3,691 research outputs found

    Fast dynamic deployment adaptation for mobile devices

    Get PDF
    Mobile devices that are limited in terms of CPU power, memory or battery power are only capable of executing simple applications. To be able to run advanced applications we introduce a framework to split up the application and execute parts on a remote server. In order to dynamically adapt the deployment at runtime, techniques are presented to keep the migration time as low as possible and to prevent performance loss while migrating. Also methods are presented and evaluated to cope with applications generating a variable load, which can lead to an unstable system

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms

    Get PDF
    This deliverable describes the work done in task 3.1, Middleware analysis: Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms from work package 3, Middleware Implementation. The document is divided in four parts: The introduction with application scenarios and middleware requirements, Catnets middleware architecture, evaluation of existing middleware toolkits, and conclusions. -- Die Arbeit definiert Anforderungen an Grid und Peer-to-Peer Middleware Architekturen und analysiert diese auf ihre Eignung fĂĽr die prototypische Umsetzung der Katallaxie. Eine Middleware-Architektur fĂĽr die Umsetzung der Katallaxie in Application Layer Netzwerken wird vorgestellt.Grid Computing

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Towards epistemic autonomy in adaptive biomimetic middleware for cooperative sensornets

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.The importance of studying biomimetic models of software infrastructure for sensornet systems lies in the fact that they are not entirely formal models and thus have to cover a range of issues of epistemic autonomy as well as linguistic and mental adaptation. This adaptation considers the context of software ability to reflect upon the verifiability and validity of its actions and measurements. This research elucidates and explores epistemological consequences of embodying biological autonomic patterns in software architectural models. Autonomy in software systems is a complex issue that raises many fundamental inquiries. The proposal is to initially concentrate on transformations of biological paradigms into epistemological queries and then adapt suitable biomimetic mechanisms into the development of software structure and ethology. Such methodology has proven to be very successful in the design of many engineering systems. The approach leads to a better understanding of the ontology of biomimetic patterns in software as well as a confirmation of requirements validity and design verifiability of autonomous software systems. In a dynamic, cooperative but often hostile environment, a software system infrastructure requires autonomic abilities to execute its normal operations, detect faults and perform necessary recovery actions without the need for external intervention. We approach this problem from the point of view of cognitive and mimetic systems research. The simplest way to make an autonomous and adaptive sensornet system is to include a hierarchy of layers in its middleware, not only to monitor activities of its components but to learn and adapt new behavioural patterns of these components in a changing environment. There are situations, however, where the components will not be able to adapt, learn new behaviour and evolve by themselves. For instance, these may not have yet encountered the new situation while others already have. A solution to this problem is to distribute the new behaviour to neighbouring elements via direct and indirect stigmergy mechanisms so that collaborating components can mutually improve their individual and team performance. The main objective is to disallow distribution of multiple versions of the software components and rather allow each software component to acquire and share with others, new “skills”. The components have to compare/verify these new behavioural patterns against their own set of beliefs, desires and intentions. In this thesis we intend to present simulations to test the learning capability of biomimetic algorithms, build a proof-of-concept middleware solution and demonstrate that such systems can not only adapt and evolve but they are robust and highly interoperable (co-operative). The thesis also assesses the suitability of various biomimetic design patterns and algorithms for building autonomic software infrastructure systems for cooperative networked agents

    Let's mix it up: interviews exploring the practical and technical challenges of interactive mixing in games

    Get PDF
    Game audio has come a long way since the simple electronic beeps of the early 1970s, when significant technical constraints governed the scope of creative possibilities. Recent years have witnessed technological advancements on an unprecedented scale; no sooner is one technology introduced than it is superseded by another, boasting a range of new refinements and enhanced performance
    • …
    corecore