2,878 research outputs found

    Audio Analysis/synthesis System

    Get PDF
    A method and apparatus for the automatic analysis, synthesis and modification of audio signals, based on an overlap-add sinusoidal model, is disclosed. Automatic analysis of amplitude, frequency and phase parameters of the model is achieved using an analysis-by-synthesis procedure which incorporates successive approximation, yielding synthetic waveforms which are very good approximations to the original waveforms and are perceptually identical to the original sounds. A generalized overlap-add sinusoidal model is introduced which can modify audio signals without objectionable artifacts. In addition, a new approach to pitch-scale modification allows for the use of arbitrary spectral envelope estimates and addresses the problems of high-frequency loss and noise amplification encountered with prior art methods. The overlap-add synthesis method provides the ability to synthesize sounds with computational efficiency rivaling that of synthesis using the discrete short-time Fourier transform (DSTFT) while eliminating the modification artifacts associated with that method.Georgia Tech Research Corporatio

    Glottal Spectral Separation for Speech Synthesis

    Get PDF

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    A Comparison Between STRAIGHT, Glottal, an Sinusoidal Vocoding in Statistical Parametric Speech Synthesis

    Get PDF
    Speech is a fundamental method of human communication that allows conveying information between people. Even though the linguistic content is commonly regarded as the main information in speech, the signal contains a richness of other information, such as prosodic cues that shape the intended meaning of a sentence. This information is largely generated by quasi-periodic glottal excitation, which is the acoustic speech excitation airflow originating from the lungs that makes the vocal folds oscillate in the production of voiced speech. By regulating the sub-glottal pressure and the tension of the vocal folds, humans learn to affect the characteristics of the glottal excitation in order to signal the emotional state of the speaker for example. Glottal inverse filtering (GIF) is an estimation method for the glottal excitation of a recorded speech signal. Various cues about the speech signal, such as the mode of phonation, can be detected and analyzed from an estimate of the glottal flow, both instantaneously and as a function of time. Aside from its use in fundamental speech research, such as phonetics, the recent advances in GIF and machine learning enable a wider variety of GIF applications, such as emotional speech synthesis and the detection of paralinguistic information. However, GIF is a difficult inverse problem where the target algorithm output is generally unattainable with direct measurements. Thus the algorithms and their evaluation need to rely on some prior assumptions about the properties of the speech signal. A common thread utilized in most of the studies in this thesis is the estimation of the vocal tract transfer function (the key problem in GIF) by temporally weighting the optimization criterion in GIF so that the effect of the main excitation peak is attenuated. This thesis studies GIF from various perspectives---including the development of two new GIF methods that improve GIF performance over the state-of-the-art methods---and furthers basic research in the automated estimation of glottal excitation. The estimation of the GIF-based vocal tract transfer function for formant tracking and perceptually weighted speech envelope estimation is also studied. The central speech technology application of GIF addressed in the thesis is the use of GIF-based spectral envelope models and glottal excitation waveforms as target training data for the generative neural network models used in statistical parametric speech synthesis. The obtained results show that even though the presented studies provide improvements to the previous methodology for all voice types, GIF-based speech processing continues to mainly benefit male voices in speech synthesis applications.Puhe on olennainen osa ihmistenvälistä informaation siirtoa. Vaikka kielellistä sisältöä pidetään yleisesti puheen tärkeimpänä ominaisuutena, puhesignaali sisältää myös runsaasti muuta informaatiota kuten prosodisia vihjeitä, jotka muokkaavat siirrettävän informaation merkitystä. Tämä informaatio tuotetaan suurilta osin näennäisjaksollisella glottisherätteellä, joka on puheen herätteenä toimiva akustinen virtaussignaali. Säätämällä äänihuulten alapuolista painetta ja äänihuulten kireyttä ihmiset muuttavat glottisherätteen ominaisuuksia viestittääkseen esimerkiksi tunnetilaa. Glottaalinen käänteissuodatus (GKS) on laskennallinen menetelmä glottisherätteen estimointiin nauhoitetusta puhesignaalista. Glottisherätteen perusteella puheen laadusta voidaan tunnistaa useita piirteitä kuten ääntötapa, sekä hetkellisesti että ajan funktiona. Puheen perustutkimuksen, kuten fonetiikan, lisäksi viimeaikaiset edistykset GKS:ssä ja koneoppimisessa ovat avaamassa mahdollisuuksia laajempaan GKS:n soveltamiseen puheteknologiassa, kuten puhesynteesissä ja puheen biopiirteistämisessä paralingvistisiä sovelluksia varten. Haasteena on kuitenkin se, että GKS on vaikea käänteisongelma, jossa todellista puhetta vastaavan glottisherätteen suora mittaus on mahdotonta. Tästä johtuen GKS:ssä käytettävien algoritmien kehitystyö ja arviointi perustuu etukäteisoletuksiin puhesignaalin ominaisuuksista. Tässä väitöskirjassa esitetyissä menetelmissä on yhteisenä oletuksena se, että ääntöväylän siirtofunktio voidaan arvioida (joka on GKS:n pääongelma) aikapainottamalla GKS:n optimointikriteeriä niin, että glottisherätteen pääeksitaatiopiikkin vaikutus vaimenee. Tässä väitöskirjassa GKS:ta tutkitaan useasta eri näkökulmasta, jotka sisältävät kaksi uutta GKS-menetelmää, jotka parantavat arviointituloksia aikaisempiin menetelmiin verrattuna, sekä perustutkimusta käänteissuodatusprosessin automatisointiin liittyen. Lisäksi GKS-pohjaista ääntöväylän siirtofunktiota käytetään formanttiestimoinnissa sekä kuulohavaintopainotettuna versiona puheen spektrin verhokäyrän arvioinnissa. Tämän väitöskirjan keskeisin puheteknologiasovellus on GKS-pohjaisten puheen spektrin verhokäyrämallien sekä glottisheräteaaltomuotojen käyttö kohdedatana neuroverkkomalleille tilastollisessa parametrisessa puhesynteesissä. Saatujen tulosten perusteella kehitetyt menetelmät parantavat GKS-pohjaisten menetelmien laatua kaikilla äänityypeillä, mutta puhesynteesisovelluksissa GKS-pohjaiset ratkaisut hyödyttävät edelleen lähinnä matalia miesääniä

    Concatenative speech synthesis: a Framework for Reducing Perceived Distortion when using the TD-PSOLA Algorithm

    Get PDF
    This thesis presents the design and evaluation of an approach to concatenative speech synthesis using the Titne-Domain Pitch-Synchronous OverLap-Add (I'D-PSOLA) signal processing algorithm. Concatenative synthesis systems make use of pre-recorded speech segments stored in a speech corpus. At synthesis time, the `best' segments available to synthesise the new utterances are chosen from the corpus using a process known as unit selection. During the synthesis process, the pitch and duration of these segments may be modified to generate the desired prosody. The TD-PSOLA algorithm provides an efficient and essentially successful solution to perform these modifications, although some perceptible distortion, in the form of `buzzyness', may be introduced into the speech signal. Despite the popularity of the TD-PSOLA algorithm, little formal research has been undertaken to address this recognised problem of distortion. The approach in the thesis has been developed towards reducing the perceived distortion that is introduced when TD-PSOLA is applied to speech. To investigate the occurrence of this distortion, a psychoacoustic evaluation of the effect of pitch modification using the TD-PSOLA algorithm is presented. Subjective experiments in the form of a set of listening tests were undertaken using word-level stimuli that had been manipulated using TD-PSOLA. The data collected from these experiments were analysed for patterns of co- occurrence or correlations to investigate where this distortion may occur. From this, parameters were identified which may have contributed to increased distortion. These parameters were concerned with the relationship between the spectral content of individual phonemes, the extent of pitch manipulation, and aspects of the original recordings. Based on these results, a framework was designed for use in conjunction with TD-PSOLA to minimise the possible causes of distortion. The framework consisted of a novel speech corpus design, a signal processing distortion measure, and a selection process for especially problematic phonemes. Rather than phonetically balanced, the corpus is balanced to the needs of the signal processing algorithm, containing more of the adversely affected phonemes. The aim is to reduce the potential extent of pitch modification of such segments, and hence produce synthetic speech with less perceptible distortion. The signal processingdistortion measure was developed to allow the prediction of perceptible distortion in pitch-modified speech. Different weightings were estimated for individual phonemes,trained using the experimental data collected during the listening tests.The potential benefit of such a measure for existing unit selection processes in a corpus-based system using TD-PSOLA is illustrated. Finally, the special-case selection process was developed for highly problematic voiced fricative phonemes to minimise the occurrence of perceived distortion in these segments. The success of the framework, in terms of generating synthetic speech with reduced distortion, was evaluated. A listening test showed that the TD-PSOLA balanced speech corpus may be capable of generating pitch-modified synthetic sentences with significantly less distortion than those generated using a typical phonetically balanced corpus. The voiced fricative selection process was also shown to produce pitch-modified versions of these phonemes with less perceived distortion than a standard selection process. The listening test then indicated that the signal processing distortion measure was able to predict the resulting amount of distortion at the sentence-level after the application of TD-PSOLA, suggesting that it may be beneficial to include such a measure in existing unit selection processes. The framework was found to be capable of producing speech with reduced perceptible distortion in certain situations, although the effects seen at the sentence-level were less than those seen in the previous investigative experiments that made use of word-level stimuli. This suggeststhat the effect of the TD-PSOLA algorithm cannot always be easily anticipated due to the highly dynamic nature of speech, and that the reduction of perceptible distortion in TD-PSOLA-modified speech remains a challenge to the speech community
    corecore