20,039 research outputs found

    Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded

    Get PDF
    Decision trees usefully represent sparse, high dimensional and noisy data. Having learned a function from this data, we may want to thereafter integrate the function into a larger decision-making problem, e.g., for picking the best chemical process catalyst. We study a large-scale, industrially-relevant mixed-integer nonlinear nonconvex optimization problem involving both gradient-boosted trees and penalty functions mitigating risk. This mixed-integer optimization problem with convex penalty terms broadly applies to optimizing pre-trained regression tree models. Decision makers may wish to optimize discrete models to repurpose legacy predictive models, or they may wish to optimize a discrete model that particularly well-represents a data set. We develop several heuristic methods to find feasible solutions, and an exact, branch-and-bound algorithm leveraging structural properties of the gradient-boosted trees and penalty functions. We computationally test our methods on concrete mixture design instance and a chemical catalysis industrial instance

    On orbital allotments for geostationary satellites

    Get PDF
    The following satellite synthesis problem is addressed: communication satellites are to be allotted positions on the geostationary arc so that interference does not exceed a given acceptable level by enforcing conservative pairwise satellite separation. A desired location is specified for each satellite, and the objective is to minimize the sum of the deviations between the satellites' prescribed and desired locations. Two mixed integer programming models for the satellite synthesis problem are presented. Four solution strategies, branch-and-bound, Benders' decomposition, linear programming with restricted basis entry, and a switching heuristic, are used to find solutions to example synthesis problems. Computational results indicate the switching algorithm yields solutions of good quality in reasonable execution times when compared to the other solution methods. It is demonstrated that the switching algorithm can be applied to synthesis problems with the objective of minimizing the largest deviation between a prescribed location and the corresponding desired location. Furthermore, it is shown that the switching heuristic can use no conservative, location-dependent satellite separations in order to satisfy interference criteria

    The Voice of Optimization

    Full text link
    We introduce the idea that using optimal classification trees (OCTs) and optimal classification trees with-hyperplanes (OCT-Hs), interpretable machine learning algorithms developed by Bertsimas and Dunn [2017, 2018], we are able to obtain insight on the strategy behind the optimal solution in continuous and mixed-integer convex optimization problem as a function of key parameters that affect the problem. In this way, optimization is not a black box anymore. Instead, we redefine optimization as a multiclass classification problem where the predictor gives insights on the logic behind the optimal solution. In other words, OCTs and OCT-Hs give optimization a voice. We show on several realistic examples that the accuracy behind our method is in the 90%-100% range, while even when the predictions are not correct, the degree of suboptimality or infeasibility is very low. We compare optimal strategy predictions of OCTs and OCT-Hs and feedforward neural networks (NNs) and conclude that the performance of OCT-Hs and NNs is comparable. OCTs are somewhat weaker but often competitive. Therefore, our approach provides a novel insightful understanding of optimal strategies to solve a broad class of continuous and mixed-integer optimization problems

    Estimating Maximally Probable Constrained Relations by Mathematical Programming

    Full text link
    Estimating a constrained relation is a fundamental problem in machine learning. Special cases are classification (the problem of estimating a map from a set of to-be-classified elements to a set of labels), clustering (the problem of estimating an equivalence relation on a set) and ranking (the problem of estimating a linear order on a set). We contribute a family of probability measures on the set of all relations between two finite, non-empty sets, which offers a joint abstraction of multi-label classification, correlation clustering and ranking by linear ordering. Estimating (learning) a maximally probable measure, given (a training set of) related and unrelated pairs, is a convex optimization problem. Estimating (inferring) a maximally probable relation, given a measure, is a 01-linear program. It is solved in linear time for maps. It is NP-hard for equivalence relations and linear orders. Practical solutions for all three cases are shown in experiments with real data. Finally, estimating a maximally probable measure and relation jointly is posed as a mixed-integer nonlinear program. This formulation suggests a mathematical programming approach to semi-supervised learning.Comment: 16 page
    corecore