10 research outputs found

    On a bifurcation value related to quasi-linear Schrodinger equations

    Full text link
    By virtue of numerical arguments we study a bifurcation phenomenon occurring for a class of minimization problems associated with the quasi-linear Schrodinger equation.Comment: 9 page

    Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates

    Full text link
    New efficient and accurate numerical methods are proposed to compute ground states and dynamics of dipolar Bose-Einstein condensates (BECs) described by a three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a dipolar interaction potential. Due to the high singularity in the dipolar interaction potential, it brings significant difficulties in mathematical analysis and numerical simulations of dipolar BECs. In this paper, by decoupling the two-body dipolar interaction potential into short-range (or local) and long-range interactions (or repulsive and attractive interactions), the GPE for dipolar BECs is reformulated as a Gross-Pitaevskii-Poisson type system. Based on this new mathematical formulation, we prove rigorously existence and uniqueness as well as nonexistence of the ground states, and discuss the existence of global weak solution and finite time blowup of the dynamics in different parameter regimes of dipolar BECs. In addition, a backward Euler sine pseudospectral method is presented for computing the ground states and a time-splitting sine pseudospectral method is proposed for computing the dynamics of dipolar BECs. Due to the adaption of new mathematical formulation, our new numerical methods avoid evaluating integrals with high singularity and thus they are more efficient and accurate than those numerical methods currently used in the literatures for solving the problem. Extensive numerical examples in 3D are reported to demonstrate the efficiency and accuracy of our new numerical methods for computing the ground states and dynamics of dipolar BECs

    High-order time-splitting Hermite and Fourier spectral methods

    Get PDF
    In this paper, we are concerned with the numerical solution of the time-dependent Gross-Pitaevskii Equation (GPE) involving a quasi-harmonic potential. Primarily, we consider discretisations that are based on spectral methods in space and higher-order exponential operator splitting methods in time. The resulting methods are favourable in view of accuracy and efficiency; moreover, geometric properties of the equation such as particle number and energy conservation are well captured. Regarding the spatial discretisation of the GPE, we consider two approaches. In the unbounded domain, we employ a spectral decomposition of the solution into Hermite basis functions: on the other hand. restricting the equation to a sufficiently large bounded domain, Fourier techniques are applicable. For the time integration of the GPE, we study various exponential operator splitting methods of convergence orders two, four, and six. Our main objective is to provide accuracy and efficiency comparisons of exponential operator splitting Fourier and Hermite pseudospectral methods for the time evolution of the GPE. Furthermore, we illustrate the effectiveness of higher-order time-splitting methods compared to standard integrators in a long-term integration

    Gradient Flow Finite Element Discretizations with Energy-Based Adaptivity for the Gross-Pitaevskii Equation

    Full text link
    We present an effective adaptive procedure for the numerical approximation of the steady-state Gross-Pitaevskii equation. Our approach is solely based on energy minimization, and consists of a combination of gradient flow iterations and adaptive finite element mesh refinements. Numerical tests show that this strategy is able to provide highly accurate results, with optimal convergence rates with respect to the number of freedom

    Two-Level discretization techniques for ground state computations of Bose-Einstein condensates

    Get PDF
    This work presents a new methodology for computing ground states of Bose-Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a pre-processing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition and exhibits high approximation properties. The non-linear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without loss of accuracy when compared with the solution of the full fine scale problem. The pre-processing step is independent of the types and numbers of bosons. A post-processing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates H^3 for the ground state eigenfunction and H^4 for the corresponding eigenvalue without pre-asymptotic effects; H being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.Comment: Accepted for publication in SIAM J. Numer. Anal., 201

    Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem: global convergence and computational efficiency

    Get PDF
    We propose a new normalized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem based on an energy inner product that depends on time through the density of the flow itself. The gradient flow is well-defined and converges to an eigenfunction. For ground states we can quantify the convergence speed as exponentially fast where the rate depends on spectral gaps of a linearized operator. The forward Euler time discretization of the flow yields a numerical method which generalizes the inverse iteration for the nonlinear eigenvalue problem. For sufficiently small time steps, the method reduces the energy in every step and converges globally in H1H^1 to an eigenfunction. In particular, for any nonnegative starting value, the ground state is obtained. A series of numerical experiments demonstrates the computational efficiency of the method and its competitiveness with established discretizations arising from other gradient flows for this problem

    BEC2HPC: a HPC spectral solver for nonlinear Schrödinger and Gross-Pitaevskii equations. Stationary states computation

    Get PDF
    International audienceWe present BEC2HPC which is a parallel HPC spectral solver for computing the ground states of the nonlinear Schrödinger equation and the Gross-Pitaevskii equation (GPE) modeling rotating Bose-Einstein condensates (BEC). Considering a standard pseudo-spectral discretization based on Fast Fourier Transforms (FFTs), the method consists in finding the numerical solution of the energy functional minimization problem under normalization constraint by using a preconditioned nonlinear conjugate gradient method. We present some numerical simulations and scalability results for the 2D and 3D problems to obtain the stationary states of BEC with fast rotation and large nonlinearities. The code takes advantage of existing HPC libraries and can itself be leveraged to implement other numerical methods like e.g. for the dynamics of BECs
    corecore