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Abstract
We propose a method that modifies the Mel cepstral coefficients
of HMM-generated synthetic speech in order to increase the in-
telligibility of the generated speech when heard by a listener
in the presence of a known noise. This method is based on
an approximation we previously proposed for the Glimpse Pro-
portion measure. Here we show how to update the Mel cep-
stral coefficients using this measure as an optimization crite-
rion and how to control the amount of distortion by limiting
the frequency resolution of the modifications. To evaluate the
method we built eight different voices from normal read-text
speech data from a male speaker. Some voices were also built
from Lombard speech data produced by the same speaker. Lis-
tening experiments with speech-shaped noise and with a sin-
gle competing talker indicate that our method significantly im-
proves intelligibility when compared to unmodified synthetic
speech. The voices built from Lombard speech outperformed
the proposed method particularly for the competing talker case.
However, compared to a voice using only the spectral parame-
ters from Lombard speech, the proposed method obtains similar
or higher performance.
Index Terms: intelligibility of speech in noise, Mel cepstral
coefficients, HMM-based speech synthesis

1. Introduction
Humans change their speaking style when conversing in a noisy
environment so that communication success is ensured, often
producing what is called Lombard speech. It is unclear what
aspects of Lombard speech actually contribute to intelligibility
increases and how they relate to the nature of the noise. Solving
this problem will enable practical applications which automati-
cally modify natural or synthetic speech to increase intelligibil-
ity in noise.

The parametrical statistical framework of HMM-based
speech synthesis offers many different ways to approach this
problem. If Lombard speech data are available for the speaker
whose TTS voice we want to modify, we can use adapta-
tion techniques to produce new Lombard-like speech for that
speaker [1]. If such data are not available, then we can apply
noise-independent modifications at the feature level based on
known acoustic properties of Lombard speech, such as F0 in-
crease, flattening of spectral tilt and duration stretch [1]. How-
ever if we want to employ noise-dependent techniques then we
need to be able to automatically detect what sort of modifica-
tions should take place for certain pairs of speech and noise
signals. One way in which this can be done is by using an in-
telligibility measure of speech [2]. Such an approach is limited
by the performance of the objective measure: if it fails to ac-
curately predict intelligibility then any modification based on

that prediction is likely to fail. Therefore, it is important to
find a specific domain of modifications where the intelligibility
model behaves well and ensure that the modifications applied
in this domain remain within the working range of the objective
model.

We have observed that the Glimpse Proportion (GP) mea-
sure for speech intelligibility in noise [3] has a high correla-
tion coefficient with subjective intelligibility scores for HMM-
generated synthetic speech whose spectral envelope has been
modified [4]. Moreover, modifications in the spectral envelope
domain can achieve quite high intelligibility gains. We then
proposed a cepstral extraction method based on the GP mea-
sure for the HMM-based synthesis framework [5]. This method
was shown to provide significant intelligibility improvement,
although not for all noise types. We hypothesise this is due to
distortions introduced by the method itself. A disadvantage of
that approach is having to train a different model for each noise
type, because the noise-dependent modifications are performed
as part of feature extraction. Now, we propose a method that can
be applied at generation time, and not requiring any information
about the spectral envelope of natural speech to achieve dis-
tortion control. Rather, we propose to control the distortion in
two ways: using a stopping criteria based on the mismatch be-
tween the auditory representations of modified and unmodified
speech, as proposed by the GP measure, and only modifying the
first few cepstral coefficients, thus limiting the frequency reso-
lution of the modifications. A further extension proposed in this
paper is the possibility of using this method for Mel cepstral co-
efficients, which can provide higher speech quality with fewer
coefficients [6].

In Section 2 and 3 we show how Mel cepstral coefficients
model the spectrum, how the GP measure works and how we
previously approximated it for the purpose of cepstral coeffi-
cient optimization. In Section 4 we introduce the new method
for Mel cepstral modification based on the GP measure. We
then provide experimental results from listening experiments to
support our conclusions.

2. Mel cepstral coefficients
We can represent the spectrum by M -th order Mel cepstral co-
efficients {cm}M

m=0 in the following manner [6]:

H(ejω) = exp

MX
m=0

cme
−jm ω̃ (1)

ω̃ = tan−1 (1− α2) sinω

(1 + α2) cosω − 2α
(2)

where α is a warping factor which can be chosen to represent,
for instance, the Mel scale [6].
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3. The Glimpse Proportion measure
The Glimpse Proportion (GP) measure for speech intelligibil-
ity in noise [3] is the proportion of spectral-temporal regions
called glimpses where speech is more energetic than noise. The
motivation behind this measure is that when humans listen to
speech in noise they tend to focus on such regions. The Spec-
tro Temporal Excitation Pattern (STEP) representation used by
the measure is obtained in the following manner: Gammatone
filtering, envelope extraction and smoothing, averaging over a
time frame and level compression [3].

In [5] we showed how to approximate the GP measure in a
way that provides a closed and differentiable formulation:

GP =
100

NfNt

NtX
t=1

NfX
f=1

L(ysp
t,f − yns

t,f ) (3)

where Nt and Nf are the number of time frames and frequency
channels, L(.) is a logistic sigmoid function of zero offset and
slope η, ysp

t,f and yns
t,f are the approximated STEP representa-

tions for speech and noise respectively at analysis window t and
frequency channel f .

The STEP representation for speech is given by:

ysp
t,f =

1

N
(Gfht N© Gfht)

> S b (4)

where N is the number of frequency bins of the spectrum, N©
is circular convolution of dimension N , ht is an Nx1 vector
containing the magnitude spectrum of windowed speech signal
at analysis window t, Gf is an NxN diagonal matrix whose
diagonal contains the Gammatone filter frequency response for
frequency channel f , S is an NxN diagonal matrix whose di-
agonal contains the frequency response of the smoothing filter
and b is an Nx1 vector containing the coefficients of the aver-
age filter.

4. Mel cepstral modifications
based on the GP measure

Given a set of Mel cepstral coefficients and a noise signal we
want to obtain a new set of Mel cepstral coefficients ct =
[ct,1 . . . ct,m . . . ct,M ]> that maximizes GPt, the value of
the function described in Eq. (3) in time frame t. We then have:

ct = argmaxGPt (5)

GPt =
100

Nf

NfX
f=1

L(ysp
t,f − yns

t,f ) (6)

As this function is not necessarily convex with respect to
the Mel cepstral coefficients, we use a Steepest Descent method
to solve the optimization. The update equation is:

c
(i+1)
t = c

(i)
t + µ∇GP

(i)
t (7)

where µ is the step size and the i index refers to iterations. From
now on we drop the i index for clarity. The gradient vector is
given by:

∇GPt =
100

NfN

NfX
f=1

ηL(ysp
t,f − yns

t,f )
ˆ
1− L(ysp

t,f − yns
t,f )

˜
·

HctGf (2ΓN N© Gfht) S b (8)

where Hct is an MxN matrix whose elements are
{Hct}m,j =

∂|Ht(ωj)|
∂ct,m

and the operation (ΓN N© Gfht)

defines an NxN matrix whose n-th row is equal to
en N© (Gfht)

>, en being the n-th column of the identity ma-
trix ΓN .

When the spectrum is modelled by Mel cepstral coefficients
as defined in Eq.(1) the elements of the matrix Hct are given
by:

∂|Ht(ωj)|
∂ct,m

= |Ht(ωj)| cos(mω̃j) (9)

However because we do not wish to modify the energy of
the speech signal we have:

∂|H ′
t(ωj)|

∂ct,m
= |H ′

t(ωj)|
“

cos(mω̃j)

− 1

ψ

NX
l=1

|Ht(ωl)|2 cos(mω̃l)
”

(10)

where |H ′
t(ωj)| is the energy-normalized magnitude spectrum

and ψ =
PN

j=1 |Ht(ωj)|2. There is no need to update the first
Mel cepstral coefficient c0 as the normalization operation up-
dates it to a certain value regardless of an additional ∆c0 term.

An issue we face when using the GP measure as an opti-
mization criterion on its own is the need to limit the distortions
caused by the modifications. To define an audible distortion we
use the Euclidian distance between the STEP representations of
modified and unmodified speech. Including this as an explicit
constraint is unfortunately rather cumbersome, so instead we
use it as a stopping criterion whilst at the same time limiting the
frequency resolution of the modifications. To implement that,
we simply set the gradient vector for higher dimensions to zero,
thus modify only the first few Mel cepstral coefficients, which
represent the coarse properties of the spectrum.

5. Evaluation
In this section we show how we built the TTS voices, give an
acoustic analysis, and present the results of a listening test.

5.1. Voice building

To build the voices used in this evaluation we used two differ-
ent datasets recorded by the same British male speaker: normal
(plain, read-text) speech data and Lombard speech. The Lom-
bard dataset was recorded while the speaker listened to speech-
modulated noise based on another male speaker [7] played over
headphones at a absolute value of 84 dBA.

We built eight different voices as outlined in Table 1. Voice
N was created from a high quality average voice model adapted
to 2803 sentences of the normal speech database, correspond-
ing to three hours of material. We decided to use an average
voice model rather than building a speaker-dependent voice be-
cause the normal speech dataset was not phonetically balanced.
Voices N-M59, N-M10 and N-M2 are variations of N in which
we modify all, just the first ten (c1 until c10), or just the first
two (c1 and c2) Mel cepstral coefficients using our proposed
method.

Lombard voice L was based on voice N, further adapted
using 780 sentences from the Lombard speech dataset, corre-
sponding to 53 minutes of recorded material. Again, the rea-
son for using adaptation was the lack of phonetic balance in the
speech dataset. Voice N-L was also created from voice N but



Voice Adaptation Modification
N - -
N-M59 - all coefficients
N-M10 - first 10 coefficients
N-M2 - first 2 coefficients
N-L only spectral parameters -
L all dimensions -
L-E all dimensions extrapolated -
L-E-M2 all dimensions extrapolated first 2 coefficients

Table 1: Voices built for the evaluation.

this time only the Mel cepstral coefficients were adapted to the
Lombard data. Voices L-E and L-E-M2 are versions of voice L
where we extrapolated the adaptation (voice L-E), and then also
modified the two first Mel cepstral using the proposed method
(voice L-E-M2).

The training and adaptation data had a sampling rate of
48 kHz. To train, adapt and generate speech we extracted: 59
Mel cepstral coefficients with α = 0.77, Mel scale F0, and 25
aperiodicity energy bands extracted using STRAIGHT [8]. We
used a hidden semi-Markov model. The observation vectors for
the spectral and excitation parameters contained static, delta and
delta-delta values; one stream for the spectrum, three streams
for the logF0 and one for the band-limited aperiodicity. The
Global Variance method [9] was also applied to compensate for
the over smoothing effect of the acoustical modelling.

To modify the generated Mel cepstral coefficients we used
the method proposed in the previous section, obtaining the
STEP representation by using Gammatone filters that cov-
ered the range 50-7500 Hz as the noise signal used for test-
ing is sampled at 16 kHz. The stepsize was normalized:
µ(i) =µ/||∇GP

(i)
t || and we set µ = 0.4 for N-M59 and µ = 0.8

for N-M10 and N-M2. We used as stopping criteria both error
convergence and a maximum distortion threshold set to be 10%
of relative increase in the Euclidian distance between the STEP
representation of original and modified speech.

5.2. Acoustic analysis

Fig.1 shows the Long Term Average Spectrum (LTAS) of the
normal (N), modified (N-M2) and Lombard (L) voices, for the
case of speech-shaped noise. Compared to voice N, voice N-
M2 exhibits enhanced energy in the frequency region of 1-
4 kHz and attenuated below 1 kHz. Voice L shows enhance-
ment and attenuation in the same regions as N-M2, although
these changes are not as pronounced, attenuation is also seen
between 4-5.5 kHz and enhancement at frequencies above this.

Table 2 provides an acoustic analysis of the voices – av-
erage duration of speech and pauses, average spectral tilt, and
F0 – across all sentences used in the listening test for the nor-
mal (N), modified (N-M2) and lombard (L) voices. We can
see that, as expected, the Lombard voice produces sentences
with longer duration and longer pauses, greatly increased F0
mean and flattening of the spectral tilt. The spectral tilt reflects
changes in both spectral envelope and excitation signal. The
modified voice N-M2 also presents a flatter spectral tilt, though
not to the same extent as the Lombard voice.

5.3. Listening experiments design

We mixed the eight different synthetic voices with two noises:
speech-shaped noise and speech from a single competing fe-
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Figure 1: Long term average spectrum of the normal N, normal
modified N-M2 and Lombard L voices for speech-shaped noise.

Voice speech
(secs.)

pauses
(secs.)

F0
(Hz)

spectral tilt
(dB/octave)

N 2.11 0.16 104.5 -2.24
N-M2 -1.88

L 2.80 0.19 145.0 -1.70

Table 2: Acoustic properties observed in normal N, modified
N-M2 and lombard L voices.

male talker. For intelligibility testing, it is important to avoid
floor or ceiling effects on word error rate. Therefore, in order to
obtain intelligibility scores in similar ranges for each noise, we
mixed them at differing SNRs: -4 dB for speech-shaped noise
and -14 dB for the competing talker. Across the different voices
we made sure that the root mean square value was the same.

For the listening test we used 32 native English speakers
listening to the noisy samples over headphones in soundproof
booths and typing in what he or she heard. Each participant
heard six different sentences per condition, i.e., voice and noise
type, and each sentence could only be played once. We used the
first ten sets of the Harvard sentences [10]; another one of the
sets was used as a practice session which listeners completed
before the test proper.

5.4. Results and discussion

Figs. 2 and 3 show the mean word accuracy rate (WAR) ob-
tained by each voice when mixed with speech-shaped noise
and a competing talker respectively, along with 95% confi-
dence intervals. Fig.2 shows that the modified voices N-M59,
N-M10 and N-M2 achieve higher WAR than the unmodified
voices N (40.9%), and this is significantly higher for the N-
M10 (50.6%) and N-M2 (57.8%). The N-M2 voice obtains a
higher WAR than the N-L voice (49.4%). The Lombard voices
L (63.5%), L-E (68.1%) and L-E-M2 (70.1%) performed bet-
ter than the normal speech voices although we did not find a sig-
nificant difference between N-M2 and L. The extrapolated voice
L-E is more intelligible than voice L, a trend that is further en-
hanced by applying our modifications to it, as in voice L-E-M2.
The results obtained for the competing talker situation are dis-
played in Fig. 3 and show a slightly different trend. There is a
drop in performance for N-M59 and N-M10 when compared to
N (36.6%), although this is not significant. The N-M2 (42.7%)
voice performs better than the unmodified counterpart N and
obtains a similar WAR to N-L (43.6%). All Lombard voices
performed significantly better than the other voices, in particu-



N N−M59 N−M10 N−M2 N−L L L−E L−E−M2
20

30

40

50

60

70

80

W
or

d 
ac

cu
ra

cy
 ra

te
 (%

)

Figure 2: Word accuracy rates for speech-shaped noise.

lar the L voice (62.2%). The other versions, L-E (60.5%) and
L-E-M2 (59.3%), do not appear to increase intelligibility.

As predicted by our hypothesis that distortions were defeat-
ing potential gains in intelligibility in our previously-published
experiments [5], the voices where we modify only the first few
Mel cepstral coefficients achieved a better WAR, indicating that
very fine frequency modifications cause distortions that cancel
out any potential intelligibility gain they may offer. Compared
to the N-L voice, for which the spectral parameters were ob-
tained using Lombard speech, the modifications proposed here
obtained a similar or higher intelligibility score. The intelligi-
bility gains obtained by the full Lombard voice L over the N-L
voice reflect the impact of changes in duration patterns, F0 and
the aperiodicity parameters that define the excitation signal, as
pointed out in Table 2. We can see, then, that there is a lot to
gain from modifying those parameters in addition to the spec-
tral ones. The spectral modifications proposed here increased
the gains obtained with the Lombard voice for speech-shaped
noise, as we can see from the results for voice L-E-M2, which
shows that there are still gains to be had over and above simply
building voices on recorded Lombard speech.

For the competing talker, spectral changes seem to con-
tribute less than for speech-shaped noise. For the competing
talker, duration stretches as well as F0 increases are more im-
portant. This suggests that for non-stationary noise it is more
effective to perform temporal energy re-allocation (e.g., taking
advantage of quiet or silent regions in the noise signal) than it is
to reallocate energy across different frequencies.

6. Conclusions
We have proposed a new method for modifying Mel cepstral co-
efficients based on an intelligibility measure for speech in noise,
the Glimpse proportion measure. We showed how to control
distortion by modifying only the first few Mel cepstral coeffi-
cients, which is a natural way of limiting the frequency resolu-
tion of the modifications. In the evaluation, we compared syn-
thetic voices whose spectral parameters were modified as well
as using spectral parameters from Lombard speech. Listening
tests using speech-shaped noise and a competing talker indicate
that we only need to modify two Mel cepstral coefficients to ob-
tain a similar or higher intelligibility to Lombard spectral modi-
fications. Moreover we observed that, for the competing talker,
the intelligibility gain obtained by the Lombard voice over the
modified voice was mainly due to changes in duration, F0 and
excitation parameters. In terms of what can be achieved when
modifying only Mel cepstral coefficients, our method obtains
either higher or similar intelligibility scores to Lombard Mel
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Figure 3: Word accuracy rates for competing talker.

cepstral coefficients. We are currently making a more extensive
comparison of our method to other intelligibility enhancement
methods. In future, we plan to investigate reallocating energy
across time. We also plan operating under a loudness constraint
rather than an energy one.
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