21,808 research outputs found

    Object-based 2D-to-3D video conversion for effective stereoscopic content generation in 3D-TV applications

    Get PDF
    Three-dimensional television (3D-TV) has gained increasing popularity in the broadcasting domain, as it enables enhanced viewing experiences in comparison to conventional two-dimensional (2D) TV. However, its application has been constrained due to the lack of essential contents, i.e., stereoscopic videos. To alleviate such content shortage, an economical and practical solution is to reuse the huge media resources that are available in monoscopic 2D and convert them to stereoscopic 3D. Although stereoscopic video can be generated from monoscopic sequences using depth measurements extracted from cues like focus blur, motion and size, the quality of the resulting video may be poor as such measurements are usually arbitrarily defined and appear inconsistent with the real scenes. To help solve this problem, a novel method for object-based stereoscopic video generation is proposed which features i) optical-flow based occlusion reasoning in determining depth ordinal, ii) object segmentation using improved region-growing from masks of determined depth layers, and iii) a hybrid depth estimation scheme using content-based matching (inside a small library of true stereo image pairs) and depth-ordinal based regularization. Comprehensive experiments have validated the effectiveness of our proposed 2D-to-3D conversion method in generating stereoscopic videos of consistent depth measurements for 3D-TV applications

    Generating approximate region boundaries from heterogeneous spatial information: an evolutionary approach

    Get PDF
    Spatial information takes different forms in different applications, ranging from accurate coordinates in geographic information systems to the qualitative abstractions that are used in artificial intelligence and spatial cognition. As a result, existing spatial information processing techniques tend to be tailored towards one type of spatial information, and cannot readily be extended to cope with the heterogeneity of spatial information that often arises in practice. In applications such as geographic information retrieval, on the other hand, approximate boundaries of spatial regions need to be constructed, using whatever spatial information that can be obtained. Motivated by this observation, we propose a novel methodology for generating spatial scenarios that are compatible with available knowledge. By suitably discretizing space, this task is translated to a combinatorial optimization problem, which is solved using a hybridization of two well-known meta-heuristics: genetic algorithms and ant colony optimization. What results is a flexible method that can cope with both quantitative and qualitative information, and can easily be adapted to the specific needs of specific applications. Experiments with geographic data demonstrate the potential of the approach

    The spatiotemporal representation of dance and music gestures using topological gesture analysis (TGA)

    Get PDF
    SPATIOTEMPORAL GESTURES IN MUSIC AND DANCE HAVE been approached using both qualitative and quantitative research methods. Applying quantitative methods has offered new perspectives but imposed several constraints such as artificial metric systems, weak links with qualitative information, and incomplete accounts of variability. In this study, we tackle these problems using concepts from topology to analyze gestural relationships in space. The Topological Gesture Analysis (TGA) relies on the projection of musical cues onto gesture trajectories, which generates point clouds in a three-dimensional space. Point clouds can be interpreted as topologies equipped with musical qualities, which gives us an idea about the relationships between gesture, space, and music. Using this method, we investigate the relationships between musical meter, dance style, and expertise in two popular dances (samba and Charleston). The results show how musical meter is encoded in the dancer's space and how relevant information about styles and expertise can be revealed by means of simple topological relationships

    Investigating the effectiveness of an efficient label placement method using eye movement data

    Get PDF
    This paper focuses on improving the efficiency and effectiveness of dynamic and interactive maps in relation to the user. A label placement method with an improved algorithmic efficiency is presented. Since this algorithm has an influence on the actual placement of the name labels on the map, it is tested if this efficient algorithms also creates more effective maps: how well is the information processed by the user. We tested 30 participants while they were working on a dynamic and interactive map display. Their task was to locate geographical names on each of the presented maps. Their eye movements were registered together with the time at which a given label was found. The gathered data reveal no difference in the user's response times, neither in the number and the duration of the fixations between both map designs. The results of this study show that the efficiency of label placement algorithms can be improved without disturbing the user's cognitive map. Consequently, we created a more efficient map without affecting its effectiveness towards the user

    Edge-adaptive spatial video de-interlacing algorithms based on fuzzy logic

    Get PDF
    Since the human visual system is especially sensitive to image edges, edge-dependent spatial interpolators have been proposed in literature as a means of successfully restoring edges while avoiding the staircase effect of linear spatial algorithms. This paper addresses the application of video de-interlacing, which constitutes an indispensable stage in video format conversion. Classic edge-adaptive de-interlacing algorithms introduce annoying artifacts when the edge directions are evaluated incorrectly. This paper presents two ways of exploiting fuzzy reasoning to reinforce edges without an excessive increase in computational complexity. The performance of the proposed algorithms is analyzed by de-interlacing a wide set of test sequences. The study compares the two proposals both with each other and with other edge-adaptive de-interlacing methods reported in the recent literatur
    • …
    corecore