28,936 research outputs found

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 Versión preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Towards Declarative Safety Rules for Perception Specification Architectures

    Full text link
    Agriculture has a high number of fatalities compared to other blue collar fields, additionally population decreasing in rural areas is resulting in decreased work force. These issues have resulted in increased focus on improving efficiency of and introducing autonomy in agriculture. Field robots are an increasingly promising branch of robotics targeted at full automation in agriculture. The safety aspect however is rely addressed in connection with safety standards, which limits the real-world applicability. In this paper we present an analysis of a vision pipeline in connection with functional-safety standards, in order to propose solutions for how to ascertain that the system operates as required. Based on the analysis we demonstrate a simple mechanism for verifying that a vision pipeline is functioning correctly, thus improving the safety in the overall system.Comment: Presented at DSLRob 2015 (arXiv:1601.00877

    Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Get PDF
    This document is a self-archiving copy of the accepted version of the paper. Please find the final published version in IEEEXplore: http://dx.doi.org/10.1109/TE.2014.2358551This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to design FDD strategies for a real system. To this end, the paper proposes a lab project where students are requested to develop a discrete event dynamic system (DEDS) diagnosis to cope with two faulty conditions in an autonomous mobile robot task. A sample solution is discussed for LEGO Mindstorms NXT robots with LabVIEW. This innovative practice is relevant to higher education engineering courses related to mechatronics, robotics, or DEDS. Results are also given of the application of this strategy as part of a postgraduate course on fault-tolerant mechatronic systems.This work was supported in part by the Spanish CICYT under Project DPI2011-22443

    Modeling the power consumption of a Wifibot and studying the role of communication cost in operation time

    Get PDF
    Mobile robots are becoming part of our every day living at home, work or entertainment. Due to their limited power capabilities, the development of new energy consumption models can lead to energy conservation and energy efficient designs. In this paper, we carry out a number of experiments and we focus on the motors power consumption of a specific robot called Wifibot. Based on the experimentation results, we build models for different speed and acceleration levels. We compare the motors power consumption to other robot running modes. We, also, create a simple robot network scenario and we investigate whether forwarding data through a closer node could lead to longer operation times. We assess the effect energy capacity, traveling distance and data rate on the operation time

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido
    • …
    corecore