474 research outputs found

    Multi-Objective Multi-mode Time-Cost Tradeoff modeling in Construction Projects Considering Productivity Improvement

    Full text link
    In today's construction industry, poor performance often arises due to various factors related to time, finances, and quality. These factors frequently lead to project delays and resource losses, particularly in terms of financial resources. This research addresses the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP), a real-world challenge that takes into account the time value of money and project payment planning. In this context, project activities exhibit discrete cost profiles under different execution conditions and can be carried out in multiple ways. This paper aims to achieve two primary objectives: minimizing the net present value of project costs and project completion times while simultaneously improving the project's productivity index. To accomplish this, a mathematical programming model based on certain assumptions is proposed. Several test cases are designed, and they are rigorously evaluated using the methodology outlined in this paper to validate the modeling approach. Recognizing the NP-hard nature of this problem, a multi-objective genetic algorithm capable of solving large-scale instances is developed. Finally, the effectiveness of the proposed solution is assessed by comparing it to the performance of the NSGA-II algorithm using well-established efficiency metrics. Results demonstrate the superior performance of the algorithm introduced in this study.Comment: 40 pages, 20 figures, 7 table

    Ensemble Differential Evolution with Simulation-Based Hybridization and Self-Adaptation for Inventory Management Under Uncertainty

    Full text link
    This study proposes an Ensemble Differential Evolution with Simula-tion-Based Hybridization and Self-Adaptation (EDESH-SA) approach for inven-tory management (IM) under uncertainty. In this study, DE with multiple runs is combined with a simulation-based hybridization method that includes a self-adaptive mechanism that dynamically alters mutation and crossover rates based on the success or failure of each iteration. Due to its adaptability, the algorithm is able to handle the complexity and uncertainty present in IM. Utilizing Monte Carlo Simulation (MCS), the continuous review (CR) inventory strategy is ex-amined while accounting for stochasticity and various demand scenarios. This simulation-based approach enables a realistic assessment of the proposed algo-rithm's applicability in resolving the challenges faced by IM in practical settings. The empirical findings demonstrate the potential of the proposed method to im-prove the financial performance of IM and optimize large search spaces. The study makes use of performance testing with the Ackley function and Sensitivity Analysis with Perturbations to investigate how changes in variables affect the objective value. This analysis provides valuable insights into the behavior and robustness of the algorithm.Comment: 15 pages, 6 figures, AsiaSIM 2023 (Springer

    A general Framework for Utilizing Metaheuristic Optimization for Sustainable Unrelated Parallel Machine Scheduling: A concise overview

    Full text link
    Sustainable development has emerged as a global priority, and industries are increasingly striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical aspect of production planning that directly impacts resource utilization and operational efficiency. In this paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs). The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more, and assess their effectiveness in optimizing the scheduling problem. The algorithms are evaluated based on their ability to improve resource utilization, minimize energy consumption, reduce environmental impact, and promote socially responsible production practices. To conduct a comprehensive analysis, we consider UPMSP instances that incorporate sustainability-related constraints and objectives

    Quantum Computing Algorithms for Solving Complex Mathematical Problems

    Get PDF
    The power of quantum mechanics, that is too complex for conventional computers, can be solved by an innovative model of computing known as quantum computing. Quantum algorithms can provide exponential speedups for some types of problems, such as many difficult mathematical ones. In this paper, we review some of the most important quantum algorithms for hard mathematical problems. When factoring large numbers, Shor's algorithm is orders of magnitude faster than any other known classical algorithm. The Grover's algorithm, which searches unsorted databases much more quickly than conventional algorithms, is then discussed. &nbsp

    Leo: Lagrange Elementary Optimization

    Full text link
    Global optimization problems are frequently solved using the practical and efficient method of evolutionary sophistication. But as the original problem becomes more complex, so does its efficacy and expandability. Thus, the purpose of this research is to introduce the Lagrange Elementary Optimization (Leo) as an evolutionary method, which is self-adaptive inspired by the remarkable accuracy of vaccinations using the albumin quotient of human blood. They develop intelligent agents using their fitness function value after gene crossing. These genes direct the search agents during both exploration and exploitation. The main objective of the Leo algorithm is presented in this paper along with the inspiration and motivation for the concept. To demonstrate its precision, the proposed algorithm is validated against a variety of test functions, including 19 traditional benchmark functions and the CECC06 2019 test functions. The results of Leo for 19 classic benchmark test functions are evaluated against DA, PSO, and GA separately, and then two other recent algorithms such as FDO and LPB are also included in the evaluation. In addition, the Leo is tested by ten functions on CECC06 2019 with DA, WOA, SSA, FDO, LPB, and FOX algorithms distinctly. The cumulative outcomes demonstrate Leo's capacity to increase the starting population and move toward the global optimum. Different standard measurements are used to verify and prove the stability of Leo in both the exploration and exploitation phases. Moreover, Statistical analysis supports the findings results of the proposed research. Finally, novel applications in the real world are introduced to demonstrate the practicality of Leo.Comment: 28 page

    A formal analisys of the computational dynamics in GIGANTEC

    Get PDF
    An evolutionary algorithm formalism has been forwarded in a previous research, and implemented in the system GIGANTEC: Genetic Induction for General Analytical Non-numeric Task Evolution Compiler [Bad98][Bad99]. A dynamical model is developed to analyze the behaviour of the algorithm. The model is dependent in its analysis on classical Compilers Theory, Game Theory and Markov Chains and its convergence characteristics. The results conclude that a limiting state is reached, which is independent of the initial population and the mutation rate, but dependent on the cardinality of the alphabet of the driving L-system

    Zone design of specific sizes using adaptive additively weighted voronoi diagrams

    Get PDF
    Territory or zone design processes entail partitioning a geographic space, organized as a set of areal units, into different regions or zones according to a specific set of criteria that are dependent on the application context. In most cases, the aim is to create zones of approximately equal sizes (zones with equal numbers of inhabitants, same average sales, etc.). However, some of the new applications that have emerged, particularly in the context of sustainable development policies, are aimed at defining zones of a predetermined, though not necessarily similar, size. In addition, the zones should be built around a given set of seeds. This type of partitioning has not been sufficiently researched; therefore, there are no known approaches for automated zone delimitation. This study proposes a new method based on a discrete version of the adaptive additively weighted Voronoi diagram that makes it possible to partition a two-dimensional space into zones of specific sizes, taking both the position and the weight of each seed into account. The method consists of repeatedly solving a traditional additively weighted Voronoi diagram, so that each seed?s weight is updated at every iteration. The zones are geographically connected using a metric based on the shortest path. Tests conducted on the extensive farming system of three municipalities in Castile-La Mancha (Spain) have established that the proposed heuristic procedure is valid for solving this type of partitioning problem. Nevertheless, these tests confirmed that the given seed position determines the spatial configuration the method must solve and this may have a great impact on the resulting partition
    corecore