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Abstract: The power of quantum mechanics, that is too complex for conventional computers, can be solved by an innovative model of 

computing known as quantum computing. Quantum algorithms can provide exponential speedups for some types of problems, such as many 

difficult mathematical ones. In this paper, we review some of the most important quantum algorithms for hard mathematical problems. When 

factoring large numbers, Shor's algorithm is orders of magnitude faster than any other known classical algorithm. The Grover's algorithm, which 

searches unsorted databases much more quickly than conventional algorithms, is then discussed.    
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Introduction: Quantum computing is a disruptive force in the 

constantly changing world of computing that has the potential 

to completely alter how we approach difficult mathematical 

problems.[5]; Quantum computers use the concepts of 

quantum mechanics to deliver solutions at previously unheard-

of speeds as classical computers reach their inherent limits in 

performing some computations.[1]; In this introduction, we 

delve into the world of quantum computing algorithms, 

examining their core ideas, benefits, and revolutionary 

potential for solving challenging mathematical issues.[2]; Bits, 

which can only represent values as 0 or 1, are the basic unit of 

information used by traditional computers. In contrast, qubits, 

which are used in quantum computers, can simultaneously 

exist in a linear combination of both 0 and 1 states as a result 

of the superposition phenomenon.[3]; This characteristic 

enables quantum computers to investigate various solutions to 

a problem in parallel, providing exponential speedup for some 

problem classes. Entanglement, which occurs when one 

qubit's state is inextricably linked to another's state and allows 

for effective communication and correlation, is another 

advantage of quantum computers. Numerous computationally 

intensive mathematical issues, including those involving 

number theory, cryptography, optimization, and other topics, 

are common.[6]; These problems are specifically addressed by 

quantum computing algorithms, which offer sophisticated 

answers to long-standing mathematical mysteries. One area 

where quantum computers have the potential to make a major 

impact is in solving complex mathematical problems. Many of 

the problems that are intractable for classical computers can 

be solved efficiently using quantum algorithms 

Shor's Algorithm 

For factoring large numbers, Shor's algorithm is a quantum 

algorithm. Peter Shor made the discovery of it in 1994. Shor's 

algorithm can factor a sizable number N in polynomial time, 

so the algorithm's running time only increases polynomial 

with the size of N. This contrasts with the best-known 

traditional algorithms for factoring large numbers, which have 

exponential running times. Shor's algorithm operates by 

performing a quantum Fourier transforms on N using a 

quantum computer. N can be divided into its prime factors 

using the quantum Fourier transforms. Shor's algorithm has 

significant effects on cryptography. The difficulty of factoring 

large numbers is a key component of many encryption 

techniques.  

Grover's Algorithm: 

Grover's algorithm is a quantum search method for databases 

that are not sorted. Lov Grover made the discovery of it in 
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1996. Grover's algorithm can search a database of size N that 

is not sorted in O(N) time, which means that the algorithm's 

running time only increases by the square root of N. The most 

well-known traditional algorithms for searching unsorted 

databases have linear running times in contrast to this. 

Grover's algorithm works by using a quantum computer to 

perform a quantum search on the database. The quantum 

search algorithm uses the superposition of qubits to 

simultaneously search the database. A number of fields, 

including database management, artificial intelligence, and 

machine learning, could benefit from using Grover's 

algorithm. Grover's algorithm, for instance, can be used to 

more quickly train machine learning models, find the most 

important data in a large database, or find the best answer to a 

question in a search space.  

Literature Review: 

M. Childs and others (2010)  Quantum methods to algebraic 

problems In his discussion of the state of quantum algorithms, 

the author gives a special emphasis on mathematically 

motivated problems and algorithms that outperform classical 

computation by a factor of a super polynomial. The 

complexity of quantum computation, quantum data, quantum 

circuits, reversible computation, quantum complexity theory, 

and fault tolerance are some of the subjects covered in the 

article. Two additional algebraic problems are investigated in 

relation to particular quantum solutions, namely the Abelian 

Quantum Fourier Transform and the Abelian Concealed 

Subgroup Problem. Investigation of Quantum Support Vector 

Machine for  Classification in NISQ era Anekai et.al (2021). 

An effective quantum algorithm for resolving nonlinear 

differential equations is discussed in this paper. The 

difficulties in solving nonlinear differential equations are 

discussed, along with ways that quantum mechanics can help. 

They present a new method that is accurate and effective at 

solving a variety of nonlinear differential equations. The 

algorithm can be employed with existing quantum computers 

and is based on a quantum version of the Runge-Kutta 

method. Effective quantum algorithm for nonlinear 

differential equations with dispersion by Jin-Peng Liua et al., 

2021 This paper provides a quantum algorithm for dissipative 

quadratic n-dimensional normal differential problems. The 

parameter R1, which describes the proportion of forcing and a 

nonlinear to linear dispersion, is given. The algorithm is 

exponentially more complicated than before quantum 

methods, having a T2qpoly (logT, logn, log 1) 

complexities.The forward Euler method and the quantum 

linear system algorithm are used to discretize, shorten, and 

solve the system of linear differential equations created by the 

Carleman linearization method, which converts a system of 

nonlinear differential equations into an infinite-dimensional 

system of linear differentiation equations.    

Quantum Algorithms for Solving Linear Systems of 

Equations and Differential Equations 

Differential equations can be solved more quickly and 

effectively on quantum computers than on traditional ones. 

The Trotter algorithm is one of the most promising quantum 

methods for resolving differential equations. In O (polylog(1) 

time, the Trotter algorithm can approximate the solution to a 

differential equation with an error of. The fastest known 

classical algorithms for solving differential equations have 

exponential running times in contrast to this. 

Quantum algorithm for solving algebra: 

Shor's algorithm is a quantum algorithm for integer 

factorization, which means it can efficiently find the prime 

factors of a given integer. This algorithm has significant 

implications for cryptography as it can potentially break the 

widely used RSA encryption scheme. 

The algorithm itself is quite complex and involves several 

mathematical concepts, including modular exponentiation and 

quantum Fourier transform. It utilizes the properties of 

quantum superposition and entanglement to perform 

computations in parallel and speed up the factorization 

process. Apply an adaptive exponential growth gate with the 

target number as the exponent to the flexible exponentiation 

register. then give the guess register a quantum Fourier 

transform. Determine the guess register's collapsed value. 

Calculate the modular exponentiation function's period using 

the collapsed value. To determine the factors of the target 

number using the conventional method, use the period. 

Shor’s algorithms for solving Quantum Fourier 

Transform(QFT):  

A quantum algorithm called Shor's algorithm for solving the 

QFT can be applied to quickly determine the QFT of a given 

state. A quantum state is transformed from the time domain to 

the frequency domain by the unitary operator known as the 

QFT. It is a crucial part of numerous quantum algorithms, 

including Shor's integer factorization algorithm. 

The following steps form the basis of Shor's algorithm for the 

QFT: 

Start with a time-domain quantum state. Apply Hadamard 

gates, controlled-Z gates, phase shifts, and other quantum 

operations to the state. In the frequency domain, measure the 

current state. Step 2's  

The controlled-Z gates entangle the states in the time domain, 

the phase shifts introduce relative phase shifts between the 

states in the time domain, and the Hadamard gates place the 

state in a superposition of states in the time domain. The state 

will reduce to a single state in the frequency domain when it is 

measured in step 3 of the process. The QFT of the initial state 

will be encoded in the time domain by this state. Shor's QFT 

algorithm is a very effective algorithm. The time required to 
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do so only grows polynomial as the size of the state increases, 

making it possible to calculate a state's QFT in polynomial 

time.   

Numerous significant applications can be made of Shor's QFT 

algorithm. It can be used to carry out algorithms like Grover's 

algorithm for unstructured database searching and Shor's 

algorithm for integer factorization, for instance. Other 

quantum algorithms like the Deutsch-Jozsa algorithm and the 

Simon's algorithm can also be implemented using it. 

Shor's algorithm to calculate the QFT of a 2-qubit state: 

 We will begin with a 2-qubit time-domain state. 

state = |00⟩ 

Apply a Hadamard gate to each qubit. 

state = H⊗H |00⟩ 

      we apply a controlled-Z gate to the two qubits. 

state = CZ |00⟩ 

 we are applying a phase shift to the second qubit. 

state = e^-2πi/3 |00⟩ 

we   also measure the state in the frequency domain. 

When the state is measured, it will collapse to one of the 

following four states: |00⟩ ,|01⟩ ,|10⟩ ,|11⟩. 

The probability of measuring each state is given by the 

following table: 

State  Probability  

00 1/3 

01 1/3 

10 1/3 

11 0 

 

The QFT of the original state is given by the following vector: 

[1/√2, 1/√2, 1/√2, 0] 

By measuring the state in the frequency domain and taking the 

square root of the probabilities of measuring each state, this 

vector can be created. Shor's QFT algorithm can be used to 

calculate the QFT of quantum states. It is an essential 

component of many quantum algorithms and has the potential 

to revolutionize many different areas of science and 

technology. 

Quantum computing algorithms for solving algebraic 

equations: 

Some algebraic equations can be solved more quickly by 

quantum algorithms than by classical ones by using analogies 

and the qubit's quantum properties. Unstructured search issues 

were the focus of the development of Grover's algorithm, a 

quantum algorithm. When searching through a sizable search 

space for specific solutions, it can be used to quickly resolve 

mathematical problems even though it isn't frequently used. 

Here is the operation of Grover's algorithm and how to apply 

it to mathematical problems. 

Grover's Algorithm for NP complete problem: 

Grover's algorithm is a quantum algorithm developed to 

address unstructured search-related issues. Grover's algorithm 

can be altered to seek solutions for NP-complete problems 

with binary string representations. Here is a quick explanation 

of how to solve this kind of problem using Grover's algorithm. 

Be aware that for many NP-complete problems, constructing 

an appropriate oracle function and encoding the problem as a 

string of bytes can be challenging. Use Grover's algorithm to 

find a satisfying assignment for a given Boolean formula in 

order to resolve an NP-complete issue, such as the Boolean 

Satisfiability Problem (SAT). 

 Grover's algorithm for Boolean satisfiability 

problem(SAT):  

1. Encoding: Represent each possible solution as a binary 

string. In the context of SAT, this means encoding 

possible truth assignments to the variables in the formula. 

For example, if you have three variables (x1, x2, x3), you 

might represent a possible assignment as a binary string 

(e.g., 101 for x1 = true, x2 = false, x3 = true). 

2. Oracle Function (SAT Oracle): Design an oracle function 

that checks whether the binary string represents a 

satisfying assignment for the given SAT problem. If the 

binary string satisfies the Boolean formula, mark it; 

otherwise, do nothing. 

3. Amplitude Amplification: Use Grover's algorithm to 

amplify the amplitude of the marked (satisfying) binary 

strings while suppressing the amplitude of the unmarked 

(non-satisfying) strings. Grover's algorithm achieves this 

through repeated iterations of the oracle and amplitude 

amplification steps. 

4. Number of Iterations: Determine the number of iterations 

needed for Grover's algorithm. Grover's algorithm 

typically requires approximately π/4√N iterations, where 

N is the number of possible solutions (exponential in the 

number of variables for SAT). 

5. Measurement: After performing the required number of 

Grover iterations, measure the quantum state. With high 

probability, you will obtain a binary string that represents 

a satisfying assignment if one exists. 

6. Verification: Verify the validity of the solution obtained 

by feeding it into the SAT problem's original Boolean 

formula. If it satisfies the formula, you have found a 

solution. 
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 Quantum computing algorithms for graph theory: 

The number of solutions to specific kinds of graph problems 

can be counted using quantum counting algorithms for graph 

theory. Quantum counting algorithms, for instance, can be 

used to count the number of Hamiltonian cycles, independent 

sets, and matching in a graph. 

 The quantum phase estimation algorithm serves as the 

foundation for quantum counting algorithms. One quantum 

algorithm that can be used to determine a unitary operator's 

phase is called the quantum phase estimation algorithm. We 

first need to build a unitary operator that encodes the graph 

problem in order to use the quantum phase estimation 

algorithm to count the number of solutions to a graph 

problem.  

After the unitary operator has been built, its phase can be 

estimated using the quantum phase estimation algorithm. 

Because the number of solutions to the graph problem is 

correlated with the phase of the unitary operator, by estimating 

the phase of the unitary operator, we can also estimate the 

number of solutions to the graph problem. Quantum 

algorithms are used to solve some algebraic equations more 

quickly than classical algorithms by using the analogy and the 

quantum properties of Qubits. To address problems with 

unstructured search, Grover's algorithm was developed as a 

quantum algorithm. Although it isn't used often, it can be 

applied to directly resolve mathematical issues when 

searching for particular solutions throughout a wide search 

space. The Grover's algorithm's workings are explained here, 

along with how to use it to solve mathematical issues. The 

measurement's output is an estimation of the graph's 

Hamiltonian cycles. 

 
Fig 1: Quantum counting algorithm for counting the number 

of Hamiltonian cycles in a graph 

Quantum counting algorithm for counting the number of 

Hamiltonian cycles in a graph: 

1. Setting up a quantum computer in the graph-encoding state 

is step one. To achieve this, each graph vertex can be thought 

of as a Qubit, and each graph edge as a CNOT gate linking the 

corresponding Qubits. 

 2. Construct a unitary operator to symbolize the answer to the 

Hamiltonian cycle riddle. The Hamiltonian cycle problem can 

then be encoded using CNOT gates on the entangled qubits 

after each qubit is put in a superposition of states using a 

Hadamard gate.  

3. Combine the quantum phase estimation algorithm with the 

unitary operator. This will give a rough idea of the phase of 

the unitary operator, which depends on the quantity of 

Hamiltonian cycles in the graph. 

4. Check the quantum computer. An estimation of the graph's 

Hamiltonian cycles will be the measurement result. 

           Applying CNOT gates will allow us to fully encode the 

graph's edges in the quantum state. 

 
Fig  2: quantum counting algorithm for counting the number 

of Hamiltonian cycles in a graph 

Graph Input: This is where we  provide the input, which is 

the graph for which we  want to count the number of 

Hamiltonian cycles. 

Create Superposition: Using a group of qubits, the graph is 

transformed into a quantum state at this point. A graph vertex 

can be represented by each qubit. Each qubit is subjected to 

the Hadamard gate to produce a superposition of all 

conceivable states. As a result, the qubits are placed in a state 

in which they are simultaneously present in all conceivable 

arrangements of vertices. 

Apply Hadamard Gate to Create Superposition: This step 

focuses on applying the Hadamard gate to each qubit, which 

creates a superposition of all possible states. The Hadamard 

gate is a quantum gate that puts a qubit into an equal 

superposition of the |0⟩ and |1⟩ states. 

Measure Qubits: After creating the superposition, the qubits 

are measured. Measurement collapses the superposition, 

yielding a specific state. By repeating this process multiple 

times, you can obtain statistical information about the number 

of Hamiltonian cycles in the graph. 

Statistical Estimation:  

Step 1: In this step, the measurement data gathered in the 

previous phase are analyzed. You can determine the 

approximate number of Hamiltonian cycles present in the 

graph by conducting statistical analysis on the measurements. 

Step 2: To entangle the qubits in a way that encodes the 

Hamiltonian cycle problem and produce a unitary operator, we 

can use a Hadamard gate to place each qubit in a superposition 

of states. 

http://www.ijritcc.org/
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The unitary operator shown below can be used to encode the 

Hamiltonian cycle problem: 

Each qubit is subjected to Hadamard gates, and the CNOT 

gates are used to encrypt the data in the expression U = 

H⊗H⊗H⊗...⊗H⊗C⊗C⊗...⊗C 

where each qubit receives Hadamard gates, and the 

Hamiltonian cycle problem is encoded using CNOT gates. 

Step 3: The following procedures can be used to apply the 

quantum phase estimation algorithm to the unitary operator:  

Set up a quantum computer in the unitary operator-encoding 

state. Give each Qubit a Hadamard gate.  Use a controlled-U 

gate on the qubits, with the first qubit acting as the control. 

The first Qubit should be given a Hadamard gate. Carry out 

steps 3 and 4 once more to apply controlled-U gates to all of 

the qubits. Quantities the qubits. 

       Step 4: An estimate of the number of Hamiltonian cycles 

in the graph will be produced as a result of the measurement. 

we repeat steps 3 and 4 the number of times depends on how 

accurate is the measurement. 

Conclusion: 

Quantum computing has the potential to revolutionize the way 

we solve complex mathematical problems. Quantum 

algorithms can provide exponential speedups for certain types 

of problems, including many complex mathematical problems. 

The quantum algorithms that we have discussed in this paper 

with  few many quantum algorithms that are being developed. 
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