8 research outputs found

    Big data analytics in the healthcare industry: A systematic review and roadmap for practical implementation in Nigeria

    Get PDF
    Introduction: The introduction of digitization of healthcare data has posed both challenges and opportunities within the industry. Big Data Analytics (BDA) has emerged as a powerful tool, facilitating data-driven decision-making and revolutionizing patient care. Purpose: The research aimed to analyze diverse perspectives on big data in healthcare, assess BDA's application in the sector, examine contexts, synthesize findings, and propose an implementation roadmap and future research directions. Methodology: Using an SLR protocol by Nazir et al. (2019), sources like Google Scholar, IEEE, ScienceDirect, Springer, and Elsevier were searched with 18 queries. Inclusion criteria yielded 37 articles, with five more added through citation searches, totaling 42. Results: The study uncovers diverse healthcare viewpoints on big data's transformative potential, precision medicine, resource optimization, and challenges like security and interoperability. BDA empowers clinical choices, early disease detection, and personalized medicine. Future areas include ethics, interpretable AI, real-time BDA, multi-omics integration, AI-driven drug discovery, mental health, resource constraints, health disparities, secure data sharing, and human-AI collaboration. Conclusion: This study illuminates Big Data Analytics' transformative potential in healthcare, revealing diverse applications and emphasizing ethical complexities. Integrated data analysis is advocated for patient-centric services. Recommendation: Balancing BDA's power with privacy, guidelines, and regulations is vital. Implementing the Nigerian healthcare roadmap can optimize outcomes, address challenges, and enhance efficiency. Future research should focus on ethics, interpretable AI, real-time BDA, and mental health integration

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation

    J Biomed Inform

    Get PDF
    We followed a systematic approach based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses to identify existing clinical natural language processing (NLP) systems that generate structured information from unstructured free text. Seven literature databases were searched with a query combining the concepts of natural language processing and structured data capture. Two reviewers screened all records for relevance during two screening phases, and information about clinical NLP systems was collected from the final set of papers. A total of 7149 records (after removing duplicates) were retrieved and screened, and 86 were determined to fit the review criteria. These papers contained information about 71 different clinical NLP systems, which were then analyzed. The NLP systems address a wide variety of important clinical and research tasks. Certain tasks are well addressed by the existing systems, while others remain as open challenges that only a small number of systems attempt, such as extraction of temporal information or normalization of concepts to standard terminologies. This review has identified many NLP systems capable of processing clinical free text and generating structured output, and the information collected and evaluated here will be important for prioritizing development of new approaches for clinical NLP.CC999999/ImCDC/Intramural CDC HHS/United States2019-11-20T00:00:00Z28729030PMC6864736694

    Using the Literature to Identify Confounders

    Get PDF
    Prior work in causal modeling has focused primarily on learning graph structures and parameters to model data generating processes from observational or experimental data, while the focus of the literature-based discovery paradigm was to identify novel therapeutic hypotheses in publicly available knowledge. The critical contribution of this dissertation is to refashion the literature-based discovery paradigm as a means to populate causal models with relevant covariates to abet causal inference. In particular, this dissertation describes a generalizable framework for mapping from causal propositions in the literature to subgraphs populated by instantiated variables that reflect observational data. The observational data are those derived from electronic health records. The purpose of causal inference is to detect adverse drug event signals. The Principle of the Common Cause is exploited as a heuristic for a defeasible practical logic. The fundamental intuition is that improbable co-occurrences can be “explained away” with reference to a common cause, or confounder. Semantic constraints in literature-based discovery can be leveraged to identify such covariates. Further, the asymmetric semantic constraints of causal propositions map directly to the topology of causal graphs as directed edges. The hypothesis is that causal models conditioned on sets of such covariates will improve upon the performance of purely statistical techniques for detecting adverse drug event signals. By improving upon previous work in purely EHR-based pharmacovigilance, these results establish the utility of this scalable approach to automated causal inference
    corecore