287 research outputs found

    Distributed texture-based terrain synthesis

    Get PDF
    Terrain synthesis is an important field of Computer Graphics that deals with the generation of 3D landscape models for use in virtual environments. The field has evolved to a stage where large and even infinite landscapes can be generated in realtime. However, user control of the generation process is still minimal, as well as the creation of virtual landscapes that mimic real terrain. This thesis investigates the use of texture synthesis techniques on real landscapes to improve realism and the use of sketch-based interfaces to enable intuitive user control

    Plate and faults boundary detection using gravity disturbance and Bouguer gravity anomaly from space geodesy

    Get PDF
    Nowadays, satellite technology has developed significantly. Geodesy satellites such as Grace and Grace-FO can be used for subsurface mapping. The mapping is in the form of detection of the plate details, faults, and regional geodynamic conditions. This study aims to detect plate and faults from space geodesy using the gravity disturbance and Bouguer gravity anomaly parameter. The study area is in the Sunda Strait. Gravity disturbance is one of the gravity model parameters. Gravity disturbance is the gravitational potential of the topography expressed by the spherical harmonic model and the topographic effect by Barthelmes's calculations. Gravity disturbance can visualize subsurface conditions. Bouguer gravity anomaly is needed to get the condition on subsurface objects. This parameter visualizes subsurface conditions in the form of rocks and non-rocks. These conditions can distinguish oceanic crust and continental crust. Gravity contours are needed to obtain plate and faults predictions. The results obtained are validated patterns and shapes with plate and faults secondary data. The tolerance used in this validation is 80%. The gravity disturbance parameter obtained a value of 83% in verifying the accuracy of assessment in plate and faults detection. The Bouguer gravity disturbance parameter obtained a verification value of accuracy assessment in plate detection but 65% in faults detection. This accuracy assessment uses pattern and texture parameters in detecting the similarity of two or more images. This plate and faults detection results are more detailed and can be used for geophysical, geological, earthquake, and earth dynamics applications

    Characterising the ocean frontier : a review of marine geomorphometry

    Get PDF
    Geomorphometry, the science that quantitatively describes terrains, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using Geographic Information Systems (GIS) has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade, a suite of geomorphometric techniques have been applied (e.g. terrain attributes, feature extraction, automated classification) to investigate the characterisation of seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is nevertheless much common ground between terrestrial and marine geomorphology applications and it is important that, in developing the science and application of marine geomorphometry, we build on the lessons learned from terrestrial studies. We note, however, that not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four- dimensional nature of the marine environment causes its own issues, boosting the need for a dedicated scientific effort in marine geomorphometry. This contribution offers the first comprehensive review of marine geomorphometry to date. It addresses all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry.peer-reviewe

    Classification of Terrestrial Laser Scanner Point Clouds: A Comparison of Methods for Landslide Monitoring from Mathematical Surface Approximation

    Get PDF
    Terrestrial laser scanners (TLS) are contact-free measuring sensors that record dense point clouds of objects or scenes by acquiring coordinates and an intensity value for each point. The point clouds are scattered and noisy. Performing a mathematical surface approximation instead of working directly on the point cloud is an efficient way to reduce the data storage and structure the point clouds by transforming “data” to “information”. Applications include rigorous statistical testing for deformation analysis within the context of landslide monitoring. In order to reach an optimal approximation, classification and segmentation algorithms can identify and remove inhomogeneous structures, such as trees or bushes, to obtain a smooth and accurate mathematical surface of the ground. In this contribution, we compare methods to perform the classification of TLS point clouds with the aim of guiding the reader through the existing algorithms. Besides the traditional point cloud filtering methods, we will analyze machine learning classification algorithms based on the manual extraction of point cloud features, and a deep learning approach with automatic extraction of features called PointNet++. We have intentionally chosen strategies easy to implement and understand so that our results are reproducible for similar point clouds. We show that each method has advantages and drawbacks, depending on user criteria, such as the computational time, the classification accuracy needed, whether manual extraction is performed or not, and if prior information is required. We highlight that filtering methods are advantageous for the application at hand and perform a mathematical surface approximation as an illustration. Accordingly, we have chosen locally refined B-splines, which were shown to provide an optimal and computationally manageable approximation of TLS point clouds

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    DEMIX Method Ranks COPDEM and FABDEM as Top 1'' Global DEMs

    Full text link
    We present a practical approach to inter-compare a range of candidate digital elevation models (DEMs) based on pre-defined criteria and statistically sound ranking approach. The presented approach integrates the randomized complete block design (RCBD) into a novel framework which has been named the DEMIX wine contest. Ranking a collection of wines or a set of DEMs from a given set of candidates leads to a mathematically similar problem. The method presented provides a flexible, statistically sound and customizable tool for evaluating the quality of any raster - in this case a DEM - by means of a ranking approach, which takes into account a confidence level, and can use both quantitative and qualitative criteria. The users can design their own criteria for the quality evaluation in relation to their specific needs. The application of the wine contest to six 1'' global DEMs, considering a wide set of study sites, covering different morphological and landcover settings, highlights the potentialities of the approach. We used a suite of criteria relating to the differences in the elevation, slope, and roughness distributions compared to reference DEMs aggregated from 1-5 m lidar-derived DEMs to 1 second DEM. Results confirmed significant superiority of COPDEM and its derivative FABDEM as the overall best 1'' global DEMs. They are slightly better than ALOS, and clearly outperform NASADEM and SRTM, which are in turn much better than ASTER

    A review of marine geomorphometry, the quantitative study of the seafloor

    Get PDF
    Geomorphometry, the science of quantitative terrain characterization, has traditionally focused on the investigation of terrestrial landscapes. However, the dramatic increase in the availability of digital bathymetric data and the increasing ease by which geomorphometry can be investigated using geographic information systems (GISs) and spatial analysis software has prompted interest in employing geomorphometric techniques to investigate the marine environment. Over the last decade or so, a multitude of geomorphometric techniques (e.g. terrain attributes, feature extraction, automated classification) have been applied to characterize seabed terrain from the coastal zone to the deep sea. Geomorphometric techniques are, however, not as varied, nor as extensively applied, in marine as they are in terrestrial environments. This is at least partly due to difficulties associated with capturing, classifying, and validating terrain characteristics underwater. There is, nevertheless, much common ground between terrestrial and marine geomorphometry applications and it is important that, in developing marine geomorphometry, we learn from experiences in terrestrial studies. However, not all terrestrial solutions can be adopted by marine geomorphometric studies since the dynamic, four-dimensional (4-D) nature of the marine environment causes its own issues throughout the geomorphometry workflow. For instance, issues with underwater positioning, variations in sound velocity in the water column affecting acousticbased mapping, and our inability to directly observe and measure depth and morphological features on the seafloor are all issues specific to the application of geomorphometry in the marine environment. Such issues fuel the need for a dedicated scientific effort in marine geomorphometry. This review aims to highlight the relatively recent growth of marine geomorphometry as a distinct discipline, and offers the first comprehensive overview of marine geomorphometry to date. We address all the five main steps of geomorphometry, from data collection to the application of terrain attributes and features. We focus on how these steps are relevant to marine geomorphometry and also highlight differences and similarities from terrestrial geomorphometry. We conclude with recommendations and reflections on the future of marine geomorphometry. To ensure that geomorphometry is used and developed to its full potential, there is a need to increase awareness of (1) marine geomorphometry amongst scientists already engaged in terrestrial geomorphometry, and of (2) geomorphometry as a science amongst marine scientists with a wide range of backgrounds and experiences.peer-reviewe

    Quantifying the effects of variable selection, spatial scale and spatial data quality in marine benthic habitat mapping

    Get PDF
    Mapping benthic habitats has become critical in many contexts like conservation and management. While marine habitat mapping methods strongly rely on tools and methods from geography and geomatics, habitat mapping practitioners with a background outside of these specialized areas do not always have a full understanding of the spatial concepts behind these tools and methods. This phenomenon is amplified when marine geomorphometry, the science used to quantify seafloor terrain characteristics, is integrated into the marine habitat mapping workflow. This dissertation reviews the use of spatial concepts in the field of marine benthic habitat mapping; many concepts are poorly understood or poorly implemented in the habitat mapping workflow, among which spatial scale and spatial data quality stand out as being of particular importance. While geomorphometry is commonly used in marine benthic habitat mapping, no framework existed to test which terrain attributes should be used as surrogates of species distribution, leading to an inability to compare results from different studies. This dissertation explores different options for terrain attribute selection and proposes an optimal combination that can be used as standard in all habitat mapping studies. This selection is then tested using two approaches to benthic habitat mapping and is shown to perform better than others. Bathymetric data, the primary input for marine geomorphometry analyses and one of the main data inputs for habitat mapping, are commonly impacted by data acquisition artefacts. Very little work has been done on trying to understand how these artefacts propagate throughout the habitat mapping workflow. The impact of artefacts on the bathymetry and its derived terrain attributes is described, and it is shown that artefacts modify the spatial and statistical distributions of depth and terrain attribute values. However, when these affected data are used in habitat mapping, their impact is not always predictable. Some artefacts were found to sometimes inflate measures of accuracy and performance and sometimes decrease them. Overall, habitat maps were shown to be very sensitive to the effects of variable selection, spatial scale and data quality, and as such have serious implications when they are used to inform decision-making, for instance in marine conservation and management. This dissertation raises awareness about these issues and highlights the need for careful integration of spatial data in habitat mapping practices

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas

    Congiungere la modellazione dei movimenti di massa alla realtĂ 

    Get PDF
    I flussi di massa sono pericoli naturali di tipo gravitativo tipici delle zone montane che causano ogni anno perdite economiche e vittime. I modelli numerici sono strumenti per prevedere la propagazione di potenziali eventi di flussi di massa su una determinata topografia, ma questi richiedono diversi input. Gli input e i processi che sostanzialmente influenzano i risultati dei modelli sono rappresentati dalla dal volume, dalle condizioni di innesco e dalle interazioni topografia – flusso di massa. Pertanto, l'obiettivo principale della tesi è quello di migliorare la quantificazione del volume coinvolto in un evento di flusso di massa e di aumentare la rappresentazione dell’interazione tra il flusso e la topografia. Quindi, sono stati studiati due tipi di flussi di massa: debris flow e valanghe di neve. Per quanto riguarda i debris flow, la tesi vuole migliorare l'affidabilità dei modelli analizzando l'aumento del volume del flusso attraverso l'erosione del letto del canale e il collasso di strutture di mitigazione. Per le valanghe di neve, lo studio ha come obbiettivo quello di migliorare l'identificazione delle possibili aree di distacco. La tesi è strutturata come una raccolta di articoli dei quali tre sono stati pubblicati e uno è in fase di revisione. Il primo articolo ha migliorato la rappresentazione dei fenomeni erosivi nei modelli numerici grazie ai dati di un evento di debris flow avvenuto nel bacino del rio Gere (Veneto, IT). Una funzione basata sui valori di pendenza è stata definita per calcolare il coefficiente di erosione, successivamente utilizzato per riprodurre l’erosione osservata nel canale. I risultati sono utili per migliorare l'accuratezza di futuri scenari da debris flow per i quali l'erosione è un importante processo nella dinamica del flusso. Il secondo studio ha definito una procedura per simulare l'effetto del collasso delle briglie di consolidamento in un evento di debris flow. La metodologia è stata sviluppata nel rio Rotian (Trentino, IT), dove un evento di pioggia estrema ha innescato un debris flow che ha provocato il collasso di una serie di 15 briglie. La metodologia sviluppata può essere direttamente applicata per mappare il rischio residuo dei canali da debris flow in cui siano presenti opere o dove la mancanza di manutenzione delle misure di mitigazione può diminuire la loro stabilità. Il terzo progetto riguarda lo studio della rugosità del terreno. Sette algoritmi di calcolo della rugosità sono stati testati in due aree studio al fine di identificare quale algoritmo possa rappresentare nel modo più appropriato le tipologie del terreno che interagiscono con i fenomeni di massa. I risultati hanno mostrato che il miglior algoritmo è risultato il vector ruggedness e che l’utilizzo di una risoluzione maggiore non ha migliorato le performance. Il quarto progetto ha analizzato la capacità di protezione delle foreste colpite da tempeste di vento. Due nuovi algoritmi per valutare le caratteristiche degli alberi abbattuti sono stati sviluppati. I risultati hanno evidenziato che il momento di protezione minimo delle foreste contro le valanghe di neve è dopo 10 anni l'evento di tempesta. Inoltre, gli algoritmi possono essere applicati direttamente su scala regionale per la gestione e il monitoraggio delle aree forestali colpite da tempeste. I diversi studi hanno analizzato i processi di erosione, l'effetto del collasso di briglie e l'identificazione di potenziali aree di innesco. I risultati dei quattro progetti hanno risposto ai corrispondenti obbiettivi, migliorando la comprensione dei flussi di massa e quindi la previsione di eventi futuri. Inoltre, i progetti forniscono importanti risultati metodologici e nuovi metodi sono stati sviluppati e testati al fine di migliorare la stima del volume dei flussi di massa. Tali metodi sono inoltre applicabili al di fuori delle aree di studio prese in esame, dando supporto a diversi stakeholder nella gestione dei rischi naturali.Mass flows are gravitational natural hazards typical of mountain areas causing economic losses and fatalities every year. Numerical models are a way to predict the propagation of potential mass flow events over a certain topography. To appropriately reproduce future events, models required different inputs. Inputs and processes consistently affecting the outcomes of mass flow models regard the released volume, the triggering conditions and the interaction with the topography and the features on the ground once the flow is in motion. Therefore, the main objective of the thesis is to improve the quantification of the input volume and to improve the implementation of processes of interaction with the basal topography. In this context, the focus has been placed on two types of mass flows: debris flows and snow avalanches. Regarding debris flows, the study aims to improve the reliability of models to capture the increase in flow volume through channel bed erosion and mitigation structure collapse. For snow avalanches, the study wants to improve the identification of possible avalanche release areas taking into account the role of different types of vegetation structures. The thesis was structured as a collection of articles of which three have been published and one is currently under review. The first paper investigated the improvement of debris flow erosion in computational models thanks to data of a severe event occurred in the Gere catchment (Veneto, IT). A function based on a smoothed terrain slope map was calibrated to derive the erosion coefficient, successively used to reproduce the observed erosion process occurred in the channel. Results can improve the reliability of future scenarios related to debris flows for which bed erosion plays an important role in volume increase. The second study defined a procedure to simulate the effect of check dam collapse in a debris flow event. The methodology was developed in the rio Rotian (Trentino, IT) where an extreme rainfall event triggered a debris flow that collapsed a series of 15 check dams. The adopted methodology can be straight applied to map the residual risk of mountain channels or where the lack of maintenance may decrease torrent countermeasure stability. The third project involves the study of terrain roughness. We tested seven algorithms computing terrain roughness in two study areas with the aim to identify which roughness algorithm can represent in the most appropriate way the features on the ground interacting with natural hazards. Outcomes showed that the best algorithm resulted the vector ruggedness and that the increase in data resolution did not improve the classification performance. Results can improve the reliability of mass flow propagation models over natural areas. The fourth project analysed the protection capacity of forests affected by windstorms. We developed and tested two algorithms to assess the characteristics of abated trees. Results assessed that the time of minimum level of forest protection against snow avalanches in 10 years after the storm event. The developed algorithms can be straight applied at regional scale to monitor and improve the management of windthrow areas. The projects investigated entrainment processes, effect of mitigation structure failures and the identification of potential triggering areas. Outcomes of the four projects filled the respective gaps of knowledge, improving the understanding of mass flows and then the prediction of future events. Furthermore, the projects have strong methodological outcomes and new methods to improve the volume estimation of mass flows have been developed and tested. Such methods are further applicable outside of the study areas, supporting different stakeholders in the management of natural hazards of mountain areas
    • …
    corecore