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Abstract

An evolutionary algorithm formalism has been forwarded in a previous
research, and implemented in the system GIGANTEC: Genetic Induction for
General Analytical Non-numeric Task Evolution Compiler [Bad98][Bad99].
A dynamical model is developed to analyze the behaviour of the algorithm.
The model is dependent in its analysis on classical Compilers Theory, Game
Theory and Markov Chains and its convergence characteristics. The results
conclude that a limiting state is reached, which is independent of the initial
population and the mutation rate, but dependent on the cardinality of the
alphabet of the driving L-system.

Keywords. Genetic Algorithms- Evolutionary Algorithms- Finite State
Machines- Petri Nets- Symbolic Computing- Model Design- State Spaces-
Mutation- Search- Exploration- Stochastic Context Sensitive Grammar-
Stochastic L-system- Computational Dynamics- Statistical Model- Markov
Chains.

1 Introduction

The GIGANTEC formalism is a general framework suited for linguistic large-scale
designs. The problem considered is the evolution of symbolic design plans. A
methodology of design is forwarded. The design should provide a 'context sensitive
L-system' that defines the behavioural interaction between abstract system tasks.
There are three levels of abstraction, the finite state machine (FSM), the petri nets
and component automata. The tokens generated by the FSMs abstract layer are
forwarded into a petri net dispatcher (PND). The PND in turn distributes and selects
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the potential sub-petri net to fine tune the abstract task represented by that token
[Bad98][Bad99].

Formal Dynamics of the system reveal a close relationship to classical
Compilers Theory, Statistics, and Game Theory. L-system grammars are provided
for abstract system processes. Several operators are defined on these grammars for
the purpose of generating a framework for parsing actions to be taken; similar to the
operators defined in parsing theory. Finally, a Deterministic Finite Automaton
(DFA) template is generated. Game theoretic models usually employ techniques
such as bi-matrices to define strategies which each player abides by. A similar
analysis is carried out for GIGANTEC, especially through the competition between
population individuals, in which the process of selection determines the fittest to
survive. An evolutionary stable system is reached known as the Nash Equilibrium
Pair.

A Markov Chain analysis is presented for mutation in the Evolutionary
Algorithm GIGANTEC [Bad98][Bad99]. The difficulty of such analysis arises from
the fact that the Evolutionary Algorithm is too coarse. That's to say, too many
parameters are involved and thus, many simplifying assumptions are made. The
analysis tries to model the algorithm as a whole, rather than only components of the
algorithm. A complete model is more predictive than a partial one. Mutation is
carried only on the layer of the abstract brain FSMs. This is the layer involved in the
Markovian analysis. Petri nets are processing elements and will not be involved in
the markovian analysis presented.

2 Problem Definition

Mathematically speaking, the problem can be formulated as follows: an intelligent
design, represented algorithmically by a finite state machine, is intended to complete
a given task:

},...,,{T mΛΛΛ= 21

where ΛΛ m,...,1  are subtasks which compose T. Each subtask is represented by a

Petri net and is defined by a set of performance specifications to be fulfilled by that
subtask:

]x,...,x,x[ n21=χ
The state variables describing the current status of an intelligent design are given by:

}s,...,s,s{S inii
i

21=Λ
where   ΛΛΛ=Λ mi ,...,, 21

=ΛS
i

states for task Λi

and sij  indicates the performance specification for the state variable x j  in the

subtask t i such that sx ijj ⊂  indicates that specification {ij} has been met. A
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potential function describes the cost of task T in terms of its subtasks, and can be
defined as:

v)x,T(pot T=

where   )]s,(pot[)v(v
ii i

m

i
T ΛΛ ΛΨ=Ψ=

=1

and Ψ  is a problem specific function which is usually a composite one and
evaluated according to conflict matrices, cubes or hypercubes used to determine the
fittest finite state machine on basis of a conflict between FSM i  and FSM j  among

the population. This will be clarified in later sections and in [Bad98][Bad99].

The intelligent design has a set of available low-level designs:
}D,...,D,D{D r21=

where r is  the  population  size and each design Di  is composed of sub-designs dij

associated with the m subtasks of T:
}d,...,d,d{D imiii 21=

Each Di  is represented by a finite state machine. Each dij  is represented by a Petri

net or a Petri net component automaton. The intelligent design problem is defined as
the intelligent selection of the optimum design Dopt  from D given a specified task

T. The optimal design Dopt  is defined as the design that maximizes the 'potential' of

the system, and the probability that the task T is completed successfully, such that:
== )x,T(pot)TPr( maximum

where Pr(T) is the probability of a selected design to complete the required task. As
mentioned, this probability is determined by a problem-specific function Ψ  which
is in turn evaluated according to conflict matrices.

The design itself, made up of m components, is represented mathematically as
follows:
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where µ j  and λ j  are the input and output points of the jth component sub-design

(the jth Petri net) referred to as 'semaphores' in the formal description of the
representation data structures [Bad98][Bad99]. The CA j  are the 'component

automata' of PN j .
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3 The Evolutionary Algorithm

3.1 Schematic Model
The evolutionary algorithm's representation/ operators in its executable version
functions as follows. The outer layer is the global evolutionary algorithm which acts
upon the abstract brain layer (FSMs) by problem specific evolutionary operators.
The abstract brain layer generates 'tokens' to be received by the inner layer of
'decomposable' petri nets. Each token has a specific petri net to receive it. The token
represents an 'abstract entity' (a high-level ADT) that identifies the respective Petri
net. This specific petri net act as a simulator of the abstract task's functional
behaviour. The petri nets are decomposable in the sense that they can be partitioned
into component automata [Bat93]. Component automata represent the inner-most
'discrete' and 'non-decomposable' task.

The schematic decomposition of the problem-dependent part is shown in the
following diagram:

Token Stream

C1
Ci

Cn

Component 

state-machines
CAij Inter-

Concurrency
Inter-

Concurrency

Intra-
Concurrency

f
I

f
O

:Input Points
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FSMi  "Process"

PND

Linguistic Design Model Output

f
SI...

f
SO...

f
SI...

f
SO...

Evolutionary Algorithm.

:Output 
Semaphores

:Input 
Semaphores
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3.2 L-system and Context Sensitive Grammar
Mutation operators in the system are guided by an L-system. Each rule in the L-
system is of the form:

ΛΛΛ>→Λ><Λ><Λ< nRML ...10

where:
ΛR : Right context of ΛM . i.e. a process or task that should be

performed after ΛM .

ΛL : Left context of ΛM . i.e. a process or task that should be 

performed before ΛM .

Λi : A set of tasks or processes that constitute ΛM .

3.2.1 Formal Dynamics
To clearly understand the dynamics of the L-system and the effects of the operation
of the Evolutionary Algorithm, several operators must be defined. These operators
are borrowed from classical Compilers theory. [Aho86][Lou97].

Definition. The Dot Operator
The dot operator defines an item of a grammar G, which is a production of G with a

dot at some position at the right side. Thus the production:
< >< >< >→L M R nΛ Λ Λ Λ Λ Λ0 1...

yields the n+2 items as follows:

ΛΛΛΛΛΛ

ΛΛ•ΛΛΛΛ
ΛΛΛΛΛΛ

•>→><><<

>→><><<
•>→><><<

nRML

nRML

nRML

...

...

...

10

10

10

�

Definition. The Closure Operator.
If I is a set of items for a grammar G, the closure(I) is the set of items constructed
from I by the following algorithm:

function closure (I):
begin

J:= I;
repeat

for each item β•α>→><><< BRML  in J

and each production γ>→><><< RL BB B  of G

such that γ•>→><><< RL BB B  is not in J do

add γ•>→><><< RL BB B  to J;

until no more items can be added to J;
return J

end [Aho86]
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Definition. The Goto Operation.
If I is a set of items and X is a grammar symbol, then goto(I,X) is defined to be the
closure of the set of all items β•α>→><><< XRML  such that

β•α>→><><< XRML  is in I, where each Greek letter represents a collection

of non-expandable discrete tasks or processes, and capital English letters represent
expandable tasks.

Definition. The Augmented Grammar.
If G is a grammar with start symbol (starting task) S, then G ′ , the augmented
grammar for G is G with a new start symbol S ′  and production SS →′ .

Definition. The Canonical System.
The algorithm to generate the canonical system C of sets of L-system items for an
augmented grammar G ′  is shown:

procedure generate-canonical-system( G ′ );
begin

C:={closure({[ SS •→′ ]})};
repeat

for each set of items I in C and each grammar symbol
X such that goto(I,X) is not empty and not in C do
add goto(I,X) to C

until no more sets of items can be added to C
end

 for example, given the following L-system:

ΛΛΛΛΛΛ

ΛΛΛΛΛΛ
ΛΛΛΛΛΛ

>→><><<

>→><><<
>→><><<

mnmmRmMmLm

nRML

nRML

...

...

...

21

22221222

11211111

�

where any entry ijΛ  can be empty, then the augmented L-system is as follows:

ΛΛΛΛΛΛ

ΛΛΛΛΛΛ
ΛΛΛΛΛΛ

ΛΛ′

>→><><<

>→><><<
>→><><<

→

mnmmRmMmLm

nRML

nRML

Ms

...

...

...

21

22221222

11211111

1

�

and the canonical system for the augmented L-system is as follows:
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I 0 :

ΛΛΛΛΛΛ

ΛΛΛΛΛΛ
ΛΛΛΛΛΛ

ΛΛ′

•>→><><<

•>→><><<
•>→><><<

•→

mnmmRmMmLm

nRML

nRML

Ms

...

...

...

21

22221222

11211111

1

�

I1 : goto( I 0 , Λ 1M )

•→ ΛΛ′ 1Ms

I 2 : goto( I 0 , Λ11 )

ΛΛΛΛΛΛ •>→><><< nRML ... 11211111

I3 : goto( I 0 , Λ21 )

ΛΛΛΛΛΛ •>→><><< nRML ... 22221222

�

I m 1+ : goto( 0I , Λ 1m )

ΛΛΛΛΛΛ •>→><><< mnmmRmMmLm ...21

I m 2+ : goto( I 2 , Λ12 )

ΛΛΛΛΛΛΛ •>→><><< nRML ... 1131211111

I m 3+ : goto( I3 , Λ22 )

ΛΛΛΛΛΛΛ •>→><><< nRML ... 2232221222

�

and so on....
Thus, the DFA (Deterministic Finite Automaton) for the viable prefixes in the
canonical system:
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I I

I

I

I

I

I

0 1

2

3

m+1

m+2

m+3

M1

11

21

12

22

m1

etc...

DFA

3.3 System Evaluation
A particular design representation is evaluated by carrying out a conflict process
(competition) between an FSMi and FSMj ( j i≠  and j:1..population-size). Conflict
matrices, cubes or hypercubes are constructed to provide conflict-indices to be
accumulated, as shown in the algorithm EvalFSM below:

Algorithm. EvalFSM.
begin

for i = 1 to population_size
begin

for j = 1 to population_size
begin

-check i not equal to j, if YES continue, else break to 
next iteration.

- run conflict between FSMi and FSMj
begin

for n = 1 to contest_length
fitness( FSMi ) = fitness (FSMi) +

conflict_index [i][j];
end

end
end

end
Scan population i: 1 -> population_size for FSMk, the fittest 
individual;
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The concept of the conflict-index is borrowed from game theory. When applied in
fuzzy terms, it is analogous to fuzzy associative memories (FAMs).

An example of a conflict matrix:
F S Mi

Variable k
.... ... L M H ....

L
F S Mj Variable k M Conflict-index

H
....

3.4 The Algorithm
The proposed algorithm is shown, in an abstract form, as follows:

��������	 
��� 
������� ������������ ��������	�
begin

*initialize population )t(P - by applying L-system rules and Add-
  node mutation operator.
*for gen = 1 to generation_size do
begin

- Evaluate )t(P  by competition between FSMs (EvalFSM 
  algorithm).

- Sort population )t(P)t(P sort ′ →
-for i = 1 to population_size do
begin

- Apply roulette (SUS) to )t(P′  to select individual

 iη .

- Mutate iη - according to mutation operators' 
    probabilities.

end
-Pass the new population )t(P ′′  to next generation

)t(P)t(P ′′= ;
end

end.

As shown, the PEA utilizes components such as the EvalFSM algorithm, for
evaluating fitnesses, the Stochastic Universal Sampling (SUS) [Bak87] algorithm
with elitist strategy and the five mutation operators discussed in [Bad98][Bad99].
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4 A Formal Analysis of Dynamics

The dynamics of the proposed EA are largely dependent on the game theoretic
models. The conflicts can be 'symmetric' in the sense that all contestants are in the
same situation and strength; however, many conflicts are asymmetric- where the
population individuals/ species compete for the available resources. In fact,
asymmetries are not only incidental, but are essential features of Strategy Evolution.
For simplicity, the analysis will be carried out for conflicts settled in pair-wise
encounters and finite numbers of pure strategies- a concept similar to 'bimatrix'
games [Hof88].

Let nE,...,E,E 21  denote the phenotype of population X, and F,...,F,F m21  those

of population Y, with frequencies nx,...,x,x 21  and y,...,y,y m21  respectively. By xi

we denote the frequency of Ei , and by jy  that of F j . Hence, the state of population

X is given by a point x in Sn  (space of E) and that of population Y by a point y in

Sm  (space of F). If an Ei -individual is matched against an F j -individual, the

payoff will be ija  for the former, and jib  for the latter. Thus, the conflict is

described by two payoff matrices ]a[A ij=   and ]b[B ji= . The expressions x.Ay

and y.Bx are the average payoffs for population X and population Y, respectively. In
an alternative interpretation, E,...,E,E n21  would correspond to pure strategies of

contestant x, and F,...,F,F m21  to the pure strategies for contestant y. Points Sx n∈
and Sy m∈  correspond to mixed strategies and x.Ay would be the expected payoff

for the x-strategy against the y-strategy.

Evolutionary stability is considerably more restricted for asymmetric than
symmetric conflicts. That's to say, if the phenotype iE  is stable in contests against
the population Y. It must do at least as well, then, as all competing phenotypes, i.e.

ik,)Ay()Ay( ki ≠∀≥

Thus, a definition can be formulated. A pair of strategies (p,q) with Sp n∈  and

Sq m∈  is said to be evolutionary stable if:

px,Sx,Aq.xAq.p n ≠∈∀>

and qy,Sy,Bp.yBp.q m ≠∈∀>

This leads to a well known definition in classical game theory known as the Nash
Equilibrium.

Definition. Nash Equilibrium Pair. [Hof88], [Ioo90], [Bar91]
A pair of strategies SS)q,p( mn ×∈  is called a Nash Equilibrium Pair if
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Sx,Aq.xAq.p n∈∀≥
and Sy,Bp.yBp.q m∈∀≥

The standard evolutionary dynamics for this type of contests give the following
differential equation on SS mn × :

]Ay.x)Ay([xx iii −=�

and ]Bx.y)Bx([yy jjj −=�

A slightly different dynamics include normalization by mean payoff:

Ay.x

]Ay.x)Ay([
xx i

ii
−

=�

and
Bx.y

]Bx.y)Bx([
yy

j
jj

−
=�

These equations are motivated by the discrete time model, which is based on the
assumption that the frequency of the iE  contestant in the next generation, ix′ , is

proportional to )Ax(x ii , since )Ax( i  is the mean payoff for Ei . In a population of

FSMs, where each FSM complexity is taken into consideration, FSMi (equivalent to
Ei ) competes against FSMj (equivalent to F j ), with complexities CEi  and CF j ,

where the complexity can be measured in terms of its number of states.

5 Selection Operator: Analysis of Dynamics

Multi-modality of the fitness function, which allows different species (namely, sub
populations corresponding to local maxima/minima) to co-exist, is taken into
account in the system GIGANTEC. Let η j  be a generic individual (a FSM

description of a design policy) belonging to the population P(t). The population,

},...,{)t(P )t(
m

)t( xx mηη= 1
1

is a multi-set, containing m different formulas ( mj ≤≤1 ), each has the same

complexity and multiplicity )t(x j . Let )(COV jη  be a subset of T (Tasks) covered

by η j  then,

S))t(P(COVwith)(COV))t(P(COV
m

j
j =η=

=
�

1

In this model, the set )t(P ′  is selected with replacement from P(t) by assigning to

each )mj(j ≤≤η 1  a probability proportional to its total fitness,
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)mj()t(xf)t(xfP
m

i
iijjj ≤≤∑=

=
1

1

The fitness )(ff jj η=  should take into account completeness, consistency and

simplicity of the FSM η j .

The fitness evaluation mechanism is dependent on competition between each
FSM ( η j ) and the rest of FSMs ( ji,mi,i ≠≤≤η 1 ). Thus the evolution of an 'ideal

average population' P(t) is defined in such a way that the number of copies of each
η j  in P(t) is equal to the mean value )t(x j  of the stochastic variable )t(x j . For

simplicity (and reality of competition which is carried out in conflicts of individuals
of cardinality = 2), the case of P(t) containing only two individuals, namely FSMs

1η  and 2η  will be considered in the analysis. This simplification does not change

the nature of the problem, but allows the results to be obtained in closed form.
Considering the case of 'generational replacement' (whole population is replaced),
let xt)t(x =  be the number of copies of 1η  in P(t) and )t(Pc ′= , then )xc( t−  that

of η2 . Then the probability of η1  to be selected in one trial is given by,

f)xc(xf

xf
P

tt

t
t

21

1

−+
=

The probability distribution of the number of copies of x(t+1) of η1  in )t(P ′ , given

that there are x(t) copies in P(t), will be given by a binomial distribution with c trials
probability of success Pt .

The mean value of tx +1 is Pcx tt =+1 ; obviously, xt 1+  depends on xt  which is

hidden inside Pt . Thus, considering the mean value xt 1+  corresponding to the ideal

population, we obtain the following recurrent equation:

x)(c
x.

x
t

t
t 11 −λ+

λ
=+

where ff 21=λ .

The solution for this relation is then,

)(xxwhere
).(xc

.x.c
)t(x ot

o

t
o 0
1

=
λ−−

λ=

Thus, the asymptotic behaviour of x(t) in P(t),








<λ
=λ
>λ

=
∞→

10

1

1

if

ifx

ifM

)t(xlim o
t
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These limits tell us that the best individual (FSM disjunct), will, in the average,
eventually take over the whole population and kill the other one. A similar analysis
can be found for other selection operators, such as the 'Universal Suffrage Operator'
and 'Sharing function operator' in [Gio94].

6 Mutation Operators: A Markov Chain Analysis

The expected time evolution of individuals in a population undergoing selection

and mutation, requires a model of XC  simultaneous equations where X is the
average complexity of the individual (Number of states in a FSM) and C is the
cardinality of the alphabet of the L-system provided. Let FSM i  and FSM j  be

arbitrary FSMs of complexity X. Let the proportion of a FSM FSM j  at time t be

denoted as p )t(
FSM j

. Then the expected time evolution of the system can be

computed as:

p
)t(F

)FSM(F
pp FSM,FSM

i

FSM

)t(
FSM

)t(
FSM ji

i
ij

∑=+1  (after the analysis in [Mic96])

where proportions of p )t(
FSM j

 of all FSMs iFSM  at time t are considered. These

proportions are modified by fitness selection, where )FSM(F i  is the fitness of

FSM i  and )t(F  is the average fitness of the population at time t. p FSM,FSM ji

computes the probability of mutating FSM i  to FSM j . The result is the expected

proportion of FSM j  at time t+1; mutation is carried out by one of the mutation

operator discussed.

The total system is described by C X  equations, one for each FSM j . Starting

with initial population proportions p )(
FSM j

0 , the C X equations are iterated repeatedly

to produce the expected time evolution of the system. Fitness functions F can be
aggregated to simplify the model. This is accomplished by reducing the number of
equations and number of terms in an equation. Let the alphabet (processes or tasks)

be denoted by Γ  and let Γ∈Λ  be one of the C alleles. Let Λc  denote all other
alleles. The set of FSMs with j Λ 's form an equivalence class, and it suffices to
have only X+1 equations, since there can be any where from zero to X Λ 's in an

average FSM. This is a dramatic reduction from the C X  equations that would be
required in the general case. Thus, the previous equation can be interpreted as
FSM i  referring to any FSM with i Λ 's and FSM j  as any FSM with j s'Λ . The

probability of mutating any FSM with i Λ 's to one with j s'Λ  is given by
p FSM,FSM ji

. Suppose ij ≥  meaning that we are increasing or not changing the
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number of a process Λ . Thus, mutation requires j-i more s'cΛ  to be mutated to

Λ 's than Λ 's mutated to s'cΛ . The mutation probabilities are:

( ) 





−

−





−

−





−+

−
∑ 





==

−−−+
−−

= 1
1

1
1

0 C

p

C

p
pp

ijk

ix

k

i
)xXp(P m

kjx
m

ijk

m
kik

m

}jx,i{min

k
FSM,FSM ji

after the analysis in [Spe98], where k is the number of s'Λ  mutated to s'cΛ . Since
there are i s'Λ  in the current FSM, this means that i-x s'Λ  are not mutated to

s'cΛ . This occurs with probability ( )pp m
kik

m − −1 . Since k s'Λ  are mutated to

s'cΛ  then k+j-i s'cΛ  must be mutated to s'Λ . Also, since there are x-i s'cΛ  in

current FSM, this means that x-i-k-j+i=x-k-j s'cΛ  are not mutated to s'Λ . This

occurs with probability 





−

−





−

−−−+

1
1

1 C

p

C

p m
kjx

m
ijk

.

Thus, this yields the number of ways to choose k s'Λ  out of i s'Λ  and the

number of ways to choose k+j-i s'Λ  out of the x-i s'cΛ . It is therefore clear that it

isn't possible to mutate more than x-i s'cΛ , ixijk −≤−+  indicating that

jxk −≤ . The minimum of i and x-j bounds the summation correctly. If X is

considered as a random variable with probability mass function (p.m.f) ( )xp , then

( ) ( )xpxXpPP
x

FSM,FSM ji
∑ ==
∀
Conversely, if ji ≥ , we are decreasing or not changing the number of s'Λ .

The mutation probabilities are:

( ) 





−

−





−

−




 −
∑ 





−+

==
−−

−−+−

= 1
1

1
1

0 C

p

C

p
pp

k

ix

jik

i
)xXp(P m

kix
m

k

m
kjjik

m

}j,ix{min

k
FSM,FSM ji

When 0100 .p. m << , all p FSM,FSM ji
 entries are non-zero and the markov chain is

ergodic. Thus there is a steady state distribution describing the probability of being
in each state after a long period of time. By the definition of steady-state
distribution, it can not depend on the initial state of the system. Thus, the initial
state population has no effect on the long term behaviour of the system. The steady-
state distribution reached by this markov chain model can be thought of as a
sequence of X Bernoulli trials with success probability C1 . (after the analysis in

[Spe98]) The steady state distribution can therefore be described by the binomial
distribution giving the probability of being in state i (i.e. the probability that i s'Λ
appear at a locus after a long period of time):






 −













==

−

∞→ CCi

X
)FSMFSM(Plim

iXi

it
t

1
1

1
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On average, 
C

X
)FSMFSM(Plim it

t
==

∞→
 with a variance 





 −







CC
X

1
1

1
. If a 95%

confidence interval is considered, then the limit is taken with 




 −±

CC

X
.

1
1961 . If

X is large enough, and C1  is small enough, then the limit is approximated as a

poisson distribution equal to 






C
X

1
. That's to say, it has a mean value CX . It is

thus noted that the steady state distribution is dependent on the cardinality C rather
than on mutation rate pm  or initial population. However, pm  and initial population

do have an effect on the rate this limiting distribution is approached. With arbitrary

C, this would be analogous to having a large number of s'Λ  mutate to s'cΛ . Let

p )t(
Λ  be the expected proportion of s'Λ  at time t. Then the expected time evolution

of the process can be described by the differential equation:
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where pp )t(
m Λ  represents the loss which occurs if Λ  is mutated; while the other

term is the gain which occurs if an Λc  is mutated to Λ . At steady state, the

differential equation must be equal to zero and is satisfied by Cp )t( 1=Λ  which is

expected. The general solution to the differential equation is
:

( ) ( )e
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p
C

p CtpmC)()t( 10 11 −−
ΛΛ 





 −+=

Thus, the population converges to a limiting state distribution which is quite likely

to be the optimum solution. As ∞→t , then 
C

p )t( 1=Λ  which is an expected result.

Other similar analyses can be found in [Bar97] [Cru99] [Fog95] [Spe98].

7 Conclusion

The analysis forwarded concludes with the fact that a limiting state is finally
reached. This state is independent of the initial population and the mutation rate,
but dependent on the cardinality of the alphabet of the driving L-system. The
analysis was carried out using tools from compilers theory, game theory and
markov chains. The limiting state was proven to be the optimal solution for a
number of iterations reaching infinity.
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