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A comparison between STRAIGHT, glottal, and
sinusoidal vocoding in statistical parametric speech

synthesis
Manu Airaksinen, Lauri Juvela, Bajibabu Bollepalli, Junichi Yamagishi, Senior

Member, IEEE and Paavo Alku, Senior Member, IEEE

Abstract—A vocoder is used to express a speech waveform with
a controllable parametric representation that can be converted
back into a speech waveform. Vocoders representing their main
categories (mixed excitation, glottal, sinusoidal vocoders) were
compared in this study with formal and crowd-sourced listening
tests. Vocoder quality was measured within the context of
analysis-synthesis as well as text-to-speech (TTS) synthesis in a
modern statistical parametric speech synthesis framework. Fur-
thermore, the TTS experiments were divided into synthesis with
vocoder-specific features and synthesis with a shared envelope
model, where the waveform generation method of the vocoders
is mainly responsible for the quality differences. Finally, all of
the tests included four distinct voices as a way to investigate the
effect of different speakers on the synthesized speech quality.

The obtained results suggest that the choice of the voice
has a profound impact on the overall quality of the vocoder-
generated speech, and the best vocoder for each voice can vary
case by case. The single best-rated TTS system was obtained
with the glottal vocoder GlottDNN using a male voice with low
expressiveness. However, the results indicate that the sinusoidal
vocoder PML (pulse model in log-domain) has the best overall
performance across the performed tests. Finally, when controlling
for the spectral models of the vocoders, the observed differences
are similar to the baseline results. This indicates that the
waveform generation method of a vocoder is essential for quality
improvements.

Index Terms—Speech synthesis, vocoder, statistical parametric
speech synthesis.

I. INTRODUCTION

AVOCODER is used to express a speech waveform with
a parametric representation that can be converted back

into a speech waveform. Furthermore, the parametric repre-
sentation enables the statistical modeling of speech and it
also makes it possible to manipulate speech, for example, to
enhance its intelligibility [1]. These properties make vocoders
flexible tools that can be applied in several areas of speech
technology such as statistical parametric speech synthesis [2],
voice transformation and modification [3], musical applica-
tions [4], and even low bit-rate speech coding [5]. However,
in order to be used with generic parameterization techniques,
vocoders discard a part of speech information, for instance the
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phase of the excitation signal 1. Thus signal reconstruction by
vocoders is lossy, not only with respect to quantization, which
is a fundamental difference from modern high-quality speech
codecs [8].

In statistical parametric speech synthesis (SPSS), a vocoder
is one of the traditional backbones of the framework that
enables the statistical modeling of context-dependent speech
using parameters (see Figure 4). The majority of vocoders
used in SPSS are based on some form of the source-filter
model of speech production [6], which assumes that speech is
a convolution between an excitation signal and a filter. This
separation is effective in allowing modifications to produce
a vast space of perceptually different speech sounds. This
versatility of vocoders has been key for their adaption within
SPSS as vocoders can be used to reliably and efficiently
transform generated speech parameters into stable, continuous
waveforms of different characteristics. In addition to SPSS,
vocoders have been utilized in voice modification tasks due to
the versatility of the parametric representation [9].

The main drawback of vocoding has been—and still contin-
ues to be—the artifacts generated by over-simplified source-
filter modeling, caused by poor separation of speech into
excitation and filter [10], and especially by too simple mod-
eling of the excitation: A straightforward voiced excitation
model, consisting only of an impulse train controlled by the
fundamental frequency (f0), results in a “robotic,” “buzzy”
voice that is perceived as highly unnatural by human listeners
[2]. This problem has been addressed in several vocoder-
oriented SPSS studies aiming at synthetic speech of better
segmental voice quality.

The vocoders developed can be categorized roughly into
three groups: 1) mixed excitation with a spectral envelope
(e.g., STRAIGHT [10], [11], WORLD [12], DSM [13]), 2)
glottal vocoders (e.g., GlottHMM [14], GSS [15]), and 3)
sinusoidal vocoders (e.g., HMPD [16], HNM [17], Vocaine
[18]). The mixed excitation and glottal vocoders operate
under the assumption of the source-filter model of speech
production (see Section II-B), but the interpretation of the
main spectral properties between the source and filter are
different: In mixed excitation, the source is assumed to be
a spectrally flat, “impulse plus noise” signal, with all of the
spectral envelope information contained in the filter. Glottal

1In this study the term vocoder refers to the abstraction of the channel
vocoder [6], and not, for instance, the phase vocoder [7] that synthesizes
speech from encoded phase derivatives with the cost of general modifiability.
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vocoders in turn use a source signal that mimics the true
acoustical excitation of voiced speech, the glottal volume
velocity waveform (or its derivative), that is generated by the
fluctuating vocal folds. Since the vocal folds are physiological
organs whose fluctuation mode is controlled by the talker, the
spectral envelope of the excitation in glottal vocoders is not
flat but varies depending on, for example, the speaking style
and phonetic stress (e.g., the position of the underlying utter-
ance within the word and sentence). In sinusoidal vocoders,
the harmonic structure is modeled by individual sinusoidal
components, with a complementary stochastic noise envelope.
In SPSS applications, however, sinusoidal vocoders have to
resort to source-filter based parameterization after the analysis
[19]. This is because regression tasks in acoustic models
require constant-length target vectors, whereas the number of
sinusoids in the acoustic signal is not constant but depends on
f0. Thus, sinusoidal vocoders commonly convert the sinusoidal
amplitudes into a spectral envelope representation from which
the sinusoid amplitudes (with minimum phase response) are
sampled according to f0 during synthesis. As an alternative
to vocoding, SPSS research has recently ventured into direct
waveform modeling frameworks (e.g., WaveNet [20], Tacotron
[21]) that aim to circumvent the problematic signal processing-
based waveform synthesis of vocoders by treating speech
synthesis more as an end-to-end (text to waveform) machine
learning problem. The segmental speech quality achieved by
these systems has been shown to surpass vocoder-based SPSS,
but with many orders of magnitude higher computational costs
and little controllability over the generated voice.

Vocoders from the three main categories described above
(mixed excitation, glottal, sinusoidal vocoders) are compared
in the current study with two separate listening test arrange-
ments (formal and crowd-sourced). Even though vocoder com-
parisons have been published in several articles (e.g., [19]),
the current research is motivated as follows. The main overall
objective of this study is to evaluate vocoder performance by
simultaneously comparing representative vocoders from each
of the three main categories using the latest SPSS engines
based on deep learning. To the best of our knowledge, this
kind of comparison has not been conducted before. In addition,
vocoder performance is known to vary from voice to voice
(e.g., based on gender, speaking style, the audio quality of the
recordings) [22]. However, there are no previous investigations
that have studied how much the known vocoders belonging to
the three main categories are affected by the characteristics of
the selected voice. Therefore, as a supplement to the above
overall objective, the current text-to-speech (TTS) study aims
to find out how synthesis quality, achieved with vocoders
belonging to the three main categories, depends on the voice
selected for TTS.

Vocoder selection of this study is limited to one per vocoder
family, with the exception of glottal vocoding where two
techniques, GlottHMM and GlottDNN, are included. The
GlottHMM vocoder [14] is regarded as a state-of-the-art glottal
vocoder because it was already published some years ago,
after which it has been successfully used in several SPSS
studies [22]. GlottDNN is a new glottal vocoder based on the
cumulative evolution of studies over recent years [23]–[26],

Speech frame

GCI estimation

AME function
generation

WLP analysis
Pre-emphasis

Inverse filtering

GCIs

WAME

1
V (z)

Glottal excitation
estimate

Fig. 1. A block diagram of the QCP glottal inverse filtering method.

including, for example, new spectral modeling and excitation
generation techniques. Given this background, the current
article is structured so that the first comprehensive description
of the GlottDNN vocoder is presented first in Section II. The
other vocoders selected for the study—namely STRAIGHT,
pulse model in log-domain (PML) [27], and GlottHMM—are
known techniques that have been described in previous articles
and therefore they will be only briefly presented in Section III.
Sections IV, V, and VI contain the conducted experiments,
results, and discussion respectively.

II. THE GLOTTDNN VOCODER

A. General

As discussed in Section I, GlottDNN is the most recent
glottal vocoder and it has been developed in a cumulative
evolution from the GlottHMM vocoder in a series of studies
conducted over the past five years [23]–[26]. Compared to
GlottHMM, GlottDNN utilizes the latest glottal inverse fil-
tering (GIF) methodology to estimate the glottal source from
the speech signal. The GIF methodology used in GlottDNN
is quasi-closed phase (QCP) analysis [28], which enables
computing the high-quality physiologically motivated source-
filter separation of speech into the glottal excitation and
vocal tract transfer function. Moreover, GlottDNN synthesis
is performed by using a deep learning-based generation of the
vocoder’s excitation waveform.

B. GIF with QCP analysis

Voiced speech is produced by the air-flow streaming from
the lungs, generating oscillations at the vocal folds. This
airflow is further modulated by the resonances of the vocal
tract and finally radiated at the lips to produce the speech
pressure signal. In GIF, this process is commonly modeled
with the linear source-filter model of speech production [6]:

S(z) = G(z)V (z)L(z), (1)

where S(z) is the speech signal, G(z) is the glottal excitation,
V (z) is the vocal tract transfer function, and L(z) is a first-
order differentiator modeling the lip radiation effect. Based on
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this, most GIF algorithms focus on the task of estimating the
transfer function V (z) and the first time-derivative of glottal
flow is regarded as the effective driving excitation E(z) of
voiced speech:

E(z) = G(z)L(z) =
S(z)

V (z)
, (2)

which is also the glottal excitation model assumed in the
GlottDNN vocoder.

It is known that V (z) can be represented with great accuracy
for most speech sounds as an all-pole filter (i.e., as an auto-
regressive [AR] process), with the exception of nasal sounds
[6]. Furthermore, the glottal excitation serves mainly as a
maximum-phase component in the production of the speech
signal [29] and this excitation has its largest impact on short
intervals in the vicinity of glottal closure instants (GCIs).
Based on this information, the recently proposed GIF method,
QCP analysis [28], aims to attenuate the effect of the glottal
excitation in the estimation of V (z) by using temporally
weighted linear prediction (WLP) [30] with a specific attenu-
ated main excitation (AME) weighting function [31]. The goal
of AME weighting is to de-emphasize the prominent effect
of the prediction error in the vicinity of GCIs (see Section
II-C) so that the filter coefficients optimized are more prone to
model V (z) and not the effects of the periodic excitation signal
that cause harmonic bias to estimated formants. It should be
emphasized that the AME weighting is done on the squared
prediction error signal in the optimization of the underlying
AR model and should not be mixed up with the traditional
short-time windowing (e.g., Hamming windowing) used for
reducing truncation effects.

A block diagram describing the estimation of the glottal
flow with QCP is shown in Figure 1. For each frame, the
GCIs are estimated and the corresponding AME function
is generated. Next, WLP analysis is performed for the pre-
emphasized frame. The pre-emphasis is used to flatten the
spectral tilt of the glottal excitation [6]. Finally, the original
frame is inverse filtered with 1

V (z) to obtain the estimate for
the glottal flow derivative e(n).

C. Speech analysis and parametrization

A block diagram of the analysis stage of the GlottDNN
vocoder is shown on the left-hand side of Figure 2. The speech
signal is analyzed in frames of length tf at intervals of ts.
The fundamental frequency f0 (in Hz) and windowed energy
(in dB) of the frame are extracted and added to the feature
vector. Next, the vocal tract model V (z) is obtained with
frequency-warped time-weighted linear prediction (WWLP)
that uses GCIs to construct the AME weighting function (see
Section II-B) for the filter optimization. The estimate of V (z)
is converted into line spectral frequencies (LSFs) [32] and
added to the feature vector. Finally, the frame is inverse filtered
with 1

V (z) to obtain the glottal excitation estimate e(n). From
the glottal excitation estimate, two sets of parameters are
computed: First, the spectral tilt, which is modeled with low-
order linear prediction (LP) analysis (parameterized as LSFs),
and second, the harmonic-to-noise ratio (in dB) of the glottal

excitation that is compressed using equivalent rectangular
bandwidths (ERB) [33].

For unvoiced frames, the analysis pipeline is identical,
except in vocal tract modeling where WWLP with a constant
weighting function is used without pre-emphasis in computing
the vocal tract transfer function.

Vocal Tract Modeling with WWLP: The AME weighting
function was originally formulated to be used in WLP to
compute all-pole spectral envelopes that are less prone to
show formants biased by the harmonic peaks of the excitation
[31]. However, WLP is formulated in the linear frequency
domain that is not auditorily justified, particularly for full-
band speech (i.e., fs ≈ 48 kHz). This is because the most
important acoustical contents of speech are present at lower
frequencies (e.g., 1 kHz to 3 kHz) [6], so it is desirable to
have better modeling accuracy in those frequencies. In warped
LP [34], the AR model can be optimized using a warped
frequency scale that approximates the human auditory system.
Unfortunately, warped LP also results in larger biasing of for-
mants by harmonics [35]. WWLP [26], however, is a recently
proposed method that can be regarded as a fusion between
weighted LP and warped LP: WWLP takes advantage of the
AME weighting function to reduce the biasing of formants
by harmonics in the filter optimization in order to obtain
frequency-warped AR estimates for the vocal tract transfer
function. The formulation of WWLP, originally presented in
[26], is as follows.

In WWLP, the AR model predicts the sample sn at time-
index n as a linear combination of p previous warped samples:

sn =

p∑
k=1

akyk,n +Gen, (3)

where {ak} denote the prediction coefficients, G is the filter
gain, en is the excitation, and yk,n is the output of sn con-
volved k times through a general function D(z) that models
the warped delay line. In WWLP, D(z) is of the form:

D(z) =
z−1 − λ
1− λz−1

, (4)

where λ is the warping coefficient. Based on this, yk,n can be
expressed as:

yk,n =


sn , k = 0

dn ∗ dn ∗ · · · ∗ dn︸ ︷︷ ︸
k-fold convolution

∗sn , 1 ≤ k ≤ p, (5)

where dn is the impulse response of D(z).
To obtain the optimal coefficients {ak} of the model in Eq.

3, an optimization criterion must be selected. The approach
taken in WWLP is to use a time-weighted squared sum as the
optimization criterion:

EWWLP =
∑
n

Wne
2
n =

∑
n

Wn(sn −
p∑
k=1

akyk,n)2, (6)

where for voiced speech Wn is the AME weighting function
discussed in Section II-B. For unvoiced speech Wn = 1.0,
which reduces the analysis into conventional warped LP. With
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Fig. 2. A block diagram of the GlottDNN vocoder.

the error criterion set, the analytic solution for the optimal
coefficients can be obtained as [26]:

aopt =

(∑
n

Wnyny
ᵀ
n

)−1(∑
n

Wnsnyn

)
, (7)

where a = [a1, a2, . . . , ap]
ᵀ and yn = [y1,n, y2,n, . . . , yp,n]ᵀ.

When summing from n = 0 to n = N − 1 + p, where N is
the frame length in samples, the matrix to be inverted in Eq. 7
can be interpreted as the frequency-warped and time-weighted
autocorrelation matrix of the analyzed signal.

Harmonic-to-Noise Ratio Estimation and Modeling: The
degree of voicing, i.e., the level difference between the
harmonic components produced by the periodic vibrations
of the vocal folds and the aperiodic noise of the glottal
source, is represented as the harmonic-to-noise ratio (HNR).
HNR is computed as the relative difference between the DFT
upper and lower envelopes of the windowed glottal source
estimate. The upper envelope is estimated by dynamic peak
picking of harmonics from a high-resolution FFT magnitude
spectrum and the lower envelope is estimated by averaging
samples half-way between the harmonic peaks. Finally, HNR
is converted into dB, and averaged across ERB bands of a
selected parameter order [33].

D. Speech Synthesis
A block diagram of the synthesis stage of the GlottDNN

vocoder is presented on the right-hand side of Figure 2. First,
the initial excitation signal for the entire utterance is produced
by the pitch-synchronous overlap-add (PSOLA) procedure
[36]. For voiced speech, the glottal excitation segments are
generated as two pitch-period long pulses (based on f0) that
are scaled in energy. The glottal pulse generation block is
implemented as a deep neural network (DNN) that is trained
with GlottDNN feature vectors as an input and zero-padded
two pitch-period glottal flow derivative pulses as an output
[23]–[25]. A single pre-computed pulse with interpolation to
target f0 can also be used as the base pulse. For unvoiced
speech, a white noise sequence of a pre-determined length is
generated for each frame.

Speech
frame

Vocoder
parameters

QCP-GIF Isolate pulse

DNN input

DNN output

DNN
weights

Fig. 3. DNN-based excitation generation framework.

After the initial excitation signal has been generated, it is
processed according to the HNR and spectral tilt features.
The HNR processing is done by adding noise in the spectral
domain using the conventional overlap-add procedure. The
spectral tilt is adjusted to the target by modifying the synthesis
vocal tract filter according to

Hmatch(z) =
Hbase(z)

Htarget(z)
, (8)

where Hmatch(z) is the matching filter, Hbase(z) denotes the
LP inverse model of the initial excitation, and 1

Htarget
(z) is the

target spectral tilt.
Finally, to obtain the synthesized speech, each frame of the

generated excitation signal is filtered in the spectral domain
with a time-varying all-pole filter, inverse Fourier transformed
and pitch-asynchronously overlap-added. The gain of each
filter is adjusted according to the target energy of the current
frame so that the energy of the filtered excitation matches the
target.

DNN-based Glottal Excitation Generation: A block dia-
gram describing the training of the DNN-based glottal exci-
tation generation is presented in Figure 3. For each speech
frame within the training dataset, the GlottDNN vocoder
parameters are analyzed and fed to the input vector. The DNN
target output generation is more specific: First, the glottal
flow derivative, estimated by QCP, is constructed over the
entire frame. Second, a two pitch-period segment, delimited
by consecutive GCIs, is isolated from the frame. The obtained
segment is windowed with a raised cosine window (the square
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root of a Hann window), and finally zero-padded evenly from
both edges to a constant length. The final pulse obtained this
way has its middle GCI exactly at the center index of the
frame. This aspect is important, as it acts as phase locking for
the target pulses, which allows the trained DNN to learn the
waveform properties based on the assumption of an identical
linear phase component.

It is worth noting that in the context of glottal source
generation, a considerably smaller volume of speech data is
required for DNN training than, for example, required in the
acoustic models used in speech recognition or synthesis. This
is for two reasons: First, as two pitch-period long glottal flow
waveforms are used as the output of DNN, a large number
of glottal pulses can be extracted by using a small volume of
speech data (e.g., roughly 50,000 glottal pulses are obtained
from 10 minutes of speech data). The second reason is that
the glottal pulse to be estimated by the DNN is an elementary
(simple) waveform, which is formed at the level of the glottis
in the absence of vocal tract resonances.

After the training data has been computed with QCP, the
excitation DNN can be trained. Our previous studies show that
a simple feed-forward architecture yields satisfactory results
[25], [37], but more sophisticated network architectures, such
as recurrent [38] and convolutional neural networks, and better
training techniques, such as generative adversarial networks
[39], have also been explored in order to gain improved results.

III. OTHER VOCODERS USED IN THE EVALUATION AND
THE TTS SYSTEM

A. STRAIGHT
STRAIGHT [10], [11] is a representative of vocoders that

are based on the conventional source-filter model where speech
is divided into a spectral envelope filter that is driven by a
spectrally flat excitation signal:

S(z) = I(z)V̂ (z), (9)

where I(z) is the spectrally flat excitation signal and V̂ (z) is
the entire spectral envelope of speech.

The key part of STRAIGHT is its spectral envelope analysis
technique that aims to minimize the effect of periodicity
interference within and between analysis frames. For each
frame, two pitch-adaptive analysis windows, wp and wc, are
used to produce two complementary representations of the
magnitude spectrum, Sp(ω, t) and Sc(ω, t):

wp(t) = e−π(t/t0)
2

∗ h(t/t0), (10)

wc(t) = wp(t) sin

(
π
t

t0

)
, (11)

where t is the time index, t0 is the time of the fundamental
period, and h(t) is the second order cardinal B-spline function
given by:

h(t) =

{
1− |t|, if |t| < 1,

0, otherwise.
(12)

The magnitude spectra obtained with these windowing func-
tions are combined into the final spectral envelope estimate
by:

SU (ω, t) =
√
S2
p(ω, t) + ξS2

c (ω, t), (13)

where ξ = 0.13655 is a blending factor that minimizes the
temporal variation of the resulting spectrogram [10].

In principle the estimation of aperiodicity in STRAIGHT is
performed similarly to the estimation of HNR in GlottDNN
by computing the ratio between the upper and lower spectral
envelopes (SU and SL respectively). In practice, STRAIGHT
uses a table look-up operation from a database of known ape-
riodicity measurements to compute its aperiodicity spectrum
with

SAP (ω) =

∫
wERB(λ;ω)|S(λ)|2Γ

(
|SL|2
|SU |2

)
dλ∫

wERB(λ;ω)|S(λ)|2dλ
, (14)

where wERB is an auditory filter for smoothing the power
spectrum at center frequency, ω, |S(λ)|2 is the speech power
spectrum, and Γ( ) is the table lookup operation.

The inherent STRAIGHT parameters (in addition to f0)
are thus the magnitude spectrogram of the envelope and the
spectrogram representing the aperiodicity. For the purposes
of SPSS, the STRAIGHT parameters are usually transformed
into mel-generalized cepstral coefficients [40] (for the spectral
envelope) and into log-average ERB coefficients (for the
aperiodicity).

B. PML

PML [27] is a state-of-the art vocoder with its roots in sinu-
soidal modeling, namely the HMPD vocoder [16]. However,
contrary to the traditional sinusoidal vocoding approaches,
PML utilizes frequency domain pulse synthesis techniques
from parameters that are obtained from sinusoidal modeling-
based analysis. The PML analysis begins from the estimation
of the f0 contour (considered continuous and without explicit
voicing decisions). Next, the magnitude spectrum is sampled
at the harmonic frequencies to obtain a model of the spectral
envelope (other spectral envelope extraction methods, such
as STRAIGHT, can also be used). Finally, a specific phase
distortion deviation (PDD) is computed with the help of
harmonic phase distortion (PD) values:

PDi,h = φi,h+1 − φi,h − φi,1, (15)

where φi,h is the phase value at frame i and harmonic
h. The PD values are then linearly interpolated to obtain
PDi(ω), a continuous spectral representation of phase distor-
tion. PDDi(ω) is then computed as the short-term standard
deviation of PD:

PDDi(ω) =

√√√√−2 log

∣∣∣∣∣ 1

N

∑
n

ej(PDn(ω))

∣∣∣∣∣. (16)

PDD values show, in a normalized representation, how much
phase distortion there is in each frequency bin compared
to the estimated fundamental frequency. To simplify this
model for speech synthesis applications, the PDD values are
quantized into binary values known as the binary noise mask
Mi(ω). The quantization is done with a thresholding value of
Mi(ω) = 1 if PDDi(ω) > 0.75 and otherwise it is zero. The
synthesis of the PML vocoder is done straightforwardly in the
frequency domain: Based on the (continuous) f0 contour, a
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Fig. 4. General block diagram of statistical parametric speech synthesis.

single minimum phase pulse Si(ω), of length 1
f0

, is generated
at each pitch mark ti. The spectrum is set as the minimum
phase response of the spectral envelope Vi(ω), and the phase
spectrum values are replaced with random noise at frequency
bins where Mi(ω) = 1:

Si(ω) = e−jωti · Vi(ω) ·Ni(ω)Mi(ω). (17)

This versatile noise model gives the PML vocoder the ability
to capture smooth transitions between voiced and unvoiced
parts of speech without explicit voicing decisions; as for
unvoiced frames (where Mi(ω) is mostly 1), the phase is
mostly random.

C. GlottHMM

GlottHMM [14] is a glottal vocoder that is the precursor to
GlottDNN. GlottHMM analysis uses iterative adaptive inverse
filtering (IAIF) [41] as an inverse filtering method to separate
speech into the glottal source and vocal tract. Similarly to
GlottDNN, the spectral tilt of the estimated glottal excitation
and the vocal tract filter are parameterized with LSFs, and the
HNR of the excitation signal is estimated to model the degree
of aperiodicity. The synthesis part of GlottHMM uses a single
base pulse to generate the voiced excitation. This base pulse
is a hand-picked, high-quality glottal pulse that has been pre-
computed from a voiced utterance with IAIF. Based on the
vocoder parameters, the base pulse is interpolated to target
pitch period, matched to the target HNR, and filtered to have
the target spectral tilt. After this processing, the pulses are
concatenated with white noise that represents the excitation
of unvoiced speech sections in order to generate the final
excitation signal. The generated excitation is then filtered with
a direct form IIR filter based on the vocal tract LSFs.

D. SPSS

In TTS, SPSS refers to a back-end architecture that uses
data-driven acoustic modeling as its core technology [2]. The
acoustic model is trained as a regression task from front-
end provided linguistic specifications (which are language
specific, obtained from text input) to a parametric represen-
tation of speech, traditionally the vocoder parameters (see
Figure 4). Originally, the acoustic model was based on context-
dependent HMMs structured by a regression tree [42], but
recent approaches have overwhelmingly switched to regression

models based on recurrent neural networks, such as long-short
terms memory (LSTM) [43] and gated recurrent unit (GRU)
[44] networks. During synthesis time, the front-end provided
linguistic specifications are fed into the acoustic model that
produces the corresponding set of vocoder parameters, and
the generated vocoder parameters are then transformed back
into the speech waveform by using the vocoder.

IV. EXPERIMENTS

The experiments carried out in this study were designed to
compare the four selected vocoders in terms of their achiev-
able synthesis quality. This design of experiments is many-
faceted: First, the performance of a vocoder can vary greatly
between voices and/or voice types. For example, in glottal
vocoders, the accuracy of the glottal flow estimation with GIF
typically decreases for high-pitched speech, thereby degrading
the synthesis quality for female voices and for voices with an
expressive speaking style. Vocoders based on other paradigms
might not suffer from this problem so much. Second, the
potential maximum quality of vocoded speech, that is the
analysis-synthesis quality (synthesis with natural parameter
trajectories), might drastically differ from the corresponding
TTS quality obtained by computing parameter trajectories
from acoustic models of the TTS system. However, as the
performance of acoustic models (and their post-processing
methods [45]) improves, the analysis-synthesis quality also
becomes more useful in TTS as a measure of upper bound.
Third, many vocoders take advantage of similar analysis
procedures (i.e., they have a representation for the f0, spectral
envelope, and aperiodicity), but they typically have greater
differences in methods of waveform synthesis. As an example,
the PML vocoder is recommended to be used [27] together
with the STRAIGHT-estimated spectral envelope for optimal
TTS quality. Finally, the test type and its other conditions (e.g.,
listener population, the quality of audio equipment used in the
test) can all affect the outcome of subjective listening tests. For
example, naive and expert listeners may focus their attention
on different properties in speech quality and naturalness, and
the quality of the used listening equipment (e.g., headphones
versus laptop speakers) can affect the perceived differences.

The listening tests were designed by taking into account all
of the above-mentioned concerns in a balanced way. First, for
all of the tests, four different voices (two male and two female)
with different characteristics were selected as follows: (1)
“Nick” [46], a high-quality British English male voice record-
ing with low expressiveness, (2) “Roger”, a highly expressive
British English male voice with audible reverberation present
in the recordings, (3) “Jenny”, a high-quality British English
female voice recording with moderate expressiveness, and (4)
“Nancy” [47], a high-quality American English female voice
recording with high expressiveness. Table I shows the number
of files employed for training, development, and testing for
each voice.

Second, the tests were split into two categories: Tests
conducted in a controlled listening environment with relatively
experienced listeners and crowd-sourced tests with minimal
control of the listeners and listening environment. The con-
trolled tests were conducted as MUSHRA (multiple stimuli
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Fig. 5. Normalized parameter distribution histograms computed from log f0
(a), c0 (b), and c1 (c) for the selected voices.

with hidden anchor and reference [48]) tests inside sound
proofed listening booths with high-quality sound cards and
headphones. The controlled tests (hereafter referred to as
MUSHRA tests) included the analysis-synthesis quality and
the TTS synthesis quality of the evaluated vocoders for all
voices. To better facilitate the uncontrolled nature of the
crowd-sourcing platform, the crowd-sourced tests utilized the
degradation mean opinion score (DMOS) test [49] where a
natural recording of an utterance is played as a reference and
the subjects rate the quality degradation of the corresponding
TTS synthesis sample on a scale from 1 to 5 where a higher
score denotes better quality. This test type produces only one
data point per test case, which makes single cases easier
to evaluate for the listener compared to the MUSHRA test.
Furthermore, the choice of the DMOS scale as opposed to the
mean opinion score (MOS) or comparative mean opinion score
(CMOS) was motivated by the fact that DMOS grounds the
conducted tests to the original voice; an ideal vocoder should
reproduce the characteristic sound of the original speaker. In
the crowd-sourced tests (hereafter referred to as DMOS tests),
TTS quality was evaluated both using vocoder-specific “out-
of-the-box” parameters (i.e., same samples as in the MUSHRA
TTS test) and using the special case of shared spectral features
based on the STRAIGHT envelope, but with a vocoder-specific
synthesis procedure. The use of the shared spectral envelope
test is justified because it enables assessing the relevance of
different analysis and synthesis procedures on the synthesis
quality.

A. Vocoder setup

The speech used in the experiments was processed at a full-
band (48 kHz) sampling frequency with a frame length of 25

milliseconds and a frame rate of 5 milliseconds. The vocoder
parameter orders were selected to be of equal dimensions
in the four vocoders compared. For STRAIGHT and PML,
the spectral envelope was parameterized as mel-generalized
cepstral coefficients [40] (order p = 60) with a warping factor
of λ = 0.77, corresponding to the Bark scale. For GlottDNN
and GlottHMM, the vocal tract filter was parameterized with
a LSF representation of the order p = 50, with a warping
factor of λ = 0.54 corresponding to the mel-scale. Using
different warping factors is justified by the fact that in contrast
to STRAIGHT and PML where the initial envelope analyzed
on a linear scale is warped to the target scale, the glottal
vocoders work in the warped frequency domain and are thus
more prone to biasing of formants by harmonics that might
degrade quality [50]. Additionally, the glottal vocoders used a
filter of the order m = 10 to represent the spectral tilt of the
glottal excitation (parameterized as LSFs).

The aperiodicity coefficients for each vocoder were param-
eterized with 25 parameters using the log-average value for
ERB bands for GlottDNN, GlottHMM, and STRAIGHT. In
PML, the mel-compressed average classification values for the
binary noise mask values were parameterized.

The f0 analysis was performed with a vocoder-independent
setup using multiple pitch detection algorithms (SWIPE [51],
RAPT [52], tempo [10]), with the final f0 trajectories deter-
mined by a median vote of the used methods. All systems
shared the same f0 information in all parts of the experiments
(during analysis and synthesis) to eliminate the effect of
differing f0 trajectories on vocoder performance.

Finally, the synthesis output of each vocoder was objectively
normalized in terms of loudness according to the ITU-P.56
recommendation [53].

B. Objective analysis of voice characteristics

As discussed in Section IV, the voices of the experiments
were selected to exhibit varying speaker characteristics. This
is illustrated in Figure 5 using distribution histograms of three
general acoustic parameters for all four voices. The analysis
was computed from a subset of 2000 utterances for each
voice, including only voiced frames. The analyzed features
were the log f0 and the first two cepstral coefficients (c0
and c1), which reflect the energy and spectral tilt of speech,
respectively. The log f0 distributions (Figure 5 (a)) clearly
illustrate that “Roger” and “Nancy”, the two voices described
as highly expressive, have wider distributions compared to
“Nick” and “Jenny”. This difference is also reflected in the c0
distributions (Figure 5 (b)), which are slightly more skewed
towards right (i.e. high energy) for the more expressive voices
‘Roger” and “Nancy’. Finally, by looking at the distributions
for c1 (Figure 5 (c)), it can be clearly seen that “Nick” shows a
large occurrence of high c1 values. This means that compared
to the other voices, “Nick” has more energy in low frequencies.
The differences in spectral tilt are mainly due to the phonation
mode of the glottal excitation. Therefore, the c1 histogram of
“Nick” indicates that this speaker has generally a softer, less
pressed mode of phonation.
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TABLE I
DATA SPLIT (IN NUMBER OF UTTERANCES) FOR EACH VOICE AND TOTAL

DURATION OF THE CORPUS.

Voice Training Development Testing Total Duration

Nick 2400 70 72 1hr 47mins
Roger 4358 150 150 7hrs
Jenny 4063 150 150 7hrs 51mins
Nancy 11682 200 200 16hrs 44mins

C. The TTS system setup

The Merlin speech synthesis toolkit [54] (with a few mod-
ifications to ensure vocoder compatibility) was used to build
the TTS voices. To get the phone durations, force alignment
based on hidden Markov models (HMM) was done at state-
level. Five-state HMM duration models were trained using
mel-frequency cepstral coefficients (MFCCs) for each speaker.
Mono-phoneme labels were converted to full-context phoneme
labels using the Festival toolkit [55]. To map the ASCII text
onto phonemic sound units, combilex [56] lexicon was used.
The full contextual labels were mapped onto binary and real
values at frame level using an HTS-style question file [57].
The dimension of the input labels was 335, of which the
last nine values contain information about the duration of
the phoneme, such as the position of the current frame in
the current phoneme. Min–max normalization was applied
on input features that scaled the features into the range of
[0.01 to 0.99]. The output features, which depend upon the
vocoder parameters, were scaled using the mean-variance
normalization technique. The F0 was linearly interpolated
before modeling, and a binary feature was used to record the
voiced/unvoiced information for each frame.

For acoustic modeling, models based on LSTM [43] were
employed to map the linguistic features to acoustic vocoder
features (including static frame-level vocoder features and the
corresponding ∆ and ∆∆ features). The architecture of the
neural network consists of four hidden layers of the sizes 256,
128, 512, and 512 hidden units. The first three hidden layers
were feed-forward layers with a tanh activation function and
the last hidden layer was an LSTM layer. The final output
layer had a linear activation function. The mean square error
between predicted and actual acoustic parameters was used
as a cost function. The stochastic gradient decent (SGD)
optimization algorithm was used to learn the parameters. The
learning rate was set to a constant of value 0.002 for the first 10
epochs and afterwards it was decreased by half for each epoch.
The initial momentum value was set to 0.3 and later increased
to 0.9 after the first 10 epochs. The mini-batch size was set to
256 and the models were trained for 25 epochs. To increase
the generalization accuracy, an early stopping criterion was
employed.

Within synthesis time, oracle durations based on the forced
alignment of the test set utterances were utilized to ensure
minimal prosodic quality degradations and to enable the use
of the original utterances as listening test references. This was
also done to emphasize the effect of the vocoder differences in
the listening tests. The parameters generated by the acoustic

model were finalized with the maximum likelihood parameter
generation (MLPG) algorithm [58], and finally, straightforward
post-filtering [59] was applied to the spectral features to
increase formant dynamics: For PML and STRAIGHT, the
values of the cepstral coefficients (outside the first two) were
multiplied by a constant of 1.4. For GlottDNN and GlottHMM,
the spectral valleys of the synthesized vocal tract magnitude
envelopes were multiplied by a constant of 0.3 [60]. Both of
the utilized post-filtering methods are highly similar in their
function (they boost the dynamics of the spectral envelope
peaks with a constant factor), and they can be considered as
well-known baseline methods. More advanced post-filtering
techniques have been developed (e.g., [45], [61]), but we
chose the baseline methods to keep the focus of the study
on the vocoder differences, which should not be affected by
the choice of the post-filtering method.

D. The MUSHRA test setup

Both of the MUSHRA tests included 40 test utterances (10
per voice) with samples from four vocoders, alongside hidden
references (original speech utterances) and anchors (vocoded
speech with over-simplified impulse excitation). Sixteen profi-
cient English speakers (international university students, out
of whom 10 were native English speakers) were recruited
for the tests where the task was to rate (on a scale from
0 to 100) the overall quality of the samples compared to
the real speech reference. The subjects performed the tests
inside sound proofed listening booths using Sennheiser HD
650 headphones and a MOTU UltraLite Mk3 audio interface.

The difference between the two MUSHRA tests was
straightforward: In the analysis-synthesis test, the original
vocoder parameter trajectories were used to synthesize the
test utterances and in the TTS test the synthesized parameter
trajectories (with oracle durations) were used.

E. The DMOS test setup

The crowd-sourced DMOS tests were carried out on the
CrowdFlower platform [62]. For each test, a total of 40
test utterances were selected (10 for each voice), alongside
reference samples to test subject attentiveness. To participate in
the test, the subject had to pass a pre-screening test consisting
of reference pairs and anchor samples (the same as in the
MUSHRA test) with at least 70% accuracy (i.e., on a discrete
scale from 1 to 5, the quality of a reference sample had to
be rated as 4 or 5, and an anchor sample had to be rated
as 1 or 2). Approximately 200 participants (219 and 194
for the first and second test, respectively) attended each test,
averaging approximately 30 evaluations per listener (or about
150 evaluations per test utterance).

1) The TTS synthesis quality test with vocoder-specific
parameters: The test samples for the “out-of-the-box” vocoder
quality test were generated with the same system as those in
the MUSHRA test on TTS quality. This overlap acts as a
control on the test setup facet of our tests: Any differences
seen between this test and the MUSHRA TTS test are caused
by either the test type or audio conditions at the listeners’ site.
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(a) The results of the MUSHRA analysis-synthesis test.
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(b) The results of the MUSHRA TTS synthesis test.

Fig. 6. MUSHRA test results (means and their 95% confidence intervals) obtained with repeated measures ANOVA model (N = 16). For all presented
panels the rANOVA p � 10−3.

TABLE II
STUDENT’S t-TEST RESULTS FOR THE MUSHRA ANALYSIS-SYNTHESIS

TEST WITH t-VALUES REPORTED FOR DEGREES OF FREEDOM = 15.
STATISTICALLY SIGNIFICANT RESULTS WITH BONFERRONI CORRECTION

(p < 0.0083) ARE SHOWN IN A BOLD FONT.

All voices GlottDNN PML STRAIGHT

GlottHMM t = −10.2,p ≈ 10−8 t = −14.4,p ≈ 10−10 t = −11.1,p ≈ 10−8

GlottDNN — t = −11.6,p ≈ 10−8 t = 0.13, p = 0.90

PML — — t = 10.0,p ≈ 10−8

Jenny GlottDNN PML STRAIGHT

GlottHMM t = −5.7,p ≈ 10−5 t = −15.3,p ≈ 10−10 t = −5.6,p ≈ 10−5

GlottDNN — t = −16.4,p ≈ 10−10 t = 0.89, p = 0.39

PML — — t = 12.0,p ≈ 10−9

Nancy GlottDNN PML STRAIGHT

GlottHMM t = −0.52, p = 0.61 t = −7.0,p ≈ 10−6 t = −8.9,p ≈ 10−7

GlottDNN — t = −7.4,p ≈ 10−6 t = 10.1,p ≈ 10−8

PML — — t = 3.3,p = 0.005

Nick GlottDNN PML STRAIGHT

GlottHMM t = −8.7,p ≈ 10−7 t = −9.0,p ≈ 10−7 t = 8.6,p ≈ 10−7

GlottDNN — t = −1.8, p = 0.09 t = 2.8, p = 0.01

PML — — t = 4.7,p ≈ 10−4

Roger GlottDNN PML STRAIGHT

GlottHMM t = −9.8,p ≈ 10−7 t = −14.7,p ≈ 10−10 t = −4.6,p ≈ 10−4

GlottDNN — t = −2.0, p = 0.07 t = 3.2,p = 0.006

PML — — t = 8.1,p ≈ 10−6

All vocoders Nancy Nick Roger

Jenny t = 2.6, p = 0.025 t = −6.2,p ≈ 10−5 t = 6.1,p ≈ 10−5

Nancy — t = −9.5,p ≈ 10−7 t = 6.0,p ≈ 10−5

Nick — — t = 9.5,p ≈ 10−7

2) The TTS synthesis quality test with a STRAIGHT en-
velope: For the test on TTS synthesis quality with the
STRAIGHT envelope, the GlottDNN, PML, and STRAIGHT
vocoders were used with the post-filtered STRAIGHT en-
velopes. GlottHMM was omitted from this test, because it does
not support synthesis with a generic spectral envelope model.
For GlottDNN, the synthesis filtering with the STRAIGHT
spectral model was implemented as follows: First, the glottal
excitation signal was generated as described in Section II-D.
Next, the excitation was filtered in the frequency domain with
a fixed frame rate so that the envelope of the magnitude
spectrum matches the STRAIGHT spectrum (no additional
post-filtering was performed). The phase is set according to
the phase of the excitation and the minimum phase response

TABLE III
STUDENT’S t-TEST RESULTS FOR THE MUSHRA TTS TEST WITH

t-VALUES REPORTED FOR DEGREES OF FREEDOM = 15. STATISTICALLY
SIGNIFICANT RESULTS WITH BONFERRONI CORRECTION (p < 0.0083)

ARE SHOWN IN A BOLD FONT.

All voices GlottDNN PML STRAIGHT

GlottHMM t = 3.3,p = 0.005 t = −0.94, p = 0.36 t = 12.9,p ≈ 10−9

GlottDNN — t = −6.3,p ≈ 10−5 t = 7.7,p ≈ 10−6

PML — — t = 14.5,p ≈ 10−10

Jenny GlottDNN PML STRAIGHT

GlottHMM t = 1.3, p = 0.21 t = −0.48, p = 0.64 t = 5.3,p ≈ 10−4

GlottDNN — t = −2.3, p = 0.04 t = 4.8,p ≈ 10−4

PML — — t = 8.4,p ≈ 10−7

Nancy GlottDNN PML STRAIGHT

GlottHMM t = 4.2,p ≈ 0.001 t = −1.5, p = 0.15 t = 10.5,p ≈ 10−8

GlottDNN — t = −4.9,p ≈ 10−4 t = 3.9,p = 0.001

PML — — t = 8.7,p ≈ 10−7

Nick GlottDNN PML STRAIGHT

GlottHMM t = −2.8, p = 0.012 t = 3.6,p = 0.003 t = 8.1,p ≈ 10−7

GlottDNN — t = 8.4,p ≈ 10−7 t = 10.7,p ≈ 10−8

PML — — t = 6.6,p ≈ 10−5

Roger GlottDNN PML STRAIGHT

GlottHMM t = 9.1,p ≈ 10−7 t = −3.7,p = 0.002 t = 10.8,p ≈ 10−8

GlottDNN — t = −10.3,p ≈ 10−8 t = −0.3, p = 0.78

PML — — t = 9.5,p ≈ 10−7

All vocoders Nancy Nick Roger

Jenny t = −2.5, p = 0.025 t = −18.2,p ≈ 10−11 t = 1.7, p = 0.10

Nancy — t = −14.6,p ≈ 10−10 t = 4.7,p ≈ 10−4

Nick — — t = 16.0,p ≈ 10−10

of the STRAIGHT envelope, compensated by the spectral tilt
of the excitation. The resulting spectra are inverse transformed
into the time domain and overlap-added in order to produce the
speech signal. The synthesis models of PML and STRAIGHT
directly support the STRAIGHT envelope representation, so
no modifications were needed in these two vocoders.

V. RESULTS

A. The MUSHRA test results

The results for the MUSHRA tests are presented in Figure
6. The results were computed as marginal means and their
95% confidence intervals based on the repeated measures
analysis of variance (rANOVA) model. In the first row, the
overall results for all speakers for the compared vocoders are
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(a) The results of the DMOS test with vocoder-specific envelopes.

TTS with STRAIGHT envelope
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(b) The results of the DMOS test with STRAIGHT envelopes.

Fig. 7. The results of the crowd-sourced DMOS listening tests (N ≈ 150). Means and confidence intervals were obtained by fitting them to a normal
distribution.

TABLE IV
THE MANN-WHITNEY U-TEST RESULTS FOR THE DMOS TEST ON

VOCODER QUALITY WITH VOCODER-SPECIFIC ENVELOPES.
STATISTICALLY SIGNIFICANT RESULTS WITH BONFERRONI CORRECTION

(p < 0.0083) ARE SHOWN IN A BOLD FONT.

All voices GlottDNN PML STRAIGHT

GlottHMM z = 10.8,p ≈ 10−27 z = 6.8,p ≈ 10−11 z = 17.4,p ≈ 10−68

GlottDNN — z = −4.3,p ≈ 10−5 z = 6.6,p ≈ 10−28

PML — — z = 11.0,p ≈ 10−28

Jenny GlottDNN PML STRAIGHT

GlottHMM z = 4.0,p ≈ 10−4 z = 5.2,p ≈ 10−7 z = 9.3,p ≈ 10−20

GlottDNN — z = 1.4, p ≈ 0.17 z = 5.9,p ≈ 10−9

PML — — z = 4.4,p ≈ 10−5

Nancy GlottDNN PML STRAIGHT

GlottHMM z = 6.7,p ≈ 10−11 z = −0.1, p ≈ 0.90 z = 6.3,p ≈ 10−10

GlottDNN — z = −7.0,p ≈ 10−12 z = −0.4, p ≈ 0.68

PML — — z = 6.5,p ≈ 10−11

Nick GlottDNN PML STRAIGHT

GlottHMM z = 1.1, p ≈ 0.28 z = 2.9,p ≈ 0.003 z = 10.2,p ≈ 10−24

GlottDNN — z = 1.8, p ≈ 0.07 z = 9.2,p ≈ 10−20

PML — — z = 7.6,p ≈ 10−14

Roger GlottDNN PML STRAIGHT

GlottHMM z = 10.6,p ≈ 10−26 z = 6.3,p ≈ 10−10 z = 10.5,p ≈ 10−25

GlottDNN — z = −4.7,p ≈ 10−6 z = −0.3, p ≈ 0.79

PML — — z = 4.5,p ≈ 10−5

All vocoders Nancy Nick Roger

Jenny z = −5.0,p ≈ 10−6 z = −24.8,p ≈ 10−135 z = 4.2,p ≈ 10−5

Nancy — z = −20.5,p ≈ 10−93 z = 8.7,p ≈ 10−18

Nick — — z = 26.9,p ≈ 10−159

presented (column 1), as well as the overall results for all
vocoders for the different speakers (column 2). The bottom
two rows present the voice-specific results for the vocoders.
Post-hoc tests for statistically significant differences between
evaluated pairs, presented in Tables II and III, were performed
with Student’s t-test with Bonferroni correction (i.e., p < 0.05

Ncases

is considered statistically significant).
1) The analysis-synthesis quality test: The MUSHRA

analysis-synthesis test results are presented in Figure 6a, and
the Student’s t-test results between all systems are presented
in Table II. Looking at the overall results, it can be seen
that PML is the best performing vocoder (with a statistically
significant margin), followed by GlottDNN and STRAIGHT
without statistically significant differences. GlottHMM has the
worst performance with a significant difference compared to

TABLE V
THE MANN-WHITNEY U-TEST RESULTS FOR THE DMOS TEST ON

VOCODER QUALITY WITH THE STRAIGHT ENVELOPE MODEL.
STATISTICALLY SIGNIFICANT RESULTS WITH BONFERRONI CORRECTION

(p < 0.0167) ARE SHOWN IN A BOLD FONT.

All voices PML STRAIGHT —

GlottDNN z = −6.8,p ≈ 10−11 z = 3.3,p ≈ 0.001 —
PML — z = 10.1,p ≈ 10−24 —

Jenny PML STRAIGHT —

GlottDNN z = −3.6,p ≈ 10−4 z = 4.8,p ≈ 10−6 —
PML — z = 8.3,p ≈ 10−16 —

Nancy PML STRAIGHT —

GlottDNN z = −5.6,p ≈ 10−8 z = −0.5, p ≈ 0.60 —
PML — z = 5.1,p ≈ 10−7 —

Nick PML STRAIGHT —

GlottDNN z = 2.3, p = 0.02 z = 2.6,p = 0.01 —
PML — z = 0.3, p ≈ 0.33 —

Roger PML STRAIGHT —

GlottDNN z = −6.8,p ≈ 10−11 z = 0.3, p ≈ 0.75 —
PML — z = 7.1,p ≈ 10−12 —

All vocoders Nancy Nick Roger

Jenny z = −5.0,p ≈ 10−6 z = −24.8,p ≈ 10−135 z = 4.2,p ≈ 10−5

Nancy — z = −20.5,p ≈ 10 −93 z = 8.7,p ≈ 10−18

Nick — — z = 26.9,p ≈ 10−159

the other vocoders. By looking at the voice-specific mean
scores averaged over all vocoders, it can be observed that the
“Nick” voice has the best overall performance by a significant
margin, whereas the reverberant “Roger” voice seems to be
the least suitable for vocoding.

The voice-specific scores for the vocoders reveal a clear
trend for the GlottDNN vocoder: The low-pitched male voices
performed relatively well (no significant differences compared
to PML), but the more high-pitched female voices dropped in
relative performance. For the other vocoders, the voice-specific
analysis-synthesis results are consistent between voices.

2) TTS synthesis quality test: The MUSHRA TTS test
results are presented in Figure 6b, and the Student’s t-test
results for all systems are presented in Table III. The overall
results indicate PML and GlottHMM to be the best perform-
ing vocoders without statistically significant differences. An
important thing to note is that when switching from analysis-
synthesis to TTS, GlottHMM counter-intuitively increases its
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score within the TTS context, whereas the overall scores drop
for the other vocoders. The overall performance of GlottDNN
is slightly behind PML and GlottHMM with statistically
significant margins, and STRAIGHT is the worst performing
vocoder with significant margins. The voice-specific scores
averaged across all vocoders indicate that the differences
between the voices are smaller than within analysis-synthesis,
except for “Nick” whose TTS performance is on a par with
the analysis-synthesis MUSHRA score.

Within the voice-specific scores for the vocoders, more
specific differences arise than in the analysis-synthesis test. For
the “Jenny” voice, the GlottDNN, GlottHMM, and PML do not
have statistically significant differences. For “Nancy”, PML
and GlottHMM have similar results (no significant difference),
followed by GlottDNN and STRAIGHT (with significant
differences). For “Nick”, GlottDNN has the highest score that,
however, is not deemed as statistically significant compared
to GlottHMM after the Bonferroni correction. For “Roger”
the performance of GlottDNN drops greatly compared to the
analysis-synthesis performance, with PML having the best
quality. We speculate the the drastic relative drop in GlottDNN
performance is caused by the reverberation that is present
in the recordings. The excitation generation DNN learns to
replicate this audio quality, which becomes more apparent in
TTS.

B. The DMOS test results
Due to the nature of the crowd-sourcing platform, complete

data for all test cases could not be obtained for each listener.
Furthermore, since the DMOS test utilizes discrete ranking
with sparse categories without anchor points, the linearity
of the ranking scale is questionable. Due to this, ANOVA-
based statistical methods are not suitable for the analysis of
mean opinion score (MOS)-type tests, and the non-parametric
Mann-Whitney U-test was used instead. The Mann-Whitney
U-test with bias control for listener and utterance variability
is recommended in [63] for MOS tests. Since the reasoning
behind this test for MOS arise from equivalent concerns as
to those in our DMOS test, we applied the recommended
procedures as described in [63] for our tests. The means and
their confidence intervals are obtained by parameter fitting to
a normal distribution based on the raw test data.

1) The TTS synthesis quality test with vocoder-specific
parameters: The “out-of-the-box” TTS quality DMOS test re-
sults are presented in Figure 7a, and the Mann-Whitney U-test
results for all systems are presented in Table IV. GlottHMM
gets the best DMOS score with significant margins. The mean
results for GlottDNN and PML are highly similar, but a
significant difference in favor of PML can be seen from the
U-test. The overall voice-specific results are highly similar
to the MUSHRA test for TTS quality, as expected, with
only the performance of GlottHMM being elevated for all
voices. The “Nick” voice receives a DMOS score of 4.19
for the GlottHMM and GlottDNN vocoders, which indicates a
peculiarly high quality as the quality is deemed, on average, to
be above “good” compared to the corresponding natural speech
sample. The U-test does not indicate a statistically significant
difference between GlottDNN and PML however.

2) The TTS synthesis quality test with a STRAIGHT en-
velope: The DMOS test results for TTS with a STRAIGHT
envelope are presented in Figure 7b, and the Mann-Whitney U-
test results for all systems are presented in Table V. The overall
performance of STRAIGHT in both tests is nearly identical,
as expected. PML slightly increases its mean score, but the
differences are within the error margins, whereas the over-
all performance of GlottDNN decreases. The overall scores
have statistically significant differences between all vocoders.
The voice-specific scores averaged over vocoders cannot be
directly compared to the results of the first DMOS test due to
the absence of GlottHMM within the data. Within the voice-
specific scores for the vocoders, the use of the STRAIGHT
envelope increases the performance of PML within all of the
voices except for “Nick”. For GlottDNN, the DMOS score
for “Nancy” is slightly increased and for “Nick” it is greatly
decreased.

VI. SUMMARY AND CONCLUSIONS

Vocoders from the three main categories (mixed excitation,
glottal, sinusoidal vocoders) were compared in the current
study with formal and crowd-sourced listening tests. Vocoder
quality was measured within the context of analysis-synthesis
as well as TTS synthesis. Furthermore, the TTS experiments
were divided into synthesis with vocoder-specific features and
synthesis with a shared envelope model, where the waveform
generation method of the vocoders is mainly responsible for
the quality differences. Finally, all of the tests included four
distinct voices as a way to investigate the effect of different
speakers on the resulting vocoder-generated speech quality.

The results presented in Section V reveal many interesting
facets about the role of vocoders in statistical parametric
speech synthesis. Most importantly, the choice of the voice
has a profound impact on the overall quality of the vocoder-
generated voice, and the best vocoder for each voice can
vary case by case (e.g., see the performance of GlottDNN
for “Nick” compared to the other voices). Furthermore, it can
be seen that PML has the best overall performance across all
of the performed tests. The overall best performance of “Nick”
can be attributed to the voice characteristics presented in
Section IV-B, which show that ‘Nick” has the lowest average
f0 with the smallest deviation, alongside a larger spectral tilt
compared to the other voices. Both of these properties are
beneficial for accurate extraction of the spectral envelope. In
addition, the steep spectral tilt downgrades the relative impor-
tance of high frequencies, where the stochastic components are
more prominent, in assessing signal quality. This also explains
the good performance of the glottal vocoders with the “Nick”
voice.

Second, the analysis-synthesis quality of a vocoder cannot
be used as a reliable predictor of TTS synthesis quality with
the current acoustic models (see the remarkable absolute and
relative performance gains of GlottHMM in TTS compared to
analysis-synthesis). Based on this difference for GlottHMM,
it can be argued that the shortcomings of the spectral model
(from which GlottHMM suffers in analysis-synthesis) are aver-
aged out in current SPSS acoustic models. Furthermore, when
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comparing the performance differences between GlottHMM
and GlottDNN, we speculate that the quality of the DNN-
based excitation of GlottDNN is highly voice-specific (for
example, the performance of “Roger” decreased considerably
because of the picked-up reverberation), as is also concluded in
a separate study [64]. The simple excitation generation based
on a high-quality glottal pulse utilized by GlottHMM is thus
a safer option for more challenging voices.

The DMOS tests reveal that when controlling for the
spectral models of the vocoders (where the perceived dif-
ferences arise from the waveform generation procedure), the
differences between vocoders are similar to the baseline re-
sults. This indicates that the waveform synthesis method of a
vocoder is essential for quality improvements, which is also
reported in [18]. In PML, the performance gains compared
to STRAIGHT are achieved by a more sophisticated noise
model, whereas in GlottDNN the main difference is the more
physiologically oriented phase information of the excitation
(whereas STRAIGHT and PML use minimum phase responses
of the overall spectral envelope). This suggests that in future
research, the integration of these approaches—the accurate
excitation phase generation based on the vocoder features, and
a more natural stochastic texture based on the binary noise
mask features—could be beneficial.

ACKNOWLEDGMENT

The research leading up to this publication has received
funding from the Academy of Finland (project no. 312490,
284671).

REFERENCES

[1] M. Cooke, S. King, M. Garnier, and V. Aubanel, “The listening talker:
A review of human and algorithmic context-induced modifications of
speech,” Computer Speech & Language, vol. 28, no. 2, pp. 543 – 571,
2014.

[2] H. Zen, K. Tokuda, and A. W. Black, “Review: Statistical parametric
speech synthesis,” Speech Communication, vol. 51, no. 11, pp. 1039–
1064, 2009.

[3] Y. Stylianou, “Voice transformation: A survey,” in Proc. ICASSP. IEEE,
2009, pp. 3585 – 3588.

[4] P. R. Cook, “Toward the perfect audio morph? singing voice synthesis
and processing,” in Proc. Workshop on Digital Audio Effects, 1998.

[5] A. V. McCree and T. P. Barnwell, “A mixed excitation lpc vocoder model
for low bit rate speech coding,” IEEE Transactions on Speech and Audio
Processing, vol. 3, no. 4, pp. 242 – 250, Jul 1995.

[6] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, ser.
Prentice-Hall signal processing series. Prentice-Hall, 1978.

[7] J. Flanagan and R. Golden, “Phase vocoder,” Bell System Technical
Journal, vol. 45, no. 9, pp. 1493–1509, 1966.

[8] T. Bäckström, Speech Coding with Code-Excited Linear Prediction,
ser. Signals and Communication Technology. Springer International
Publishing, 2017.

[9] A. Sorin, S. Shechtman, and A. Rendel, “Semi parametric concatenative
TTS with instant voice modification capabilities,” in Proc. Interspeech,
2017, pp. 1373–1377.

[10] H. Kawahara, I. Masuda-Katsuse, and A. de Cheveigné, “Restructuring
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[35] A. Härmä and U. K. Laine, “A comparison of warped and conventional
linear predictive coding,” IEEE Transactions on Speech and Audio
Processing, vol. 9, no. 5, pp. 579–588, November 2001.

[36] E. Moulines and J. Laroche, “Non-parametric techniques for pitch-scale
and time-scale modification of speech,” Speech communication, vol. 16,
no. 2, pp. 175–205, 1995.

[37] M. Airaksinen, B. Bollepalli, L. Juvela, Z. Wu, S. King, and P. Alku,
“GlottDNN — A full-band glottal vocoder for statistical parametric
speech synthesis,” in Proc. Interspeech. ISCA, 2016.

[38] J. Juvela, X. Wang, S. Takaki, M. Airaksinen, J. Yamagishi, and P. Alku,
“Using text and acoustic features in predicting glottal excitation wave-
forms for parametric speech synthesis with recurrent neural networks,”
in Proc. Interspeech. ISCA, 2014.

[39] B. Bollepalli, L. Juvela, and P. Alku, “Generative adversarial network-
based glottal waveform model for statistical parametric speech synthe-
sis,” in Proc. Interspeech. ISCA, 2017, pp. 3394 – 3398.

[40] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-generalized
cepstral analysis - a unified approach to speech spectral estimation,” in
Proc. ICSLP, 1994.

[41] P. Alku, “Glottal wave analysis with pitch synchronous iterative adaptive
inverse filtering,” Speech Communication, vol. 11, no. 2–3, pp. 109 –
118, 1992.

[42] T. Masuko, K. Tokuda, T. Kobayashi, and S. Imai, “Speech synthesis
using HMMs with dynamic features,” in Proc. ICASSP, vol. 1. IEEE,
1996, pp. 389 – 392.

[43] Y. Fan, Y. Qian, F. Xie, and F. K. Soong, “TTS synthesis with bidi-
rectional LSTM based recurrent neural networks,” in Proc. Interspeech.
ISCA, 2014.

[44] Z. Wu and S. King, “Investigating gated recurrent networks for speech
synthesis,” in Proc. ICASSP. IEEE, 2016, pp. 5140 – 5144.

[45] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and
K. Kashino, “Generative adversarial network-based postfilter for sta-
tistical parametric speech synthesis,” in Proc. ICASSP. IEEE, 2017,
pp. 4910 – 4914.

[46] M. Cooke, C. Mayo, and C. Valentini-Botinhao, “Hurricane natural
speech corpus,” 2013, LISTA Consortium. [Online]. Available:
http://dx.doi.org/10.7488/ds/140

[47] S. King and V. Karaiskos, “The Blizzard challenge 2011,” in Blizzard
Challenge 2011 Workshop, 2011.

[48] ITU, “ITU-R BS.1534 (method for the subjective assessment of inter-
mediate quality levels of coding systems),” 2015.

[49] ——, “Methods for subjective determination of transmission quality,” in
International Telecommunication Union, Recommendation ITU-T P.800,
1996.

[50] T. Raitio, A. Suni, M. Vainio, and P. Alku, “Wideband parametric speech
synthesis using warped linear prediction,” in Proc. Interspeech, 2012.

[51] A. Camacho and J. G. Harris, “A sawtooth waveform inspired pitch
estimator for speech and music,” The Journal of the Acoustical Society
of America, vol. 124, no. 3, pp. 1638–1652, 2008.

[52] D. Talkin, “A robust algorithm for pitch tracking (RAPT),” in Speech
Coding and Synthesis. Elsevier, 1995.

[53] ITU, “ITU-T P.56 (Objective measurement of active speech level),”
2011.

[54] Z. Wu, O. Watts, and S. King, “Merlin: An open source neural network
speech synthesis system,” in 9th ISCA Speech Synthesis Workshop, 9
2016, pp. 218 – 223.

[55] “Festival.” [Online]. Available: http://www.festvox.org/festival/
[56] K. Richmond, R. Clark, and S. Fitt, “On generating combilex pronunci-

ations via morphological analysis,” in Proc. Interspeech. ISCA, 2010,
pp. 1974 – 1977.

[57] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura,
“Speech synthesis based on hidden Markov models,” Proceedings of the
IEEE, vol. 101, no. 5, pp. 1234 – 1252, 2013.

[58] K. Tokuda, T. Kobayashi, T. Masuko, T. Kobayashi, and T. Kitamura,
“Speech parameter generation algorithms for HMM-based speech syn-
thesis,” in Proc. ICASSP. IEEE, 2000, pp. 1315 – 1318.

[59] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,
“Incorporating a Mixed Excitation Model and Postfilter into HMM-
based Text-to-speech Synthesis,” Systems and Computers in Japan,
vol. 36, no. 12, pp. 43 – 50, 2005.

[60] T. Raitio, A. Suni, H. Pulakka, M. Vainio, and P. Alku, “Comparison
of formant enhancement methods for HMM-based speech synthesis.” in
SSW, 2010, pp. 334–339.

[61] A. Sorin, S. Shechtman, and V. Pollet, “Uniform speech parameterization
for multi-form segment synthesis,” in Proc. Interspeech. ISCA, 2011,
pp. 337–340.

[62] “Crowdflower.” [Online]. Available: http://www.crowdflower.com

[63] A. Rosenberg and B. Ramabhadran, “Bias and statistical significance
in evaluating speech synthesis with mean opinion scores,” in Proc.
Interspeech. ISCA, 2017, pp. 3976 – 3980.

[64] M. Airaksinen and P. Alku, “Effects of training data variety in generating
glottal pulses from acoustic features with DNNs,” in Proc. Interspeech.
ISCA, 2017.


