control chart for monitoring time series of counts typically arising in the surveillance of infectious diseases. The in-control mean is assumed to be time-varying and linear on the log-scale with intercept and seasonal components. If a shift in the intercept occurs the system goes out-of-control. Novel is that the magnitude of the shift does not have to be specified in advance: using the generalized likelihood ratio (GLR) statistic a monitoring scheme is formulated to detect on-line whether a shift in the intercept occurred. For this specific Poisson chart the necessary quantities of the GLR detector can be efficiently computed by recursive formulas. Extensions to more general Poisson charts e.g. containing an autoregressive epidemic component are discussed. Using Monte Carlo simulations run length properties of the proposed schemes are investigated. The practicability of the charts is demonstrated by applying them to the observed number of salmonella hadar cases in Germany 2001-2006

    A systematic algorithm development for image processing feature extraction in automatic visual inspection : a thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in the Department of Production Technology, Massey University

    Get PDF
    Image processing techniques applied to modern quality control are described together with the development of feature extraction algorithms for automatic visual inspection. A real-time image processing hardware system already available in the Department of Production Technology is described and has been tested systematically for establishing an optimal threshold function. This systematic testing has been concerned with edge strength and system noise information. With the a priori information of system signal and noise, non-linear threshold functions have been established for real time edge detection. The performance of adaptive thresholding is described and the usefulness of this nonlinear approach is demonstrated from results using machined test samples. Examination and comparisons of thresholding techniques applied to several edge detection operators are presented. It is concluded that, the Roberts' operator with a non-linear thresholding function has the advantages of being simple, fast, accurate and cost effective in automatic visual inspection

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo

    A comparison study of distribution-free multivariate SPC methods for multimode data

    Get PDF
    The data-rich environments of industrial applications lead to large amounts of correlated quality characteristics that are monitored using Multivariate Statistical Process Control (MSPC) tools. These variables usually represent heterogeneous quantities that originate from one or multiple sensors and are acquired with different sampling parameters. In this framework, any assumptions relative to the underlying statistical distribution may not be appropriate, and conventional MSPC methods may deliver unacceptable performances. In addition, in many practical applications, the process switches from one operating mode to a different one, leading to a stream of multimode data. Various nonparametric approaches have been proposed for the design of multivariate control charts, but the monitoring of multimode processes remains a challenge for most of them. In this study, we investigate the use of distribution-free MSPC methods based on statistical learning tools. In this work, we compared the kernel distance-based control chart (K-chart) based on a one-class-classification variant of support vector machines and a fuzzy neural network method based on the adaptive resonance theory. The performances of the two methods were evaluated using both Monte Carlo simulations and real industrial data. The simulated scenarios include different types of out-of-control conditions to highlight the advantages and disadvantages of the two methods. Real data acquired during a roll grinding process provide a framework for the assessment of the practical applicability of these methods in multimode industrial applications

    Real-time quality assurance testing using photonic techniques: Application to iodine water system

    Get PDF
    A feasibility study of the use of inspection systems incorporating photonic sensors and multivariate analyses to provide an instrumentation system that in real-time assures quality and that the system in control has been conducted. A system is in control when the near future of the product quality is predictable. Off-line chemical analyses can be used for a chemical process when slow kinetics allows time to take a sample to the laboratory and the system provides a recovery mechanism that returns the system to statistical control without intervention of the operator. The objective for this study has been the implementation of do-it-right-the-first-time and just-in-time philosophies. The Environment Control and Life Support Systems (ECLSS) water reclamation system that adds iodine for biocidal control is an ideal candidate for the study and implementation of do-it-right-the-first-time technologies
    corecore