112 research outputs found

    A 32 mV/69 mV input voltage booster based on a piezoelectric transformer for energy harvesting applications

    Get PDF
    This paper presents a novel method for battery-less circuit start-up from ultra-low voltage energy harvesting sources. The approach proposes for the first time the use of a Piezoelectric Transformer (PT) as the key component of a step-up oscillator. The proposed oscillator circuit is first modelled from a theoretical point of view and then validated experimentally with a commercial PT. The minimum achieved start-up voltage is about 69 mV, with no need for any external magnetic component. Hence, the presented system is compatible with the typical output voltages of thermoelectric generators (TEGs). Oscillation is achieved through a positive feedback coupling the PT with an inverter stage made up of JFETs. All the used components are in perspective compatible with microelectronic and MEMS technologies. In addition, in case the use of a ∼40 μH inductor is acceptable, the minimum start-up voltage becomes as low as about 32 mV

    Power Management Electronics

    No full text
    Accepted versio

    Passive Full-Wave MOSFET Rectifiers for Electromagnetic Harvesting

    Get PDF
    A new generation of electronic devices has emerged requiring micro-watt-level power supply to operate. Thanks to micro-power processors and sensors, micro-power sources have become an attractive option for industry and research. This work is interested in micro-power sources that harvest vibrational energy by deploying electrostatic, electromagnetic, and piezoelectric transduction techniques. The output power of vibrational energy harvesters is in AC form, whereas electronic loads require known DC power supply to operate. Thus, there is a need for AC-DC conversion between harvesters and electronic loads to get DC power out of AC. Traditional full-wave bridge rectifiers and center-tapped transformer rectifiers are not feasible in micro-watt-level harvesters. Low output power undermines the power efficiency of those traditional rectifiers. Thus, novel, low power, high efficiency conversion circuits are required instead of traditional rectifiers. This goal is particularly challenging when it comes to electromagnetic energy harvesters since their output voltage is much lower than that of electrostatic and piezoelectric harvesters. In this work, we studied four different full-wave rectifiers; a silicon diode bridge rectifier, a Schottky diode bridge rectifier, a passive MOSFET rectifier, an an active MOSFET rectifier. Out of simulation results, we found the voltage and power efficiency of each rectifier. We found that MOSFET-type rectifiers are better than diode type rectifiers in terms of voltage and power efficiency. Both full-wave MOSFET rectifiers have about 99% voltage and power efficiency. There is only a small difference in power and voltage efficiency between the two MOSFET rectifier types below 600mV input voltage amplitude. Since active MOSFET rectifier has extra components and need of external DC supply to power its active devices, we concluded it was not good option for small scale harvester systems. We implemented the passive MOSFET rectifier, tested its performance in rectifying the output of an electromagnetic harvester, and analyzed its effects on the harvester performance. When we connected the MOSFET rectifier to the harvester it doubled the optimum load resistance from 24 Ohm to 48 Ohm. We also studied the rectifier effect on harvester's natural frequency, and it does not change much the natural frequency which means our rectifier acts like resistance, and we also calculated the power efficiency based on harvester test and we have maximum 74% power efficiency

    Design of low-voltage integrated step-up oscillators with microtransformers for energy harvesting applications

    Get PDF
    This paper describes the modeling of startup circuits in battery-less micropower energy harvesting systems and investigates the use of bond wire micromagnetics. The analysis focuses on step-up Meissner oscillators based on magnetic core transformers operating with input voltages down to ≈100 mV, e.g. from thermoelectric generators. As a key point, this paper examines the effect of core losses and leakage inductances on the startup requirements obtained with the classical Barkhausen criterion, and demonstrates the minimum transconductance for oscillations to occur. For validation purposes, a step-up oscillator IC is fabricated in a STMicroelectronics 0.32 μm technology, and connected to two bond-wire microtransformers, respectively, with a 1:38 MnZn ferrite core and with a 1:52 ferromagnetic low-temperature co-fired ceramic (LTCC) core. Coherently with the proposed model, experimental measurements show a minimum startup voltage of 228 mV for the MnZn ferrite core and of 104 mV for the LTCC core

    Microelectronic Design with Integrated Magnetic and Piezoelectric Structures

    Get PDF
    This thesis investigates the possibility of integrating the standard CMOS design process with additional microstructures enhancing circuit functionalities. More specifically, the thesis faces the problem of miniaturization of magnetic and piezoelectric devices mostly focused on the application field of EH (Energy Harvesting) systems and ultra-low power and ultra-low voltage systems. It shows all the most critical aspects which have to be taken into account during the design process of miniaturized inductors for PwrSoC (Power System on Chip) or transformers. Furthermore it shows that it is possible to optimize the inductance value and also performances by means of a proper choice of the size of the planar core or choosing a different layout shape such as a serpentine shape in place of the classic toroidal one. A new formula for the correct evaluation of the MPL (Magnetic Path Length) was also introduced. Concerning the piezoelectric counterpart, it is focused on the design and simulation of various MEMS PTs based on a SOI (Silicon on Insulator) structure with AlN (Alluminum Nitride) as active piezoelectric element, in perspective of having a SoC with embedded MEMS devices and circuitry. Furthermore it demonstrates for the first time the use of a PT (Piezoelectric Transformer) for ultra-low voltage EH applications. A new boost oscillator based on a discrete PZT (Lead Zirconate Titanate) PT instead of a MT (Magnetic Transformer) has been modelled and tested on a circuit made up by discrete devices, showing performances comparable to commercial solutions like the LTC3108 from Linear. Furthermore this novel boost oscillator has been designed in a 0.35μm technology by ST Microelectronics, showing better performances as intuitively expected by the developed mathematical model of the entire system

    Power electronic interfaces for piezoelectric energy harvesters

    Get PDF
    Motion-driven energy harvesters can replace batteries in low power wireless sensors, however selection of the optimal type of transducer for a given situation is difficult as the performance of the complete system must be taken into account in the optimisation. In this thesis, a complete piezoelectric energy harvester system model including a piezoelectric transducer, a power conditioning circuit, and a battery, is presented allowing for the first time a complete optimisation of such a system to be performed. Combined with previous work on modelling an electrostatic energy harvesting system, a comparison of the two transduction methods was performed. The results at 100 Hz indicate that for small MEMS devices at low accelerations, electrostatic harvesting systems outperform piezoelectric but the opposite is true as the size and acceleration increases. Thus the transducer type which achieves the best power density in an energy harvesting system for a given size, acceleration and operating frequency can be chosen. For resonant vibrational energy harvesting, piezoelectric transducers have received a lot of attention due to their MEMS manufacturing compatibility with research focused on the transduction method but less attention has been paid to the output power electronics. Detailed design considerations for a piezoelectric harvester interface circuit, known as single-supply pre-biasing (SSPB), are developed which experimentally demonstrate the circuit outperforming the next best known interface's theoretical limit. A new mode of operation for the SSPB circuit is developed which improves the power generation performance when the piezoelectric material properties have degraded. A solution for tracking the maximum power point as the excitation changes is also presented.Open Acces

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Concept of an efficient self-startup voltage converter with dynamic maximum power point tracking for microscale thermoelectric generators

    Get PDF
    Microscale Thermoelectric Generators (microTEGs) have a high application potential for energy harvesting for autonomous microsystems. In contrast to conventional thermoelectric generators, microTEGs can only supply small output-voltages. Therefore, voltage converters are required to provide supply-voltages that are sufficiently high to power microelectronics. However, for high conversion efficiency, voltage converters need to be optimized for the limited input voltage range and the typically high internal resistance of microTEGs. To overcome the limitations of conventional voltage converters we present an optimized self-startup voltage converter with dynamic maximum power point tracking. The performance potential of our concept is theoretically and experimentally analyzed. The voltage conversion interface demonstrates energy harvesting from open-circuit voltages as low as 30.7 mV, and enables independent and full start-up from 131 mV. No additional external power supply is required at any time during operation. It can be operated with a wide range of internal resistances from 20.6 to − 4 kΩ with a conversation efficiency between η = 68–79%
    • …
    corecore