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Abstract — The data-rich environments of industrial applications lead to large amounts of correlated quality characteristics that are 

monitored using Multivariate Statistical Process Control (MSPC) tools. These variables usually represent heterogeneous quantities that 

originate from one or multiple sensors and are acquired with different sampling parameters. In this framework, any assumptions 

relative to the underlying statistical distribution may not be appropriate, and conventional MSPC methods may deliver unacceptable 

performances. In addition, in many practical applications, the process switches from one operating mode to a different one, leading to a 

stream of multimode data. 

Various non-parametric approaches have been proposed for the design of multivariate control charts, but the monitoring of 

multimode processes remains a challenge for most of them. In this study, we investigate the use of distribution-free MSPC methods 

based on statistical learning tools. In this work, we compared the kernel distance-based control chart (𝑲-chart) based on a one-class-

classification variant of Support Vector Machines and a fuzzy neural network method based on the Adaptive Resonance Theory. The 

performances of the two methods were evaluated using both Monte Carlo simulations and real industrial data. The simulated scenarios 

include different types of out-of-control conditions to highlight the advantages and disadvantages of the two methods. Real data 

acquired during a roll grinding process provide a framework for assessment of the practical applicability of these methods in 

multimode industrial applications. 

Index Terms — Multimode Processes, Support Vector Machine, Artificial Neural Networks, Adaptive 

Resonance Theory, Statistical Process Control 

 

1 Introduction 

The technological advances in sensor systems together with the continuous improvement of real-time 

data processing capabilities have increased the use of in-process sensing to enhance process quality 

control outcomes. The signals from one or multiple sensors are analyzed to extract synthetic features 

used to characterize the stability of the ongoing process. Therefore, the quality characteristics 

represent multiple variables and consist of a collection of features that represent heterogeneous 

quantities resulting from different pre-processing procedures. In this framework, the conventional 

assumptions relative to the underlying distribution may not be appropriate for the design of statistical 

process monitoring tools. Moreover, in many practical applications, the natural process behavior 

switches from an operating mode to the following one, producing streams of data from different 

distributions that follow one another over time, without information about the duration of each mode 
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and their temporal allocation. Motivational examples are qualitatively depicted in Fig. 1. Fig. 1a) 

depicts a milling process performed on a workpiece whose geometry produces different levels of 

cutting depth along the cutting trajectory. The monitored variables consist of features extracted from 

a cutting force signal (e.g., the mean force level and the standard deviation). This process is 

multimode in nature, as it switches from a data distribution to another one as the tool moves along its 

path. Fig. 1b) shows a drilling process applied to a multi-layer (hybrid material) workpiece for which 

different materials produce different thrust force levels, and hence, the monitored features extracted 

from the force signal are multimode in nature, with different distributions corresponding to different 

material layers. 

 

INSERT FIGURE 1 ABOUT HERE 

INSERT FIGURE 2 ABOUT HERE 

 

A further example from a real industrial case study is shown in Fig. 2 and refers to a roll grinding 

process that consists of grinding of large cylindrical rolls for use in a subsequent rolling process on 

metal sheets. An accelerometer is mounted on the wheel head (Fig. 2 a), and the signal along the 𝑋-

axis is used to detect any out-of-control departure from a nominal and stable cutting condition during 

the process itself. The bivariate monitored statistics {𝒙𝑗 ∈ ℝ
2, 𝑗 = 1,2, … } consists of two synthetic 

indices, nominally the 𝑟𝑚𝑠 index and the 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 index (see Section 7), such that 𝒙𝑗 =

[𝑟𝑚𝑠𝑗, 𝑘𝑢𝑟𝑡𝑗] 
𝑇 is computed by segmenting the signal into sliding time windows of fixed duration.  

In common operating conditions, a grinding cycle is composed of different passes, each with cutting 

parameters that vary within given ranges. This situation yields a multimode process in which the in-

control (IC) distribution of the monitored indices is characterized by temporally consecutive 

distributions, which correspond to different combinations of wheel speed 𝑛𝑠 and infeed 𝑎𝑒 

parameters.  

Fig. 2b) shows the multimode distribution of 𝒙𝑗 under IC conditions for different combinations of 

cutting parameters (𝑛𝑠, 𝑎𝑒) and its distribution in the presence of an out-of-control (OOC) chatter 

onset (this real case study is discussed in additional detail in Section 7). 

If the process exhibits multimode behavior, clustered data represent the natural pattern that 

characterizes the IC condition. Any transition between one mode and another should not be signaled 

by the control chart because such a transition is the consequence of the natural process variability. 

The result is one of the most challenging violations of the traditional SPC distributional assumptions. 
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Despite of a great industrial interest for multimode process monitoring in the field of discrete part 

manufacturing, this problem attracted very limited attention in the literature. Certain authors 

proposed Multivariate Statistical Process Control (MSPC) schemes for multimode processes in 

chemometrics applications, but most of them are based on distributional assumptions within each 

mode1-3 or assumptions about the covariance structure of multiple modes4-5. The proposed methods 

include either the use of multiple models6-8 or the use of local models to be iteratively updated9. 

Some authors assumed the availability of external knowledge to filter out the effect of operating 

conditions10-11. However, there is a lack of non-parametric methods in this area that motivates the 

present study.  

For in-process MSPC industrial applications, parametric methods may be of limited practical interest 

because single modes frequently exhibit deviations from multivariate normality and they may be 

difficult to classify in a reliable way. Furthermore, assumptions about the covariance structure of the 

data and the availability of external knowledge are rarely applicable in practice.  

Various authors have discussed the need for distribution-free MSPC methods12-18 and the limits of 

traditional control charts in the presence of non-normal data19, but not in the frame of multimode 

processes. Our study represents a first attempt to assess the applicability of selected non-parametric 

MSPC methods to multimode process monitoring in the field of industrial production. Our analysis is 

aimed at demonstrating and comparing their performances and limitations by means of both 

simulated and real industrial data. 

In particular, we focus on a category of methods that is often referred to as one-class-classification20-

21 or novelty detection22. These approaches are statistical learning methods that can be trained on a 

dataset (Phase I) consisting of only natural process data, i.e., data collected under IC process 

conditions. During the actual process-monitoring phase (Phase II), every observation that cannot be 

classified within the IC class is signaled. This approach allows implementation of traditional 

classification techniques in the SPC frame in which no information on the nature of possible 

departures from the natural condition is available, at least in the preliminary implementation stage. 

One interesting feature of this category of methods consists of their distribution-free properties, and 

hence, they can be applied regardless of the single-mode or multimode nature of the monitored data. 

A rationale for the choice of such a family of techniques for multimode process monitoring is 

discussed in Section 3. 

Our comparison study involves two one-class-classification methods, which are respectively based 

on the Support Vector Data Description (SVDD) methodology and on unsupervised Artificial Neural 

Networks (ANNs). Their performances are evaluated using Monte Carlo simulations in the presence 

of multimode data and a real dataset acquired in roll grinding operations. The improved 𝐾-chart 
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design proposed by Ning and Tsung23 and the Fuzzy-ART-based scheme proposed by Pacella and 

Semeraro24-27 are reviewed and compared. The previous work of Pacella and Semeraro24-27 focused 

on process monitoring of univariate time series or streams of profile data. In this study, we extend 

this Fuzzy-ART-based scheme to monitoring of a multivariate multimode process. We also build on 

the study by Ning and Tsung23, which focused on mixed type data; in the current paper, we extend 

the previous analysis to characterize the Phase II performances of this method under different out-of-

control scenarios in a multimode process framework, and we further study the role played by the 

kernel function and the design parameters in Phase I of control charting. 

In the remainder of the paper, the terms Phase I dataset and training dataset are used 

interchangeably under the assumption that the IC state of the process has been proven, which ensures 

that the collected samples are representative of its natural condition.   

The performances of all competing methods are compared using a real case study that addresses 

chatter detection in roll grinding. In this case, in-process signal monitoring is aimed at detecting 

anomalous vibration onset. The real case study allows us to evaluate the practical applicability of the 

proposed methods for actual industrial scenarios in which streams of multimode data are acquired via 

sensors installed on the machine tool.  

The paper is organized as follows. Section 2 lists the nomenclature used in the paper, Section 3 

presents a rationale for the use of one-class-classification methods, Section 4 describes the K-chart 

approach, Section 5 details the Fuzzy ART-based approach, Section 6 presents the simulated 

scenarios and discusses the results of the comparative analysis, Section 7 presents the real case study 

in roll grinding, and Section 8 concludes the paper. 

 

2 Nomenclature 

#𝑆𝑉(𝑆) Number of support vectors (𝐾-chart approach) 

𝑏𝑜𝑢𝑡  Output signal of the Fuzzy ART network 

𝐶  Penalty coefficient (𝐾 -chart approach) 

𝑓𝑜+(𝑆)  Proportion of artificial outliers classified as in-boundary data (𝐾-chart approach) 

𝐹0, 𝐹1, 𝐹2 Layers of the Fuzzy ART architecture 

ℎ  Control limit (𝐾-chart approach) 

𝐼𝐶  In-control 

𝐿  Number of mixtures 

𝑀  Overall number of samples collected under natural process conditions 
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𝑀𝑜  Number of artificial outliers 

𝑀1  Number of training samples (Fuzzy-ART-based approach) 

𝑀𝑆𝑃𝐶  Multivariate Statistical Process Control 

𝑁  Number of tuning samples (Fuzzy-ART-based approach) 

𝒐  Center of the irregular shaped region in the 𝐾-chart approach 

𝑂𝑂𝐶  Out-of-control 

𝑝  Number of variables 

𝑄  Number of nodes in the 𝐹2 layer 

𝑞𝑚𝑎𝑥 Index of the node with maximum bottom-up input (Fuzzy-ART-based approach) 

𝑅  Radius of the irregular shaped region in the 𝐾-chart approach 

𝑆, 𝑆∗  Kernel width parameter (𝐾-chart approach) 

[𝑆0, 𝑆𝑈] Range for the selection of the kernel width parameter 

𝑇𝑞(𝒙𝑗)  Bottom-up inputs (Fuzzy ART based approach), 𝑗 = 1, 2, …. 

𝜈  Weight used in Eq. 10 

𝒙𝑗  𝑗𝑡ℎ multivariate sample; elements are denoted by 𝑥1,𝑗, … , 𝑥𝑝,𝑗, 𝑗 = 1, 2, …. 

𝒙𝑗
𝑐  Input vector after the complement coding step (Fuzzy-ART-based approach),  

𝑗 = 1, 2, …. 

𝒘𝑞  Weight vector (Fuzzy-ART-based approach) 

𝒛  Generic new multivariate observation 

𝛼  Targeted Type I error 

𝛼𝑗 and 𝛾𝑗 Lagrangian coefficients (𝐾-chart approach), 𝑗 = 1, 2, …. 

𝛽  Choice parameter (Fuzzy-ART-based approach) 

𝛾(𝑆)  Objective function for the kernel width parameter selection 

𝛿1, 𝛿2, 𝛿3 Shift parameters 

𝜂  Vigilance step (Fuzzy-ART-based approach) 

𝝁𝑙  Multivariate mean of the Gaussian mixture model, 𝑙 = 1,… , 𝐿 

𝜉𝑗  Slack variables (𝐾-chart approach) 

𝜋𝑙  Prior probabilities in Gaussian mixture model, 𝑙 = 1,… , 𝐿 

𝜌  Vigilance parameter (Fuzzy-ART-based approach) 

𝜌𝑢  Maximum value of the vigilance parameter that induces one class 

𝚺𝑙  Variance-covariance matrix of the Gaussian mixture model, 𝑙 = 1,… , 𝐿 
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3 A Rationale for the Use of One-Class-Classification 

Methods 

A commonly used approach for the design of non-parametric multivariate control charts involves 

certain generalizations of rank-based methods and/or a transformation of the original data into a 

categorical form15-17;28-31. However, these methods usually rely on the assumption of identically 

distributed data and are not designed to deal with processes that jump from one operating mode to 

another, without being known the duration of each mode and the temporal allocation of multiple 

modes. In multimode processes, the i.i.d. assumption may hold only within each mode, and the 

transitions between consecutive natural modes should not be signaled by the control chart. In 

addition, rank-based methods may be affected by limited efficiency in the presence of large shifts31. 

For a brief review of non-parametric MSPC methods, see the recent book of Qiu18 and the work of 

Bersimis et al.32. 

A more widely used approach applied to address unknown distributions consists of adjusting the 

control limits of conventional control charts by estimating the empirical percentiles of the monitored 

statistic. If the number of Phase I samples is small, the bootstrap re-sampling technique can be 

used33-35. However, in presence of multimode processes, conventional control statistics may be not 

adequate and the bootstrap approach may produce unreliable estimates of the tail probabilities36. 

Alternatively, a different paradigm consists of using one-class-classification methods that are 

designed to adapt classical data-mining and machine-learning techniques to MSPC. 

These methods are aimed at estimating a multivariate region that envelops the Phase I data such that 

a target Type I error is achieved. Next, the contour of this region plays the role of the control limit, 

and any observation that falls outside of this region is signaled. Thus, when a multimode historical 

dataset is available, one-class-classification methods provide a non-parametric framework to monitor 

the process, regardless of the jumps from one mode to another. It is worth to notice that this kind of 

methods may be applied without the need for prior knowledge about the number or the temporal 

allocation of the modes, and without the need for a preliminary data clustering step. 

Selected one-class-classification variants of statistical learning techniques have been proposed in the 

literature, including Support Vector Machines (SVMs)20 and Artificial Neural Networks (ANNs)24. 

With respect to the use of ANNs for SPC applications, few authors have considered the one-class-

classification case in which the training dataset is composed of natural process data only. Among 

these, Al-Ghanim37 presented an Adaptive Resonance Theory (ART) neural network to distinguish 

natural from unnatural variations in the outcomes of a manufacturing process. Pacella and 
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Semeraro24-26 extended the study of Al-Ghanim37 by proposing a Fuzzy ART neural network to 

address arbitrary sequences of input patterns, whereas the ANN model proposed by Al-Ghanim37 

was limited to binary inputs. Pacella and Semeraro27 derived a variant of the previously proposed 

Fuzzy ART-based scheme to monitor the stability over time of profile data. A different type of 

unsupervised ANN method, i.e., the Self Organizing Map (SOM), was discussed by Tax38 for one-

class-classification applications. For a survey of ANN methods in SPC applications, the interested 

reader should refer to the papers by Guh39 and Psarakis40. 

A different statistical learning tool for which one-class-classification variants were proposed in the 

literature is the SVM method. A one-class-classification variant known as the Support Vector Data 

Description (SVDD) was proposed by Tax38 and Tax and Duin41 and was used by Sun and Tsung42 

to design a kernel distance-based control chart referred to as the 𝐾-chart. Other authors studied 

SVDD-based MSPC approaches. Camci et al.43 studied a version of the 𝐾-chart believed to be robust 

to Phase I contamination. Sukchotrat et al.44 compared the SVDD-based approach with a method 

based on the k-Nearest Neighbors (k-NN) algorithm. Ge et al.45 applied an SVDD-based control 

chart to batch process monitoring. Gani et al.46 eventually applied the 𝐾-chart to monitor the quality 

characteristics in a refrigerator metal sheet manufacturing process. 

The 𝐾-chart approach shares certain common points with data-depth based methods29-30, but it 

involves neither data-depth measures nor ranking operations. The control statistic consists of the 

kernel distance of any observation from a common multivariate center estimated using the one-class 

variant of the SVM optimization procedure. The 𝐾-chart also differs from control charting 

approaches whose control region consists of a percentile of an estimated multivariate density 

function. Indeed, this approach does not require the estimation of the complete density but only a 

boundary around a data set. Furthermore, Tax and Duin41 demonstrated that the SVDD technique 

outperforms basic control charting methods based on density estimation. 

A critical issue affecting any kernel distance-based control chart involves the proper selection of 

kernel parameters and the estimation of the control limits. Recently, Ning and Tsung23 proposed an 

improved design of the 𝐾-chart, including an effective strategy for kernel parameter selection, which 

will be used as a reference in this study. 

Both the 𝐾-chart approach and the Fuzzy ART-based approach are suitable for monitoring of the 

stability over time of multivariate data, regardless of the single-mode or multimode nature of the 

process. These approaches do not require any assumption on the underlying distribution of the 

natural process data, their covariance structure, or the number of modes. Thus, these methods can be 
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used to design completely distribution-free MSPC tools and to address such complex signal data as 

those that characterize actual industrial applications.  

To the best of the authors’ knowledge, no comparison studies for monitoring of multimode data via 

distribution-free MSPC have been presented in the literature. Our paper aims to fill this gap and 

address practical issues that arise in real industrial scenarios. 

 

4 𝑲-chart Based on Support Vector Data Description 

The SVDD method was presented by Tax and Duin20 to extend the SVM classification technique to 

problems characterized by single-class training sets. Given a multivariate Phase I (or training) dataset 

{𝒙𝑗 ∈ ℝ
𝑝, 𝑗 = 1,… ,𝑀}, where 𝒙𝑗 = [𝑥1,𝑗, 𝑥2,𝑗, … , 𝑥𝑝,𝑗] 

𝑇, the SVDD method consists of finding a 

minimal volume control region characterized by a center 𝒐 ∈ ℝ𝑝, and a radius 𝑅, that can envelop a 

given percentage of the original data. The 𝐾-chart42 is a multivariate control chart whose control 

statistic consists of the kernel distance of any observation 𝒛 ∈ ℝ𝑝 from the center 𝒐 ∈ ℝ𝑝 of that 

region. The control limit is estimated to guarantee a target Type I error with the available dataset. A 

kernel distance, hereafter denoted by 𝑘𝑑(𝒛), replaces the traditional Euclidean and statistical distance 

notions to adapt the control region boundary to the actual spread of the data, whereas using the 

Hotelling’s 𝑇2 distance, the control region would become a 𝑝-dimensional ellipsoid, as an example. 

The SVDD methodology is briefly reviewed in Sub-section 4.1 to explain how the kernel distance 

𝑘𝑑(𝒛) is computed. Sub-section 4.2 is devoted to the selection of the kernel parameter and the 𝐾-

chart design procedure. 

4.1 The SVDD Methodology  

The SVDD works by estimating a minimal volume control region that adapts to the actual spread of 

the data. The estimation of such a region, centered in 𝒐 ∈ ℝ𝑝 and with radius 𝑅, requires the solution 

of the following data-driven optimization problem: 

 

min (𝑅2 + 𝐶 ∑ 𝜉𝑗)
𝑀
𝑗=1   

s.t. (𝒙𝑗 − 𝒐)
𝑇(𝒙𝑗 − 𝒐) ≤  𝑅

2 + 𝜉𝑗 and 𝜉𝑗 ≥ 0, 𝑗 = 1,… ,𝑀 
(1) 

 

where 𝜉𝑗, 𝑗 = 1,… ,𝑀, are slack variables, and 𝐶 is a penalty coefficient used to weight the trade-off 

between the volume of the region and the percentage of enclosed data (𝐶 > 0). By introducing the 

Lagrangian function: 
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𝐿(𝑅, 𝒐, 𝜉𝑗; 𝛼𝑗 , 𝛾𝑗) = 𝑅2 + 𝐶∑𝑗=1
𝑀 𝜉𝑗 − ∑𝑗=1

𝑀 𝛼𝑗(𝑅
2 + 𝜉𝑗 − (𝒙𝑗 − 𝒐)

𝑇(𝒙𝑗 − 𝒐)) − ∑𝑗=1
𝑀 𝛾𝑗𝜉𝑗 (2) 

 

and by setting the partial derivatives w.r.t. 𝑅, 𝒐, and 𝜉𝑗, 𝑗 = 1,… ,𝑀, to zero, the problem (1) can be 

simplified as follows23: 

 

max (∑ 𝛼𝑗𝒙𝑗
𝑇𝒙𝑗 −

𝑀
𝑗=1 ∑ 𝛼𝑗𝛼𝑘𝒙𝑗

𝑇𝒙𝑘)
𝑀
𝑗,𝑘=1   

s.t. ∑ 𝛼𝑗 = 1𝑀
𝑗=1  and 0 ≤ 𝛼𝑗 ≤ 𝐶, 𝑗 = 1,… ,𝑀 

(3) 

 

The points whose Lagrangian coefficients are larger than zero are known as support vectors. It can 

be demonstrated that the shape of region is determined by those points only38.  

By introducing the kernel trick, it is possible to replace the inner product 𝒂𝑇𝒃 by a kernel function 

𝐾(𝒂 × 𝒃) that allows generation of a more flexible and data-adaptive control region. The 𝐾-chart is 

aimed at monitoring the stability over time of the kernel distance 𝑘𝑑(𝒛) of any new observation 𝒛 ∈

ℝ𝑝 from the center 𝒐: 

 

𝑘𝑑(𝒛) = 𝐾(𝒛 × 𝒛) − 2∑𝑗=1
𝑀 𝛼𝑗𝐾(𝒙𝑗 × 𝒛) + ∑𝑗,𝑘=1

𝑀 𝛼𝑗𝛼𝑘𝐾(𝒙𝑗 × 𝒙𝑘) (4) 

 

Ning and Tsung23 showed that there are different possible approaches to the design of the 𝐾-chart 

because there are three major parameters to set: the kernel width parameter denoted by 𝑆, the penalty 

coefficient 𝐶, and the control limit denoted by ℎ. By comparing different design solutions, Ning and 

Tsung16 showed that the best performances might be achieved by reducing the number of parameters 

to two (i.e., 𝑆 and ℎ). In fact, by assuming 𝐶 > 1, the constraint 0 ≤ 𝛼𝑗 ≤ 𝐶 is replaced by 𝛼𝑗 ≥ 0, 

and problem (3) can be solved by introducing the kernel function 𝐾(𝒙∙ × 𝒙∙).  

In this case, no penalty is applied, and hence, the kernel-based boundary is estimated by enclosing all 

of the training data. The false alarm rate is controlled by setting a proper value for the control limit ℎ. 

Thus, only the 𝑆 and ℎ parameters remain to be determined. The next sub-section reviews the 

procedure used to automatically select those two parameters and to design the 𝐾-chart. 

With respect to the kernel function, the most common choices include the Gaussian Radial Basis 

(GRB) and the polynomial and sigmoidal functions47.  

Tax38 demonstrated that the GRB function is more appropriate than other kernel functions in 

classification problems. In the framework of 𝐾-chart-based monitoring, this approach has been used 

in previous studies23,42, although its benefits over other kernels were not fully investigated. Thus, the 
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GRB function is used as the default choice in this study, but we discuss the use of other kernel 

functions in Section 6. 

If 𝒂, 𝒃 ∈ ℝ𝑝, the GRB function with kernel width parameter 𝑆 ∈ ℝ+ is defined as follows: 

  

𝐾(𝒂 × 𝒃) = exp {−
‖𝒂 − 𝒃‖2

𝑆2
} (5) 

 

4.2 Automated Selection of the Kernel Parameter and Control Chart Design 

In most cases, the selection of the kernel width parameter involves trial and error.  When in-process 

monitoring is considered, an automated data-driven procedure is required. To this aim, Tax and 

Duin48 proposed a method that was further improved by Ning and Tsung23. The method is derived 

from multi-class SVM problems in which the classification errors can be used as a standard to select 

𝑆. In a one-class-classification problem, a similar approach might be applied by generating artificial 

outliers. Tax and Duin48 proposed drawing of those outliers from a block-shaped or a hyper-spherical 

uniform distribution that encloses the training data in ℝ𝑝. 

Given 𝑓𝑜+(𝑆), the proportion of artificial outliers that are classified as in-boundary data for a given 

choice of 𝑆, and #𝑆𝑉(𝑆), the number of support vectors, 𝑆 can be selected by minimizing: 

 

𝛾(𝑆) = (1 − 𝜈)
#𝑆𝑉(𝑆)

𝑀
+ 𝜈𝑓𝑜+(𝑆), (6) 

 

because #𝑆𝑉(𝑆) 𝑀⁄  is a counterpart of the Type I error, and 𝑓𝑜+(𝑆) is the counterpart of the Type II 

error, where 0 < 𝜈 < 1 is a weight. 

The procedure for the selection of the kernel width parameter is applied as follows: 

1. Given a training set of 𝑀 observations, generate a number 𝑀𝑜 of artificial outliers; 

2. Set 𝑆 equal to an initial value 𝑆0,, and solve problem (9) for the 𝑀+𝑀𝑜 available data; 

3. Compute 𝑓𝑜+(𝑆0) and #𝑆𝑉(𝑆0); 

4. Set 𝑆 equal to a new value 𝑆0 + 𝑠, where 𝑠 is a step value, and repeat steps 3 and 4 until 𝑆 equals 

a pre-fixed upper limit 𝑆𝑈; 

5. Find the value of 𝑆 (known as 𝑆∗) such that #𝑆𝑉(𝑆∗)/𝑀 is nearest to the targeted Type I error; 

6. Calculate the weight 𝜈 as follows: 𝜈(𝑆∗) = (1 +
𝑓𝑜+(𝑆

∗)

(#𝑆𝑉(𝑆∗) 𝑀⁄ )
)
−1

; 

7. Calculate the 𝛾(𝑆) value in Equation (10), where 𝜈 = 𝜈(𝑆∗), for 𝑆 values in the range [𝑆0, 𝑆𝑈]; 
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8. Eventually, 𝑆 is determined by the minimal 𝛾(𝑆). 

 

Once the optimal value of the kernel width parameter is determined, the control region can be 

estimated. The control limit ℎ can be estimated as the 100(1 − 𝛼)% empirical percentile of the 

kernel distance 𝑘𝑑(𝒛𝑗), 𝑗 = 1,2, … ,𝑀
23, where 𝛼 is the targeted Type I error. 

The same procedure can be applied using other kernel functions, provided that the control region 

geometry depends on a single kernel parameter. A discussion on the use of different kernel functions 

for the design of the 𝐾-chart is reported in Section 6.  

 

5 A Quality Control Scheme Based on Fuzzy ART Networks 

The ART methodology was introduced by Grossberg in 1976, which led to a number of ART-based 

neural network models widely used in different applications49-50. 

An ART-based neural network allows clustering of data into groups characterized by similar features 

in a self-organizing manner. The Fuzzy ART belongs to the class of unsupervised ART architectures; 

it is based on fuzzy set theory operations and allows clustering of arbitrarily complex analog input 

patterns. The method proposed by Pacella and Semeraro24 adapts this learning paradigm to SPC 

applications by training the network on a Phase I dataset and associating a control region to natural 

process data. Similar to the SVDD approach, the control region is estimated to guarantee that the 

target Type I error is achieved on the IC data. When a new sample is presented to the Fuzzy ART 

network, an output signal 𝑏𝑜𝑢𝑡 is generated. If the new sample is internal to the control region, it is 

judged as in-control (𝑏𝑜𝑢𝑡 = 1),, and no alarm is signaled. Otherwise, the output signal is 𝑏𝑜𝑢𝑡 = −1, 

and an alarm is signaled. Therefore, the Fuzzy ART can operate as a non-parametric statistical 

process control tool. Sub-section 5.1 discusses the Fuzzy ART-based approach for multivariate data, 

and Sub-section 5.2 reviews a procedure used to estimate the so-called vigilance parameter 𝜌 used to 

control the actual false alarm rate. 

5.1 The Fuzzy ART Methodology 

A block diagram of the Fuzzy ART architecture is shown in Fig. 3.  

 

INSERT FIGURE 3 ABOUT HERE 
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The multivariate vector 𝒙𝑗 = [𝑥1,𝑗, 𝑥2,𝑗 , … , 𝑥𝑝,𝑗] 
𝑇  ∈ ℝ𝑝, 𝑗 = 1, 2, …, represents the 𝑗𝑡ℎ input vector 

of the Fuzzy ART network. Note that the values of input data can range only between 0 and 1, and 

hence, a re-scaling operation might be required in the pre-processing phase. The re-scaling operation 

is carried out by guaranteeing that any departure from the IC condition within a reasonable number 

of standard deviation units falls into the new [0,1] range. Notably large shifts that fall outside the 

range can be directly signaled as out-of-control observations using a simple check rule. 

The Fuzzy ART architecture consists of two subsystems, the attentional subsystem and the orienting 

subsystem49. The attentional subsystem consists of three layers of nodes denoted as 𝐹0, 𝐹1, and 𝐹2. 

The 𝐹0 layer consists of 𝑝 nodes and is charged with applying a pre-processing operation known as 

complement coding. Given the input sample 𝒙𝑗, the complement coding produces an output sample 

𝒙𝑗
𝑐, such that:  

 

𝒙𝑗
𝑐 = [𝑥1,𝑗, 𝑥2,𝑗, … , 𝑥𝑝,𝑗, 1 − 𝑥1,𝑗, 1 − 𝑥2,𝑗 , … , 1 − 𝑥𝑝,𝑗]

𝑇 (7) 

 

The 𝐹1 layer is the comparison layer and consists of 2𝑝 nodes. The 𝐹2 layer is the recognition layer 

and consists of a number 𝑄 of nodes equal to (or greater than) the number of clusters formed during 

the training phase. Every node in the 𝐹2 layer is connected with every node in the 𝐹1 layer via a 

weight vector 𝒘𝑞 = [𝑤𝑞,1, 𝑤𝑞,2, … , 𝑤𝑞,2𝑝]
𝑇, 𝑞 = 1,… , 𝑄, which subsumes both the bottom-up and 

top-down weight vectors of the Fuzzy ART. 

The orienting subsystem consists of a single node referred to as the reset node. The output of the 

reset node depends on the vigilance parameter 𝜌 and affects the nodes in the 𝐹2 layer. The vigilance 

parameter 𝜌 determines the required degree of similarity among input samples. The reset signal to 

the recognition layer causes either a different class to be selected or, if no more classes are available, 

it indicates the end of the training process. We refer the reader to Appendix A for a brief description 

of the training procedure (see also Carpenter et al. 51). 

After training the network, a number 𝑄 of classes is generated to cluster all of the training data. 

Small values of the vigilance parameter 𝜌 result in coarse clustering, whereas large values of 𝜌 result 

in fine clustering. Thus, it is evident that the performances are strongly affected by the choice of the 

vigilance parameter 𝜌, both in terms of false alarm rates and actual disturbance detection rates. 

Pacella and Semeraro24-27 proposed a method used to select the proper value of the 𝜌 parameter given 

a targeted Type I error. In the presence of multimode data, the Fuzzy ART network could be 

theoretically trained to find the most appropriate clustering configuration of IC variables. However, 

it is not possible to control both the number of classes and the false alarm rate by acting only on the 
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vigilance parameter. The procedure proposed by Pacella and Semeraro24-27 assumes that a single 

control region is suitable for monitoring the process, regardless of the distribution and including 

mixture distributions. To the best of the authors’ knowledge, this method is the only training 

approach that allows control of the false alarm rate, and hence, it is used as a reference in this study.  

 

5.2 Automated Selection of the Vigilance Parameter and Design Procedure 

When no more than one class is formed during the training process, a monotonic relationship exists 

between the false alarm rate and the vigilance parameter 𝜌. Moreover, by decreasing the vigilance 

parameter and fixing any other parameter, the number of classes generated during the training 

process decreases and converges to one. These two Fuzzy ART properties are useful in developing 

an iterative procedure for the selection of the proper value of 𝜌, given a targeted Type I error. The 

procedure requires the data acquired under natural process conditions to be divided into two sets: a 

training set used to train the network as discussed above and a tuning set used to determine the 

vigilance parameter value that provides the desired false alarm rate.  

Given 𝑀 training samples and 𝑁 tuning samples, the procedure is applied as follows: 

1. Let 𝑖 be an iteration index and 𝜂 the vigilance step; initialize 𝑖 = 1, and set a small value for 𝜂 

(e.g., 𝜂 = 1.0𝑒−4); 

2. Set the vigilance parameter to 𝜌𝑖 = 1 − 𝑖𝜂, and train the network on the 𝑀 training samples; 

3. Repeat step 2 by setting 𝑖 = 𝑖 + 1 until only one class is formed. Let 𝜌𝑢 be the maximum value 

that induces one class, and from this step on, only values in [0, 𝜌𝑢] will be considered for the 

vigilance parameter; 

4. Re-initialize the iteration index 𝑖 = 0, and set a smaller vigilance step (e.g., 𝜂 = 1.0𝑒−5); 

5. Train the Fuzzy ART on the 𝑀 training samples by setting 𝜌𝑖 = 𝜌𝑢 − 𝑖𝜂; 

6. Disengage learning, and calculate the actual false alarm rate on the 𝑁 tuning samples; 

7. Repeat steps 5 and 6 by setting 𝑖 = 𝑖 + 1 until the actual false alarm rate is equal to the targeted 

one within a given tolerance. 

 

When the iterative procedure is completed, the final network and the resulting vigilance parameter 𝜌 

are saved and will be used to monitor any newly acquired sample. The procedure used to design and 

implement the MSPC approach based on the Fuzzy ART technique consists of a Phase I and a Phase 

II. The main steps in Phase I include (i) collection of a training dataset and a tuning dataset that are 

representative of the natural process conditions; (ii) re-scaling of original data (if required); (iii) 
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complement coding of original data; (iv) Fuzzy ART network training (see Appendix A); and (v) 

Fuzzy ART network tuning for the selection of the vigilance parameter (see above). Next, Phase II 

simply consists of applying the same re-scaling and complement coding operations to any new 

observations and submission of the resulting data vector to the Fuzzy ART network with the 

parameters estimated during Phase I. The observation is eventually classified as either IC or OOC.  

For further details on the vigilance parameter selection and the neural network implementation, see 

Pacella and Semeraro24-27. 

 

6 Comparison of Methods 

6.1 Simulated Scenarios  

A condition often encountered in industrial practice consists of a multimode process characterized by 

a mixture of natural patterns. In this study, two multimode reference scenarios were considered to 

test and compare the performances provided by the different methods: (i) Scenario A is 

representative of a two-mode process, with a limited displacement between the modes; (ii) Scenario 

B is representative of a three-mode process, with clusters that are easily separable and located far 

away from one another. In both cases, without loss of generality, the data in each mode are randomly 

drawn from a bivariate Gaussian distribution with equal prior probability. The two reference 

scenarios are shown in Fig. 4 (𝑀 = 2000 samples). The same analysis were performed for different 

kinds of distributions, and the results confirmed the main findings and conclusions discussed in this 

study. Additional results are available from the authors upon request. 

 

INSERT FIGURE 4 ABOUT HERE 

 

Let {𝒙𝑗 ∈ ℝ
2, 𝑗 = 1,… ,𝑀}, where 𝒙𝑗 = [𝑥𝑗1, 𝑥𝑗2]

𝑇
, be a bivariate dataset generated by the underlying 

process 𝑝(𝒙𝑗) = ∑ 𝜋𝑙𝑀𝑁(𝝁𝑙, 𝚺𝑙
𝐿
𝑙=1 ), where 𝐿 is the number of Gaussian distributions, and 𝜋𝑙 is the 

𝑘𝑡ℎ prior probability, such that ∑ 𝜋𝑙 = 1
𝐿
𝑙=1 . The following parameters were used to simulate the 

training data (natural process condition): 

 

Scenario A:  

𝐿 = 2, 𝜋𝑙 = 1/𝐿, for 𝑙 = 1,2,  

𝝁1 = [0.3, 0.3]𝑇, 𝝁2 = [0.5, 0.4]
𝑇,  
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𝚺1 = [
0.25 0.125
0.125 0.3

] 𝑒−2, 𝚺2 = [
0.125 −0.0625
−0.0625 0.15

] 𝑒−2; 

 

Scenario B:  

𝐿 = 3, 𝜋𝑙 = 1/𝐿, for 𝑙 = 1,2,3,  

𝝁1 = [0.33, 0.45]𝑇, 𝝁2 = [0.55, 0.3]𝑇, 𝝁3 = [0.70, 0.55]𝑇,  

𝚺1 = [
0.11 −0.08
−0.08 0.13

] 𝑒−2, 𝚺2 = [
0.42 0
0 0.04

] 𝑒−2, 𝚺3 = [
0.56 0.28
0.28 0.56

] 𝑒−3. 

 

The departure from multivariate normality caused by the multimode nature of the process strongly 

affects the SPC performances when a traditional control chart with theoretical control limits is 

applied. This effect is shown in Table 1, where the Average Run Length (𝐴𝑅𝐿) of a 𝑇2 control chart 

under IC conditions is computed in both scenarios. A total of 𝑀 = 10000 samples were used to 

design the control chart, and the other 10000 samples were used to test its performances. The actual 

𝐴𝑅𝐿 values were computed in 1000 runs. Table 1 shows that the actual 𝐴𝑅𝐿 is much larger than the 

target, and the more broadly the clusters are spread, the larger the gap between the target value and 

the actual value. In Scenario B, the 𝐴𝑅𝐿 is even larger than the number of samples used in the test 

set. With respect to Scenario A, the 99% confidence intervals were computed using the batch means 

approach by dividing the 1000 𝐴𝑅𝐿 values into 20 batches of 50 observations.  

 

INSERT TABLE 1 ABOUT HERE 

 

The results shown in Table 1 are due to an inflation of the sample variance-covariance matrix caused 

by the clustered nature of the multimode data. The result is an overestimated control limit that yields 

a reduced Type I error, and consequently, a larger Type II error. The use of empirical control limits 

for the 𝑇2 statistics allows for improved performances, but it is not a sufficiently reliable approach, 

as demonstrated in the remainder of the paper. 

With respect to the simulation of unnatural departures from the IC conditions, different types of 

deviation were considered and are listed in Table 2 and Table 3 for Scenario A and Scenario B, 

respectively, where 𝛿1, 𝛿2 and 𝛿3 are the shift parameters. The out-of-control conditions were chosen 

because they are representative of the most typical unnatural shifts that may occur in multimode 

processes. These shifts include (i) location shifts of only one cluster, (ii) location shifts of all 

clusters, (iii) variability increase in only one cluster, and (iv) variability increase in all clusters. 
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Furthermore, different directions of location shift were considered to highlight the need for a flexible 

and adaptive control region. Five severity levels were simulated for each disturbance, namely:  

 

𝛿1 ∈ {0.025, 0.0375, 0.05, 0.0625, 0.075} 

𝛿2 ∈ {1.25, 1.5, 2, 2.5, 3} 

𝛿3 ∈ {0.01, 0.025, 0.05, 0.075, 0.1} 

(8) 

 

INSERT TABLE 2 ABOUT HERE 

INSERT TABLE 3 ABOUT HERE 

 

The Phase II performances were compared in terms of the 𝐴𝑅𝐿 for a targeted Type I error with 𝛼 =

0.01. Without loss of generality, the proposed results are based on setting 𝐴𝑅𝐿0 = 100 to ensure a 

reasonable duration of the overall simulation tests. As a matter of fact, larger values of 𝐴𝑅𝐿0 require 

a higher computational effort in tuning the proposed methods without affecting the conclusion of the 

comparison analysis. Nevertheless, the control regions for both 𝐴𝑅𝐿0 = 100 and 𝐴𝑅𝐿0 = 370 are 

depicted in the graphics from here on. 

In each simulation scenario, 1000 runs were performed. In each run, a set of 𝑀 = 2000 randomly 

generated bivariate samples was used as the training set. Such a large number of training samples is 

compatible with in-process monitoring applications in which the observed variables are synthetic 

indices automatically extracted from sensor signals. In typical data-rich manufacturing operations, 

thousands of signal-based observations can be acquired in a few minutes. 

With respect to the Fuzzy ART-based approach, the 𝑀 samples were divided into 𝑀1 = 150 training 

samples and 𝑁 tuning samples (𝑀1 + 𝑁 = 𝑀 = 2000). The choice of the ratio 𝑀1 𝑁⁄  represents a 

tradeoff between the ability to train the network on a sufficient number of representative samples and 

the ability to estimate the actual false alarm rate on a sufficient number of tuning samples. 

For all of the considered methods, a set of 10000 randomly generated samples was used as the test 

set. The batch means approach was used to estimate the 99% confidence intervals of the 𝐴𝑅𝐿 

estimates by dividing the 1000 𝐴𝑅𝐿 values into 20 batches of 50 observations. 

 

6.2 Analysis of Results  

Both the 𝐾-chart and the Fuzzy-ART-based methods assume that the Phase I dataset is representative 

of the natural process conditions, regardless of the number of clusters associated with different 
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operating modes. Thus, no prior information on the actual data distribution is used for process 

monitoring purposes, and no cluster identification or separation is involved in the training 

procedures, i.e., the two methods are completely distribution-free in nature. Moreover, in both cases, 

an automated procedure is used to tune the control region with respect to the Phase I data by 

guaranteeing compliance with the targeted Type I error. These factors make the two methods 

realistically comparable on a fair basis. 

The 𝐾-chart and the Fuzzy ART-based method were also compared with the traditional 𝑇2 chart with 

an empirical limit. In this case, the empirical limit was estimated using the approach proposed by 

Phaladiganon et al.35.  

 

INSERT FIGURE 5 ABOUT HERE 

INSERT FIGURE 6 ABOUT HERE 

 

With respect to the 𝐾-chart approach, Fig. 5 and Fig. 6 show the contour patterns of the irregular 

shaped region that encloses 100% of the training data for different values of the GRB kernel width 

parameter 𝑆. A discussion on the effects of using a different kernel function is reported in Sub-

section 6.3. 

The values of the kernel width parameter 𝑆 resulting from 1000 runs under natural process 

conditions for different choices of the number 𝑀𝑜 of artificial outliers are shown in Fig. 7 (the 95% 

confidence intervals are depicted). In particular, four different choices of 𝑀𝑜 are considered: 𝑀𝑜 =

𝑀/4, 𝑀𝑜 = 𝑀, 𝑀𝑜 = 2𝑀, and 𝑀𝑜 = 3𝑀, with 𝑀 = 2000. 

 

INSERT FIGURE 7 ABOUT HERE 

 

Fig. 7 shows that if a sufficient number of outliers are used in the kernel width selection procedure, 

such a parameter has no statistically significant effect on the estimated mean of 𝑆. In Scenario A, if 

𝑀𝑜 ≥ 𝑀, there is no significant difference at level 𝛼 = 0.05 in the mean of 𝑆 at different values of 

𝑀𝑜, whereas in Scenario B, no significant difference in the result is also observed at 𝑀𝑜 = 𝑀/4.  

Moreover, the automatically selected value of 𝑆 in Scenario A oscillates near 𝑆 = 0.31, which may 

be slightly overestimated. In Scenario B, instead, the kernel width selection procedure yields an 

average value of approximately 𝑆 = 0.15, which seems to be more appropriate (see Fig. 6). 

In this study, a number of artificial outliers 𝑀𝑜 = 𝑀 = 2000 was used for the design of the 𝐾-chart. 
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The boundaries of the control regions resulting from the 𝑇2 chart, the 𝐾-chart, and the Fuzzy-ART-

based approach for a training set of 𝑀 = 2000 samples are shown in Fig. 8.  

 

INSERT FIGURE 8 ABOUT HERE 

 

Fig. 8 shows that the Fuzzy-ART-based approach yields a rectangular control region with possibly 

blunted corners. Therefore, the 𝐾-chart approach is the only one that provides a control region that 

adapts to the actual spread of the data. As shown in the final portion of the paper, this result leads to 

improved performances with respect to the 𝑇2 chart and the Fuzzy ART method, especially in the 

presence of strong departures from an elliptic spread of the data. 

The resulting 𝐴𝑅𝐿s and the corresponding 99% confidence intervals for the different disturbances 

simulated in Scenario A are shown in Table 4 and are also depicted in Fig. 9. The severity levels are 

ranked from 1 to 5, where 1 refers to the lowest level of the corresponding shift parameter and 5 

refers to the highest level. Bold fonts identify the approach that provides the best performances. 

 

INSERT TABLE 4 ABOUT HERE 

INSERT TABLE 5 ABOUT HERE 

INSERT TABLE 6 ABOUT HERE 

INSERT TABLE 7 ABOUT HERE 

 

For Scenario A, Table 4 and Fig. 9 show that the 𝐾-chart outperforms the 𝑇2 chart in the presence of 

Disturbance 2 (shift of cluster A2), Disturbance 5 (variance increase of cluster A2), and Disturbance 

6 (variance increase of both clusters). In the case of Disturbance 4 (variance increase of cluster A1), 

the 𝐾-chart provides lower 𝐴𝑅𝐿s than the 𝑇2 chart only for large shifts because the control region in 

the 𝐾-chart approach better adapts to the actual shape of cluster A2, leading to a faster reaction to a 

shift of its centroid or an increase of its variance. However, the tightness of the 𝑇2 elliptic control 

region along its semi-minor axis allows achievement of lower 𝐴𝑅𝐿s than the 𝐾-chart in the presence 

of Disturbance 1 (shift of cluster A1) and Disturbance 3 (shift of both clusters). 

In Scenario A, the Fuzzy-ART-based approach outperforms the competitor methods only in the 

presence of Disturbance 1 (shift of cluster A1). In the case of Disturbance 2, it provides better 

performances than the 𝑇2 chart, but for Disturbances 3 and 4, the 𝑇2 chart is more reactive than the 

Fuzzy ART in detecting the occurrence of a shift. 

The resulting 𝐴𝑅𝐿s in Scenario B are shown in Tables 5, 6, and 7.  
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Table 5 summarizes the results for the IC case and the four out-of-control scenarios that consist of 

rigid translations of one or more centroids towards the outside of the ellipse that encloses the data 

(see Fig. 7). Table 6 summarizes the results for the scenarios that consist of rigid translations towards 

the inside of the ellipse that encloses the data. Eventually, Table 7 shows the results for scenarios 

involving a variance increase of at least one cluster.  

 

INSERT FIGURE 9 ABOUT HERE 

 

Figs. 10, 11, and 12 graphically depict the results listed in Table 5, Table 6, and Table 7, 

respectively. Table 5 and Fig. 10 show that the Fuzzy-ART-based approach outperforms the 𝑇2 chart 

if outward shifts of one or more centroids are present in Scenario B, with the only exception of 

Disturbance 2 (leftward shift of cluster B2) in which the improvement occurs for large shifts only. 

The Fuzzy-ART-based approach performs better than the 𝐾-chart for Disturbance 6 (up- and right-

ward shift of cluster B3) and Disturbance 7 (outward shift of all clusters), whereas the two methods 

provide analogous results for Disturbance 4 (downward shift of cluster B2). In case of Disturbance 2 

(left-ward shift of cluster B1), the 𝐾-chart performs slightly better for large shifts only.   

The 𝐾-chart approach performs better than the 𝑇2 chart for all of the disturbances reported in Table 

3, at least for shifts of medium and large severity. 

 

INSERT FIGURE 10 ABOUT HERE 

 

Table 6 and Fig. 11 show that when the cluster shift is directed toward the inside of the ellipse (or the 

rectangle) that encloses the data, both the 𝑇2 chart and the Fuzzy-ART-based approach completely 

fail in detecting the disturbance. In the case of inward translations, an increasing trend of the 𝐴𝑅𝐿 is 

observed because the probability of observing data outside the elliptical or rectangular control 

regions decreases. If the natural process condition is described by a mixture distribution, the operator 

may be interested in detecting any deviation from that condition, regardless of the direction of the 

shift. In this frame, a rectangular or an elliptical control region is not adequate to detect a translation 

of one or more clusters in the multivariate variable space, and the methods based on those types of 

control regions lack actual flexibility.  

 

INSERT FIGURE 11 ABOUT HERE 
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In contrast, the 𝐾-chart is able to detect the shift regardless of the direction of the centroid translation 

due to the irregular-shaped control region, which adapts to the actual spread of the data. Therefore, 

the 𝐾-chart is the most flexible non-parametric method among the methods considered in this work. 

Table 7 and Fig. 12 show that the 𝐾-chart outperforms both the 𝑇2 chart and the Fuzzy-ART-based 

approach in detecting any variance increase that involves one or more clusters. Additionally, in this 

case, the particular nature of the control region provides a faster reaction with respect to disturbances 

that affect the data dispersion. 

 

INSERT FIGURE 12 ABOUT HERE 

 

6.3 Use of Different Kernel Functions 

As stated in Section 4, the two most popular alternatives to the RGB kernel function in the SVM 

literature47 are the polynomial function 𝐾𝑝𝑜𝑙𝑦(𝒂 × 𝒃), and the sigmoidal function 𝐾𝑠𝑖𝑔𝑚(𝒂 × 𝒃): 

 

𝐾𝑝𝑜𝑙𝑦(𝒂 × 𝒃) = (1 + 𝐚𝑇𝒃)𝑑 
(9) 

𝐾𝑠𝑖𝑔𝑚(𝒂 × 𝒃) = tanh(𝑑1𝐚
𝑇𝒃 + 𝑑2), 

 

where 𝑑 ∈ N+ is the polynomial kernel parameter and (𝑑1, 𝑑2) ∈ ℝ are two sigmoidal kernel 

parameters. Different combinations of values for 𝑑1 and 𝑑2 were compared by Lin and Lin52, who 

demonstrated that the choices of 𝑑1 > 0 and 𝑑2 < 0 are the most suitable, but they concluded that 

the RGB function is preferable in general. Furthermore, the dependency on two parameters renders 

the kernel optimization procedure more expensive from a computational viewpoint. For these 

reasons, only the polynomial function is considered and compared with the GRB function in this 

work. 

The automatic procedure for the selection of the kernel parameter described in Section 4 can be 

applied without modifications to the polynomial function. The only difference is represented by the 

discrete nature of the parameter 𝑑 ∈ N+. Fig. 13 shows the geometry of the control regions for 

𝐴𝑅𝐿0 = 100 and 𝑀 = 2000 in Scenario A and Scenario B using the polynomial kernel and the RGB 

kernel, where the values of 𝑆 and 𝑑 result from the automatic selection procedure.  

One limitation of the polynomial kernel38 is that it is strongly influenced by observations with a large 

norm. The result is an undesired inflation of the control-region volume, which can be reduced by 

centering and re-scaling the original observations.  As an example, Fig. 13 shows the boundary of the 
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bivariate regions estimated for the data transformed to a zero mean and unit standard deviation. 

Notice that by rescaling the data, the range of suitable values of the RGB kernel parameter 𝑆 is 

changed as well. The optimal values estimated in this case are 𝑆 = 2.2 in Scenario A and 𝑆 = 1.3 in 

Scenario B. 

 

INSERT FIGURE 13 ABOUT HERE 

 

Fig. 13 shows that the control region based on the GRB function fits the data better than the control 

region based on the polynomial function. The difference is larger in Scenario B in which the clusters 

are more widely spread. The optimal polynomial degree is 𝑑 = 17 in Scenario A and 𝑑 = 15 in 

Scenario B. At lower degrees, the contour of the region approaches an ellipse, whereas at higher 

degrees, the contour becomes more irregular without enhancing the data fitting. However, in the 

overall explored domain of function degrees, the control region generated by the polynomial kernel 

is always much less representative of the actual data distribution than the region generated by the 

GRB kernel. This empirical outcome shows that in the presence of mixed distributions, the GRB is 

preferred over other common kernels in accordance with the results of previous studies devoted to 

single-mode non-normal distributions38,52. 

 

7 A Real Test Case 

In this section, a real case study that addresses chatter detection in a roll grinding process, as 

mentioned in Section 1, is discussed and used to highlight the applicability of the proposed methods 

in an actual industrial operation. The in-process acquisition of sensor signals has particular industrial 

relevance because it allows the detection of undesired process phenomena that affect product quality 

and implementation of adaptive control actions. However, signal data might present a multimode 

pattern caused by frequent changes of the cutting parameters during each grinding cycle53-54, and this 

situation makes chatter detection55 a troublesome task using traditional control charting methods. 

Despite a body of literature devoted to the chatter detection problem56-62, few automatic methods 

have been considered for actual industrial implementation. In this framework, multimode SPC 

techniques may represent a valuable alternative to common approaches. For a review of chatter 

vibration fundamentals in grinding processes, see Altintas and Weck63 and Inasaki et al.64. 

The scheme of the experimental setup used to collect real signal data during a roll grinding process is 

presented in Fig. 2a). The grinding process was performed on a special alloyed steel roll with an 
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initial diameter of 500 𝑚𝑚 and an axial length of 1700 𝑚𝑚. The grinding wheel was constructed of 

an aluminum oxide material with a nominal diameter of 700 𝑚𝑚 and a width of 75 𝑚𝑚. The 

accelerometer signal along the 𝑋 axis was sampled at 2 𝑘𝐻𝑧 and segmented into sliding time 

windows of duration 𝑇 = 1 𝑠, with an overlap ratio of 90%. The signal was processed online to 

compute two synthetic indices denoted by 𝑟𝑚𝑠𝑗 and 𝑘𝑢𝑟𝑡𝑗, 𝑗 = 1,2, …, which consist of the root 

mean square index of the vibration signal and the kurtosis of its time-domain distribution within the 

𝑗𝑡ℎ time window. The 𝑟𝑚𝑠 index was chosen because it represents the most basic choice for 

vibration monitoring in industrial applications53.  Our previous experimental studies showed that use 

of the 𝑘𝑢𝑟𝑡 index in combination with the 𝑟𝑚𝑠 index enhances the capability of chatter detection.  

The result is a bivariate quality characteristic {𝒙𝑗 ∈ ℝ
2, 𝑗 = 1,2, … }, where 𝒙𝑗 = [𝑟𝑚𝑠𝑗, 𝑘𝑢𝑟𝑡𝑗] 

𝑇.  

The experiments were performed as follows. A total of 𝑀 grinding passes were carried out under 

chatter-free conditions with different combinations of the cutting parameters. These combinations of 

parameters are representative of the different operative conditions adopted by the operator during 

each grinding cycle. Therefore, the data collected during this phase are expected to be representative 

of the natural process behavior and are hence used as the Phase I dataset.  

To simulate the OOC Phase II data, a new set of grinding passes was performed to induce chatter 

vibrations that grow over time as the waviness on the workpiece and the wheel becomes increasingly 

severe. The waviness on the wheel was artificially induced to produce the chatter onset. At the end of 

each sub-set of the grinding passes, the surface condition of the roll was checked by visual 

inspection, and the presence or absence of chatter marks was used to qualify the passes as IC or 

OOC, respectively.  

The different combinations of cutting parameters used in all the test runs are reported in Table 8. The 

roll speed was held constant during the experiments at 𝑛𝑤 = 30 𝑟𝑝𝑚.  

 

INSERT TABLE 8 ABOUT HERE 

 

The data collected under chatter-free conditions (see Fig. 2b)) with the eight combinations of 

parameters shown in Table 8 were used as the Phase I dataset (approximately 𝑀 = 3000 

observations).  

A traditional SPC approach would require the design of one control chart for each cutting condition 

(each mode of the multimode IC state), which could lead to a considerable amount of work. In 

addition, any departure from the multivariate normality assumption within each mode implies the 

need for a non-parametric approach. The major advantage provided by the use of a non-parametric 
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multimode technique consists of the design of a single monitoring tool that is able to cover multiple 

operative conditions regardless of the actual data distribution in each mode. 

 

INSERT TABLE 9 ABOUT HERE 

 

Table 9 shows the detection percentages of data acquired under the chattered conditions provided by 

the 𝑇2 chart, the Fuzzy-ART-based approach and the 𝐾-chart. The corresponding control regions at 

𝐴𝑅𝐿0 = 100 and 𝐴𝑅𝐿0 = 370 are shown in Fig. 14 in which the data are depicted after the re-

scaling operation imposed by the Fuzzy ART-based approach. 

 

INSERT FIGURE 14 ABOUT HERE 

 

Due to its adaptive properties, the 𝐾–chart allows detection of greater than 98% of the data acquired 

under chattered conditions. Fig. 14 shows that the SVDD-based procedure yields a double control 

region that encloses the two separate clusters. In this case, the estimated kernel parameter is 𝑆 =

0.0425. The Fuzzy-ART-based approach is the one that provides the lowest performance because a 

large percentage of the out-of-control observations are spread within the rectangular control region 

that encloses the IC data. The 𝑇2 chart performs slightly better than the Fuzzy ART, but an elliptical 

control region (analogous to a rectangular region) is far from a good choice for the multimode 

grinding data. 

The results in the real case study confirm the major conclusions drawn based on the simulation 

experiments. The 𝐾–chart outperforms the other two approaches due to its kernel-based procedure 

for estimation of a flexible and adaptive control region.  

 

8 Conclusions 

The implementation of traditional MSPC tools based on conventional assumptions on the underlying 

data distribution might not be appropriate for industrial applications of practical interest, especially if 

in-process sensor data are used. A challenging violation of traditional MSPC assumptions consists of 

a multimode process characterized by transitions from one operating mode to another. The 

development of distribution-free MSPC tools that are able to monitor multimode processes is of great 

practical interest, but it has attracted limited attention in the mainstream literature thus far, especially 

in the discrete part manufacturing field. 
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Our study is aimed at investigating the applicability of certain non-parametric MSPC methods to 

multimode processes and demonstrating their performances using a comparison study that includes 

both simulated and real industrial data. 

The paper compares two distribution-free methods based on one-class classification variants of two 

well-known statistical learning techniques, i.e., the Fuzzy-ART-based approach and the so-called 𝐾-

chart, which require no assumption on the data distribution and their variance-covariance structure. 

Our analysis showed that the Fuzzy-ART-based approach generates a rectangular-like control region, 

possibly with blunted corners. Such a control region is the result of the procedure adopted to select 

the vigilance parameter 𝜌, which assumes that all of the training data can be grouped into a single IC 

class. The single-class assumption allows design of a simple-to-implement procedure to control the 

false alarm rate, but it may lead to reduced performance in the presence of clustered data. 

Further research efforts are required to design a Fuzzy-ART-based approach that allows control of 

the number of classes generated during the training step and the false alarm rate at the same time. 

The 𝐾-chart provides a more flexible solution due to an irregularly shaped control region that adapts 

to the actual spread in the data. The simulation results showed that the 𝐾-chart is able to detect 

departures from the natural multimode distribution regardless of the direction of the shift within the 

multivariate variable space. The greater the departure from multi-normality and/or single-mode 

distributions, the greater the expected benefits provided by the 𝐾-chart over other methods will be.  

A real case study that addresses chatter detection in roll grinding via in-process sensor signals was 

proposed to evaluate the implementation of the proposed methods in an actual industrial application. 

The results achieved in the real case study confirm the main conclusions drawn based on the 

simulation analysis. In particular, due to its adaptive properties, the 𝐾-chart is the more flexible 

approach among those considered in this work for monitoring of a multimode process regardless of 

the actual distribution of the acquired variables. 

With respect to the 𝐾-chart design, we tested two different kernel functions, i.e., the GRB function 

and the polynomial function. We showed that the automated procedure for selection of the kernel 

parameter could be applied without modification to a different kernel without any modifications. 

However, the results show that the GRB function provides better adaptability to mixture distributions 

than the polynomial function, and hence, it should be generally preferred. 

The automated procedure for selection of the kernel parameter involves simulation of artificial 

outliers during the training phase. Our simulation analysis showed that such a procedure is robust 

with respect to the number of artificial outliers, at least when such a number is reasonably large. 

Future studies might be aimed at further assessment of the sensitivity of such a procedure with 
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respect to different parameters and settings. Possible improvements of the procedure may be studied 

as well, e.g., avoiding the need for the inclusion of artificially generated outliers. 
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Appendix A: The Fuzzy-ART Training Procedure 

The weight initialization consists of setting 𝑤𝑞,1 = 𝑤𝑞,2 = ⋯ = 𝑤𝑞,2𝑝 = 1. The 𝐹2 node with these 

weights is referred to as an uncommitted node. After one class is chosen to represent an input pattern 

𝒙𝑗
𝑐, the corresponding 𝐹2 node is referred to as a committed node. Given a multivariate training set 

{𝒙𝑗}, 𝑗 = 1,… ,𝑀, the training phase of Fuzzy ART is applied as follows: 

1. Initialize the number of committed nodes to 0, and only one uncommitted node remains; 

2. Set a choice parameter 𝛽 ∈ [0,∞] (a small value is usually adopted, e.g., 𝛽 = 10−6 in this work) 

and a vigilance parameter 𝜌 ∈ [0,1]; 

3. Apply the complement coding to the new input sample 𝒙𝑗; 

4. Calculate the bottom-up inputs to the 𝐹2 nodes as follows: 

 

𝑇𝑞(𝒙𝑗) =

{
 
 

 
 

𝑝

𝛽 + 2𝑝

|𝒙𝑗
𝑐˄𝒘𝑞|

𝛽 + |𝒘𝑞|

 

if the 𝑞𝑡ℎ node is the uncommitted node 

(A1) 

if the 𝑞𝑡ℎ node is a committed node 

 

where operator ‘˄’ gives the vector 𝒖˄𝒗 = (min{𝑢1, 𝑣1}, … ,min{𝑢𝑖 , 𝑣𝑖}… ), and operator ‘||’ 

gives the scalar |𝒖| = ∑ abs(𝑢𝑖)𝑖 ; 

5. Choose the 𝐹2 node that receives the maximum bottom-up input (assume that this node has index 

𝑞𝑚𝑎𝑥). Three cases can now be distinguished: 

a) The 𝑞𝑚𝑎𝑥 node is the uncommitted node, and in this case, the vigilance criterion is satisfied:  

 

|𝒙𝑗
𝑐˄𝒘𝑞𝑚𝑎𝑥|

|𝒙𝑗
𝑐|

≥ 𝜌 
(A2) 

 

 

Increase the number of committed nodes by one. A new uncommitted node is introduced, and 

its weight vector is initialized as discussed above: Go to step 6; 

b) The 𝑞𝑚𝑎𝑥 node is a committed node, and it satisfies the vigilance criterion (A2): Go to step 6; 

c) The 𝑞𝑚𝑎𝑥 node is a committed node, but it does not satisfy the vigilance criterion (A2): 

Disqualify the node by setting 𝑇𝑞(𝒙𝑗) = −1 and repeat Step 5; 

6. The weights associated with the 𝑞𝑚𝑎𝑥 node are modified according to the following equation: 
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𝒘𝑞𝑚𝑎𝑥 = 𝒘𝑞𝑚𝑎𝑥  ˄𝒙𝑗
𝑐 (A3) 

 

If this is the last input sample, go to step 7; otherwise, go back to step 3; 

7. After all 𝑀 samples are presented, two cases are possible: 

a) In the previous training data presentation, at least one component of the weight vectors is 

changed: Go to step 3 by presenting each training sample again to the network; 

b) In the previous training data presentation, no weight change occurred: The learning process is 

complete. 

 

The stop condition at step 7 is driven by a tolerance index (e.g., 𝑡𝑜𝑙 = 1𝑒 − 6) for comparison of the 

weight vector in consecutive training data presentations. 

Note that by choosing a small value of the choice parameter 𝛽, the convergence of the learning 

process is guaranteed after one presentation of the input data to the network50.  
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Table 1 – Actual IC 𝐴𝑅𝐿 performances of 𝑇2 chart with theoretical limit 

Scenario  Target 𝐴𝑅𝐿 Actual 𝐴𝑅𝐿 with 99% confidence intervals 

A 
100 198.48    [195.81, 201.15] 

370 874.76    [845.88, 903.64] 

B 
100 >10000 

370 >10000 
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Table 2 – Description of simulated disturbances in Scenario A 

Disturbance Description Settings 

1 Shift of cluster A1 centroid 𝝁1 = 𝝁1 − [𝛿1, 𝛿1]
𝑇 

2 Shift of cluster A2 centroid 𝝁2 = 𝝁2 + [𝛿1, 𝛿1]
𝑇 

3 Shift of both the cluster centroids 𝝁1 = 𝝁1 + [𝛿1, −𝛿1]
𝑇,   

𝝁2 = 𝝁2 + [𝛿1, −𝛿1]
𝑇 

4 Variance increase of cluster A1 {𝚺1}𝑖,𝑖 = 𝛿2 ∙ {𝚺1}𝑖,𝑖, 𝑖 = 1,2 

5 Variance increase of cluster A2 {𝚺2}𝑖,𝑖 = 𝛿2 ∙ {𝚺2}𝑖,𝑖, 𝑖 = 1,2 

6 Variance increase of both the clusters {𝚺1}𝑖,𝑖 = 𝛿2 ∙ {𝚺1}𝑖,𝑖, 𝑖 = 1,2 

{𝚺2}𝑖,𝑖 = 𝛿2 ∙ {𝚺2}𝑖,𝑖, 𝑖 = 1,2 
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Table 3 – Description of simulated disturbances in Scenario B 

Disturbance Description Settings 

1 Rightward shift of cluster B1 centroid 𝝁1 = 𝝁1 + [𝛿3, 0]
𝑇 

2 Leftward shift of cluster B1 centroid 𝝁1 = 𝝁1 − [𝛿3, 0]
𝑇 

3 Upward shift of cluster B2 centroid 𝝁2 = 𝝁2 + [0, 𝛿3]
𝑇 

4 Downward shift of cluster B2 centroid 𝝁2 = 𝝁2 − [0, 𝛿3]
𝑇 

5 Down-left-ward shift of cluster B3 centroid 𝝁3 = 𝝁3 − [𝛿3, 𝛿3]
𝑇 

6 Up-right-ward shift of cluster B3 centroid 𝝁3 = 𝝁3 + [𝛿3, 𝛿3]
𝑇 

7 Outward shift of all the clusters 𝝁1 = 𝝁1 − [𝛿3, 0]
𝑇, 𝝁2 = 𝝁2 − [0, 𝛿3]

𝑇, 

𝝁3 = 𝝁3 + [𝛿3, 𝛿3]
𝑇 

8 Variance increase of cluster B1 {𝚺1}𝑖,𝑖 = 𝛿2 ∙ {𝚺1}𝑖,𝑖, 𝑖 = 1,2 

9 Variance increase of cluster B2 {𝚺2}𝑖,𝑖 = 𝛿2 ∙ {𝚺2}𝑖,𝑖, 𝑖 = 1,2 

10 Variance increase of cluster B3 {𝚺3}𝑖,𝑖 = 𝛿2 ∙ {𝚺3}𝑖,𝑖, 𝑖 = 1,2 

11 Variance increase of all the clusters {𝚺1}𝑖,𝑖 = 𝛿2 ∙ {𝚺1}𝑖,𝑖, 𝑖 = 1,2 

{𝚺2}𝑖,𝑖 = 𝛿2 ∙ {𝚺2}𝑖,𝑖, 𝑖 = 1,2 

{𝚺3}𝑖,𝑖 = 𝛿2 ∙ {𝚺3}𝑖,𝑖, 𝑖 = 1,2 

 

  



35 

Table 4 – Comparison of ARLs and 99% confidence intervals (Scenario A) 

Scenario A Severity 𝑇2 chart Fuzzy ART 𝐾-chart 

In Control - 102.98 [98.06, 107.90] 99.37 [95.12, 103.63] 103.30 [97.79, 108.81] 

Disturbance 1 
Shift of cluster 
A1  

1 61.88 [60.15, 63.60] 48.09 [46.40, 49.77]  81.43 [77.28, 85.57] 

2 45.07 [44.01, 46.14] 39.49 [34.88, 44.10] 63.18 [58.97, 67.38] 

3 31.60 [30.92, 32.28] 24.53 [22.53, 26.54] 41.75 [39.46, 44.04] 

4 22.25 [21.73, 22.77] 16.27 [14.34, 18.19] 31.24 [28.42, 34.06] 

5 15.37 [15.03, 15.72] 11.08 [10.00, 12.15] 19.66 [18.19, 21.13] 

Disturbance 2 
Shift of cluster 
A2 

1 85.09 [80.48, 89.70] 50.35 [44.44, 56.26] 28.85 [27.34, 30.36] 

2 71.75 [69.23, 74.28] 27.46 [23.70, 31.22] 11.83 [11.08, 12.58] 

3 54.90 [56.70, 57.11] 13.80 [12.05, 15.55] 5.78 [5.42, 6.14] 

4 40.92 [39.19, 42.65] 7.95 [7.26, 8.63] 3.41 [3.27, 3.55] 

5 27.59 [26.44, 28.74] 4.79 [4.50, 5.09] 2.48 [2.44, 2.52] 

Disturbance 3 
Shift of both 
the cluster 
centroids 

1 26.41 [25.58, 27.24]  63.02 [53.15, 72.89] 34.61 [32.35, 36.87] 

2 12.66 [12.41, 12.91] 32.32 [28.64, 36.00] 15.54 [14.77, 16.30] 

3 6.70 [6.62, 6.79] 16.74 [15.03, 18.44] 8.30 [7.74, 8.85] 

4 3.98 [3.91, 4.05] 10.75 [9.36, 12.14] 4.53 [4.32, 4.74] 

5 2.59 [2.57, 2.62] 6.00 [5.40, 6.59] 2.92 [2.82, 3.01] 

Disturbance 4 
Variance 
increase of 
cluster A1 

1 54.58 [50.86, 54.58] 68.68 [65.99, 71.37] 52.10 [50.40, 53.81] 

2 33.46 [31.58, 33.46] 48.93 [46.60, 51.25] 31.27 [30.22, 32.33] 

3 17.13 [16.57, 17.13] 27.29 [26.38, 28.21] 16.14 [15.60, 16.70] 

4 11.60 [11.30, 11.60] 18.60 [17.94, 19.26] 11.05 [10.83, 11.26] 

5 9.03 [8.78, 9.03] 14.12 [13.71, 14.53] 8.55 [8.38, 8.73] 

Disturbance 5 
Variance 
increase of 
cluster A2 

1 73.98 [71.80, 76.15] 73.72 [68.20, 79.25] 64.75 [61.29, 68.22] 

2 53.79 [52.59, 55.00] 53.70 [51.09, 56.31] 41.62 [39.87, 43.37] 

3 33.11 [32.30, 33.92] 31.79 [30.30, 33.27] 22.26 [21.74, 22.78] 

4 23.15 [22.77, 23.52] 23.10 [21.84, 24.37] 14.82 [14.40, 15.23] 

5 17.34 [17.05, 17.63] 16.76 [15.99, 17.52] 11.46 [11.23, 11.69] 

Disturbance 6 
Variance 
increase of 
both the 
clusters 

1 45.86 [43.60, 45.86] 50.93 [48.98, 52.89] 39.48 [37.94, 41.02] 

2 26.06 [24.61, 26.06] 30.58 [29.68, 31.49] 21.34 [20.56, 22.12] 

3 12.81  [12.34, 12.81] 15.96 [15.53, 16.44] 10.28 [10.02, 10.55] 

4 8.411 [8.16, 8.41] 10.63 [10.39, 10.87] 6.77 [6.66, 6.88] 

5 6.40 [6.25, 6.40] 7.88 [7.66, 8.10] 5.14 [5.06, 5.23] 
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Table 5 – Comparison of ARLs and 99% confidence intervals (Scenario B) – part 1 

Scenario B Severity 𝑇2 chart Fuzzy ART 𝐾-chart 

In Control - 101.89 [97.77, 106.00] 102.39 [97.04, 107.75] 102.32 [98.57, 106.07] 

Disturbance 2 
Leftward shift 
of cluster B1 

1 79.63 [77.25, 80.02] 82.98 [78.06, 87.90] 93.10 [88.45, 97.74] 

2 50.86 [49.15, 52.57] 51.96 [48.34, 55.57]  57.26 [54.20, 60.32] 

3 24.64 [23.95, 25.32] 19.29 [17.01, 21.56]  18.20 [16.04, 20.37] 

4 12.90 [12.55, 13.25] 8.47 [7.83, 9.12] 6.12 [5.71, 6.52] 

5 7.42 [7.31, 7.53] 4.73 [4.41, 5.06]  3.54 [3.46, 3.61]  

Disturbance 4 
Downward 
shift of cluster 
B2  

1 79.56 [77.32, 81.80] 75.78 [70.47, 81.09] 77.30 [73.29, 81.30] 

2 45.44 [44.12, 46.76] 35.96 [32.77, 39.16] 34.59 [32.54, 36.64] 

3 14.33 [13.87, 14.78] 8.81 [7.87, 9.76] 8.23 [7.86, 8.60] 

4 5.46 [5.40, 5.53] 3.84 [3.72, 3.95] 3.80 [3.72, 3.87] 

5 3.41 [3.38, 3.43] 3.03 [3.01, 3.05] 3.04 [3.02, 3.05] 

Disturbance 6 
Up-right-ward 
shift of cluster 
B3 

1 96.07 [91.38, 100.75] 61.73 [58.94, 64.52] 90.39 [85.40, 95.37] 

2 70.23 [67.66, 72.80] 23.26 [21.88, 24.65] 44.50 [41.71, 47.29] 

3 16.37 [15.81, 16.93] 6.19 [5.87, 6.51] 9.71 [9.10, 10.33] 

4 4.93 [4.87, 4.99] 3.43 [3.37, 3.49] 3.96 [3.85, 4.08] 

5 3.14 [3.13, 3.16] 3.00 [2.99, 3.00] 3.05 [3.03, 3.07] 

Disturbance 7 
Outward shift 
of all the 
clusters 

1 60.99 [59.09, 62.90] 40.55 [38.66, 42.44] 69.78 [67.20, 72.35] 

2 27.43 [26.74, 28.12] 11.58 [11.19, 11.98] 23.62 [22.28, 24.96] 

3 6.50 [6.34, 6.66] 2.87 [2.81, 2.93] 4.47 [4.31, 4.63] 

4 2.25 [2.23, 2.28] 1.47 [1.45, 1.49] 1.78 [1.75, 1.81] 

5 1.37 [1.37, 1.38] 1.15 [1.14, 1.16] 1.19 [1.18, 1.20] 
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Table 6 – Comparison of ARLs and 99% confidence intervals (Scenario B) – part 2 

Scenario B Severity 𝑇2 chart Fuzzy ART 𝐾-chart 

Disturbance 1 
Rightward 
shift of cluster 
B1 

1 132.96 [128.21, 137.71] 133.23 [126.37, 140.10]  87.66 [83.55, 91.78] 

2 185.16 [176.64, 193.67] 170.38 [151.96,188.79]  50.89 [46.60, 55.18] 

3 265.84 [251.86, 279.81] 186.42 [161.78, 211.07] 14.07 [12.98, 15.15] 

4 315.93 [303.19, 328.66] 183.44 [158.54, 208.35] 5.18 [4.98, 5.38] 

5 337.37 [318.44, 356.29] 202.70 [169.89, 235.51 3.42 [3.37, 3.47] 

Disturbance 3 
Upward shift 
of cluster B2 

1 121.22 [118.15, 124.28] 135.26 [127.27, 143.26] 94.42 [89.02, 99.83] 

2 137.00 [132.83, 141.16] 155.14 [143.74, 166.54] 51.86 [46.88, 56.85] 

3 143.73 [138.98, 148.48] 143.76 [131.09, 156.43] 13.16 [10.61, 15.72] 

4 149.69 [145.24, 154.14] 166.18 [141.56, 190.79] 5.27 [4.78, 5.74] 

5 146.01 [141.51, 150.51] 150.34 [132.87, 167.81] 3.52 [3.42, 3.61] 

Disturbance 5 
Down-left-
ward shift of 
cluster B3 

1 102.89 [100.26, 105.52] 167.85 [159.02, 176.69] 88.11 [84.72, 91.49] 

2 107.46 [103.01, 111.91] 264.06 [226.10, 302.01] 47.16 [44.27, 50.04] 

3 102.96 [98.93, 106.98] 266.09 [232.21, 299.96] 12.13 [10.95, 13.31] 

4 103.98 [100.41, 107.57] 309.44 [259.93, 358.96] 4.55 [4.20, 4.89] 

5 102.46 [99.72, 105.20] 315.87 [234.46, 397.27] 3.27 [3.10, 3.45] 
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Table 7 – Comparison of ARLs and 99% confidence intervals (Scenario B) – part 3 

Scenario B Severity 𝑇2 chart Fuzzy ART 𝐾-chart 

Disturbance 8 
Variance 
increase of 
cluster B1 

1 79.88 [77.70, 82.07] 86.92 [81.95, 91.88] 49.29 [47.52, 51.05] 

2 64.41 [62.38, 66.43] 68.67 [65.41, 71.93] 30.62 [29.45, 31.78] 

3 45.93 [44.96, 46.90] 51.29 [48.65, 53.93] 16.73 [16.28, 17.18] 

4 35.36 [34.68, 36.05] 38.52 [36.80, 40.24] 11.91 [11.61, 12.20] 

5 29.40 [28.80, 30.01] 30.75 [29.76, 31.75] 9.50 [9.34, 9.66] 

Disturbance 9 
Variance 
increase of 
cluster B2 

1 79.07 [76.58, 81.56] 86.99 [83.38, 90.59] 70.54 [67.78, 73.31] 

2 62.44 [60.49, 64.40] 71.00 [68.21, 73.78] 48.94 [47.31, 50.56] 

3 42.22 [41.41, 43.02] 46.01 [43.81, 48.20] 28.73 [27.86, 29.60] 

4 31.00 [30.34, 31.67] 33.62 [32.38, 34.86] 19.53 [18.97, 20.08] 

5 24.93 [24.45, 24.41] 26.12 [25.10, 27.15] 15.10 [14.74, 15.47] 

Disturbance 10 
Variance 
increase of 
cluster B3 

1 100.42 [97.49, 103.34] 77.87 [75.23, 80.51] 67.26 [64.83, 69.69] 

2 95.26 [91.92, 98.60] 57.52 [55.65, 59.40] 44.13 [42.07, 46.19] 

3 86.41 [83.34, 89.48] 36.32 [34.60, 38.04] 24.26 [23.40, 25.13] 

4 74.02 [71.58, 76.47] 26.66 [25.23, 28.09] 16.17 [15.79, 16.55] 

5 63.07 [61.28, 64.86] 21.27 [20.23, 22.31] 12.63 [12.31, 12.95] 

Disturbance 11 
Variance 
increase of all 
the clusters 

1 64.01 [62.22, 65.81] 56.13 [53.70, 58.55] 33.53 [32.43, 34.64] 

2 44.66 [43.50, 45.82] 34.87 [33.87, 35.86] 17.68 [17.22, 18.14] 

3 26.57 [25.89, 27.25] 19.04 [18.77, 19.31] 8.40 [8.27, 8.53] 

4 18.40 [18.14, 18.66] 13.00 [12.69, 13.30] 5.65 [5.55, 5.74]  

5 14.18 [13.98, 14.37] 9.63 [9.52, 9.75] 4.31 [4.26, 4.36] 
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Table 8 – Cutting parameters used in the real case study 

Condition Wheel speed [rpm] (𝑛𝑠) Infeed [mm] (𝑎𝑒) 

In-Control (IC) - Chatter-free 

680 0.01 

680 0.02 

780 0.01 

780 0.02 

830 0.01 

830 0.02 

1100 0.01 

1100 0.02 

Out-of-Control (OOC) - Chatter 1100 0.01 
 



 

 

 

Table 9 – Chatter detection percentage in the real case study 

𝐴𝑅𝐿0 𝑇2 Fuzzy ART 𝐾-Chart (𝑆 = 0.0425) 

100 63.73% 43.63% 98.04% 

370 61.76% 42.65% 98.04% 
 

 

 


