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Abstract 

Mapping benthic habitats has become critical in many contexts like conservation and 

management. While marine habitat mapping methods strongly rely on tools and methods 

from geography and geomatics, habitat mapping practitioners with a background outside 

of these specialized areas do not always have a full understanding of the spatial concepts 

behind these tools and methods. This phenomenon is amplified when marine 

geomorphometry, the science used to quantify seafloor terrain characteristics, is 

integrated into the marine habitat mapping workflow. This dissertation reviews the use of 

spatial concepts in the field of marine benthic habitat mapping; many concepts are poorly 

understood or poorly implemented in the habitat mapping workflow, among which spatial 

scale and spatial data quality stand out as being of particular importance. 

While geomorphometry is commonly used in marine benthic habitat mapping, no 

framework existed to test which terrain attributes should be used as surrogates of species 

distribution, leading to an inability to compare results from different studies. This 

dissertation explores different options for terrain attribute selection and proposes an 

optimal combination that can be used as standard in all habitat mapping studies. This 

selection is then tested using two approaches to benthic habitat mapping and is shown to 

perform better than others.  

Bathymetric data, the primary input for marine geomorphometry analyses and one of 

the main data inputs for habitat mapping, are commonly impacted by data acquisition 

artefacts. Very little work has been done on trying to understand how these artefacts 

propagate throughout the habitat mapping workflow. The impact of artefacts on the 
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bathymetry and its derived terrain attributes is described, and it is shown that artefacts 

modify the spatial and statistical distributions of depth and terrain attribute values. 

However, when these affected data are used in habitat mapping, their impact is not always 

predictable. Some artefacts were found to sometimes inflate measures of accuracy and 

performance and sometimes decrease them.  

Overall, habitat maps were shown to be very sensitive to the effects of variable 

selection, spatial scale and data quality, and as such have serious implications when they 

are used to inform decision-making, for instance in marine conservation and 

management. This dissertation raises awareness about these issues and highlights the need 

for careful integration of spatial data in habitat mapping practices.  
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1. Introduction and Overview 

1.1 Introduction 

While the oceans are estimated to comprise up to 90% of the inhabitable area for life 

on Earth (Tittensor et al., 2009), and despite over 150 years of exploration, the scientific 

community still knows very little about the marine environment compared to its terrestrial 

counterpart (Roberts, 2002). Historically, knowledge about the marine environment was 

often gained and driven by human use of the oceans, partly through the exploitation of 

natural resources. For instance, the presence of cold-water corals has been documented by 

fishermen since the mid-eighteenth century (Roberts, 2002), and more recently coral 

observations from fisheries bycatch have helped describe their presence, abundance and 

geographic distribution (Cogswell et al., 2009; Murillo et al., 2011). The realization in the 

twentieth century that the oceans, especially in the deep sea, are not muddy and lifeless 

triggered interest in documenting more than just species occurrences by mapping marine 

habitats. Marine habitat mapping then became a scientific endeavour, often an applied 

one designed to answer specific scientific and management questions. For instance, 

marine habitat mapping has been used to inform conservation efforts (e.g. Laffoley & 

Hiscock, 1993; Light, 1998), to study juvenile mortality in benthic invertebrates (e.g. 

Gosselin & Qian, 1997), to study the disturbance of seabed habitats from fishing gear 

(e.g. Friedlander et al., 1999), and to evaluate ecological associations between different 

species (e.g. Olsgard et al., 2003). 

In the last 25 years, the importance of anthropogenic pressure on seafloor 

environments and the growing realization of the significance of these ecosystems, for 
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instance in terms of ecosystem services (Galparsoro et al., 2014), have steered many 

nations towards increasing efforts to better manage and protect marine resources (Borja, 

2014). Such efforts led scientists to define standards for marine habitat mapping, and 

many definitions of benthic habitats were proposed (e.g. Kostylev et al., 2001; Harris & 

Baker, 2012). In its simplest form, a benthic habitat is a distinct area of the seafloor 

characterized by a combination of specific chemical, physical and/or biological 

characteristics. Mapping the seafloor based on species’ habitat requirements has become 

critical in many contexts, and is often the first step in implementing scientific 

management, monitoring environmental change, and assessing the impacts of 

anthropogenic disturbance on benthic ecosystems (Roff et al. 2003; Cogan & Noji 2007). 

Seafloor mapping also provides the data necessary for the identification and monitoring 

of marine protected areas (Le Pape et al., 2014). Habitat maps enable the interpretation of 

the nature, distribution, and extent of distinct physical environments, and allow 

predictions of species or communities distribution based on their associations with the 

environment (Harris and Baker, 2012). 

The field of marine benthic habitat mapping has evolved rapidly during these 25 

years. Technological and methodological developments in marine benthic habitat 

mapping were partly driven by innovations in geomatics, more specifically in Geographic 

Information Systems (GIS), spatial analysis methods and remote sensing technologies 

(Wright & Heyman, 2008; Brown et al., 2011). In their “Review of Standards and 

Protocols for Seabed Habitat Mapping”, Coggan et al. (2007) defined a very general 

approach to marine benthic habitat mapping as the spatial integration of different datasets, 
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usually within a geospatial environment. Within a GIS environment, spatial analytical 

techniques are combined with high-resolution geoscientific and environmental data with 

in situ observations to enable accurate quantification and representation of habitats. This 

provides a framework for mapping the distribution of benthic species and interpreting 

spatial patterns in biodiversity (Whitmire et al., 2007; Brown et al., 2011; Harris and 

Baker, 2012). For a long time, habitat mapping was done using available, often broad-

scale data. For instance, while bycatch data and bathymetric data from satellite radar 

altimetry provide some understanding of species biogeography at a regional scale (e.g. 

Bryan & Metaxas, 2007), they present challenges when trying to understand habitat 

characteristics at a more local scale that is often more meaningful for purposes such as 

conservation and management (Etnoyer & Morgan, 2007). However, the development of 

acoustic remote sensing and bathymetric LiDAR techniques in recent decades has helped 

fill the gap in high-resolution spatial environmental data necessary to map benthic 

habitats at scales relevant to such purposes. Data provided by this type of remote sensing, 

specifically bathymetry and backscatter data, have revolutionized benthic habitat 

mapping, both in terms of the methods used and our ability to map habitats efficiently and 

with relative ease. Bathymetric and backscatter data are used for seafloor 

characterization, habitat mapping, and the derivation of surrogates to predict species 

distribution (Butler et al., 2006; Anderson et al., 2008; Dolan et al., 2008). These data 

have proven their value for habitat mapping and their potential to help the scientific 

community advance its understanding of seafloor ecosystems (Anderson et al., 2008; 

Brown et al., 2011).  
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Like benthic habitat mapping, geomorphometry – the science used to derive 

quantitative measurements of terrain characteristics from digital terrain models (DTM) – 

has been fueled by advances in remote sensing and GIS in recent decades (Florinsky, 

2012) and now strongly rely on methods and techniques from geomatics. 

Geomorphometry has traditionally focused on the investigation of terrestrial landscapes, 

but the dramatic increase in the availability of digital bathymetric data and the increasing 

ease by which geomorphometry can be analyzed using GIS has prompted interest in 

employing geomorphometric techniques to investigate the marine environment (e.g. 

Lundblad et al., 2006; Wilson et al., 2007). Over the last decade or so, a multitude of 

geomorphometric techniques have been applied to characterize the seafloor, and marine 

benthic habitat mapping is a major area where the use of marine geomorphometry has 

grown in recent years (reviewed in Lecours et al., 2016). Linked to the increasing use of 

multibeam and bathymetric LiDAR data for benthic habitat mapping (Brown et al., 2011; 

Smith and McConnaughey, 2016), the vast majority of habitat mapping studies with 

access to bathymetric data are now using, or at least testing, some form of terrain 

attributes (e.g. slope, orientation, rugosity) in their workflow. Since most marine habitats 

are difficult to access, observe and sample (Solan et al., 2003; Robinson et al., 2011), 

bathymetric data are often the only reliable dataset available to characterize benthic 

habitats; by enabling the extraction of quantitative information from bathymetric data, 

geomorphometry provides an invaluable source of additional and relevant information for 

benthic habitat mapping.  
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In the context of marine geomorphometry, the roles of several spatial concepts are 

still not studied (e.g. spatial data quality) or fully understood (e.g. spatial scale), and these 

spatial concepts are often overlooked when marine geomorphometric techniques are used 

in marine benthic habitat mapping. By its spatial and data-driven natures and the near 

ubiquitous use of GIS, remote sensing and spatial analysis in its workflow, marine habitat 

mapping and its practices are also directly influenced by spatial concepts such as spatial 

scale and spatial autocorrelation. However, the scientists framing the questions related to 

the study of benthic habitats and the managers applying the answers are frequently not 

trained in the geomatics tools that underpin much of the new techniques in marine habitat 

mapping. While geographers and other spatial scientists have been studying these 

fundamental concepts for a long time, the understanding of their role and their integration 

in the habitat mapping workflow – including during geomorphometric analyses – have 

received scant attention in the past. Since marine habitat maps have become a critical tool 

in decision-making, especially in marine conservation and management (Reiss et al., 

2014; Buhl-Mortensen et al., 2015; Davies et al., 2015; Rolet et al., 2015; Howell et al., 

2016), there is an urgent need to improve our understanding of how these concepts 

influence the representation of benthic ecosystems and habitats. This dissertation focuses 

on marine benthic habitat mapping methods, and particularly on how a better integration 

of spatial concepts like spatial scale can improve the marine habitat mapping workflow. It 

is aimed at developing best practices in the application of geomatics-based marine habitat 

mapping to ecological and management questions. A particular focus is given to the 

concepts of variable selection, spatial scale and spatial data quality. 
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1.2 Research Problem and Research Gap 

The general problem that this dissertation addresses is that of a widely used but 

poorly understood spatial framework for marine benthic habitat mapping research. Some 

work has been done (e.g. Dolan et al., 2008; Brown et al., 2011; Rengstorf et al., 2012; 

Dolan & Lucieer, 2014; Rattray et al., 2014) to improve our understanding of the 

influence of certain spatial concepts (e.g. spatial scale, spatial data quality) on the way we 

represent and understand benthic habitat. However, much work remains to be done to 

enable the full integration or consideration of spatial concepts within the habitat mapping 

workflow. This problem is rooted in the disconnection between marine habitat mapping – 

a field that is spatial in nature – and the field of geomatics, which provides the spatial 

concepts that partly support many habitat mapping practices. Geomatics is intrinsically 

linked to geography and is defined as the “discipline dedicated to the management of 

spatially referenced data, and thus relies on the scientific concepts and technologies 

implied in the acquisition, storage, analysis, and distribution of the data” (Caron et al., 

2008, p. 295).  

Through the development of GIS, which offer tools to analyze and represent spatial 

data, geomatics has become very accessible to a wide range of scientists involved in 

marine benthic habitat mapping (e.g. geologists, ecologists, biologists). The effectiveness 

of geomatics concepts and methods – and of GIS tools to assist in the exploration of 

questions from other disciplines – has given rise to the multidisciplinary and 

interdisciplinary nature of the field (Wright et al., 1997; Mark, 2000, 2003; Blaschke et 

al., 2011, 2012). First, these concepts and tools enable a better understanding of complex 
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phenomena by integrating information in a spatial context, and incorporating both 

qualitative and quantitative spatial reasoning with concepts from other disciplines (e.g. 

geology or ecology) into a common framework. Then, geomatics provides a set of core 

concepts that improve communication and mutual understanding about spatial data and 

information among researchers with different backgrounds (Kuhn, 2012). As a 

consequence, geomatics has been widely adopted by many disciplines in the last 25 years 

(Raper, 2009; Blaschke & Merschdorf, 2014), including geomorphometry (Zhou & Zhu, 

2013) and marine habitat mapping (Wright & Heyman, 2008).  

Geomatics is an integrative science. As Lam & Kemp (2012, p. 2194) stated: 

“Integrative science is the cornerstone of this field – both helping others integrate and 

integrating other sciences into ours to see where the technology and science are lacking.” 

Geomatics is thus considered a multiparadigmatic science in which approaches from 

other disciplines are commonly applied within the field, and vice-versa (Blaschke and 

Merschdof, 2014). However, the integrative nature of geomatics also has downsides. The 

development of easily accessible tools brings hidden dangers by facilitating non-critical 

use by end-users (e.g. computer scientists, ecologists, geologists) who may have limited 

appreciation of spatial concepts, for instance spatial scale, spatial representation and 

spatial data quality. Because the tools are made to be intuitive, they often do not require 

end-users to fully understand the characteristics of the underlying processes and 

parameters implemented in the tools, and of the spatial data that form the basis for 

analysis. The scientific concepts and foundations are thus often hidden behind 

increasingly “black-box”, user-friendly tools. In addition, the fast pace at which tools and 
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techniques are developing may commonly prevent end-users from remaining apprised of 

new developments in these scientific concepts and foundations. This leads to the danger 

of inappropriate use of geospatial data and tools and the lack of appropriate consideration 

of important spatial concepts, from which misinformed and potentially erroneous 

interpretations or inferences could be made. 

In summary, there is a lack of consideration, likely caused by a lack of 

understanding, of spatial concepts (e.g. spatial scale, spatial data quality, spatial 

autocorrelation) within marine benthic habitat mapping practices. There is a need to 

reunite the community of end-users – e.g. the geologists, ecologists, geographers, or 

decision-makers involved in the production of benthic habitat maps – with the spatial 

foundations that underpin the data, tools and methods they use. The specific research gap 

that this dissertation addresses is the following: there are currently no best practices 

defined to better integrate spatial concepts like spatial scale and spatial data quality in the 

marine benthic habitat mapping workflow, particularly when marine geomorphometric 

analyses are part of this workflow.  

1.3 Research Questions 

The research problem can be addressed by increasing geographic literacy in 

disciplines like marine habitat mapping and marine geomorphometry that commonly use 

spatial data and GIS tools (Blaschke & Strobl, 2010).This dissertation attempts to answer 

the following questions to increase the body of knowledge related to spatial concepts in 

marine benthic habitat mapping, and more particularly on spatial scale and spatial data 

quality. Since marine geomorphometry is an important part of the marine habitat mapping 
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workflow, these questions will be answered through the integration of geomorphometric 

analyses in the habitat mapping practices. 

1. Which particular spatial concepts are poorly integrated in the marine benthic 

habitat mapping workflow, and is it possible to identify specific ways to improve 

the integration of spatial concepts in marine benthic habitat mapping? 

2. Which combination of terrain attributes best capture seafloor characteristics while 

minimizing spatial covariation? Can these terrain attributes form a standard 

protocol for using marine geomorphometry in different approaches to habitat 

mapping?  

3. How sensitive are these terrain attributes to different types of data acquisition 

artefacts? Does the sensitivity of terrain attributes to data acquisition artefacts vary 

with spatial scale? 

4.  Do data acquisition artefacts propagate to habitat maps and species distribution 

models? Are the impacts of data acquisition artefacts on habitat maps and species 

distribution models scale-dependent? 

1.4 Research Hypotheses 

The following five hypotheses are examined in this dissertation: 

1. There is a lack of understanding of the role of different spatial concepts, for 

instance like spatial scale and spatial data quality, in marine benthic habitat 

mapping practices. 

2. Different optimal combinations of terrain attributes exist and their composition 

varies depending on seafloor characteristics (e.g. roughness).  
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3. The different optimal combinations of terrain attributes are generalizable, i.e. they 

can be integrated in the marine habitat mapping workflow regardless of the 

approach used to map habitats. 

4. Terrain attributes, and habitat maps and species distribution models produced from 

these terrain attributes, are sensitive to data acquisition artefacts. 

5. The sensitivity of terrain attributes, habitat maps and species distribution models to 

data acquisition artefacts is scale-dependent; finer-scale data, and maps and models 

built from these data, are more sensitive to data acquisition artefacts than broader-

scale data and maps and models produced with these data.  

1.5 Research Objectives 

The overarching objective of this dissertation is to identify spatial concepts that 

currently lack a proper consideration in marine benthic habitat mapping practices, and to 

propose solutions towards a better (re)integration of these concepts into the marine 

benthic habitat mapping workflow. A particular focus is given to spatial scale, spatial 

covariation, and spatial data quality. 

Specific objectives are: 

1. Review existing knowledge on spatial concepts in benthic habitats and their 

mapping, including the related practices of surrogacy assessment and species 

distribution modelling. 

2. Identify ways to improve marine benthic habitat mapping practices through a 

better integration of spatial concepts. 
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3. Identify combinations of environmental variables that minimize spatial 

covariation and optimize the information extracted from these data. 

4. Demonstrate the importance of using spatial data with an ecological meaning for 

marine benthic habitat mapping by describing the effects of subjectively selecting 

spatial data on the production of habitat maps and species distribution models. 

5. Describe the impacts of a poor spatial data quality on the marine benthic habitat 

mapping workflow. 

6. Evaluate the relationship between spatial scale and spatial data quality in a 

marine benthic habitat mapping context. 

1.6 Methods 

Through its exploration of the role of spatial concepts in marine benthic habitat 

mapping, this dissertation focuses on one specific type of spatial data: bathymetry. Since 

it often is the only reliable continuous dataset available to characterize benthic habitats, 

particularly in deeper waters, bathymetry has become the most important dataset in 

marine benthic habitat mapping. By definition, bathymetry is the representation of the 

seafloor that defines the benthic component of benthic habitats. Bathymetry is also the 

primary input to geomorphometric analyses. Based on this, this dissertation focuses on 

the integration of spatial concepts in marine benthic habitat mapping when marine 

geomorphometry practices are also integrated in the workflow. While the dissertation 

addresses many spatial concepts, including spatial autocorrelation and spatial 

heterogeneity, it focuses on issues related to spatial scale, spatial data quality, and spatial 
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covariation among environmental variables like terrain attributes that are commonly used 

in marine habitat mapping.  

This dissertation is based on the evaluation of different practices and methods related 

to the production of benthic habitat maps. Consequently, it often necessitated a control 

dataset on which hypotheses could be tested. Two main datasets were used in this 

dissertation. The first one includes nine artificial terrain surfaces that provided a 

controlled environment for defining a framework for the use of marine geomorphometry 

in marine benthic habitat mapping (cf. Chapter 3). The second dataset is that of the 

German Bank, an area off Nova Scotia that has been extensively studied before (e.g. 

DFO, 2006; Todd et al., 2012; Brown et al., 2012). This dataset include bathymetry, 

backscatter data, and two types of ground-truth data (photographs of the seafloor and 

biological observations). This dataset is an excellent example of complete dataset that can 

be found in the literature, and enabled controlling variables for testing hypotheses in 

Chapter 4, Chapter 5, and Chapter 6. Its previous uses also provide opportunities for 

comparison of methods and results. 

1.7 Significance of Research 

By demonstrating the impacts of an inappropriate integration of spatial concepts in 

the marine benthic habitat mapping workflow, this dissertation will increase awareness 

amongst habitat mapping practitioners of the importance to consider these concepts. This 

should lead to an increased geographic literacy within marine habitat mapping. It should 

also result in more tools being developed and made accessible through GIS to a wide 

range of marine scientists, which should facilitate the integration of spatial concepts in the 
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workflow and eventually improve standards and protocols. Ultimately, an increased 

realization amongst the community of the importance of spatial concepts should lead to a 

change in practices, which will enable the production of knowledge on benthic habitats 

grounded on a sound, spatially-explicit inferential basis. Consequently, such knowledge 

will better support decisions made from habitat maps in contexts such as conservation and 

management. Finally, this dissertation also defines standards for the use of 

geomorphometry in marine habitat mapping, which now provide an operational 

framework for habitat mapping practitioners willing to integrate geomorphometric 

analyses in their workflow. The adoption of that framework by the community will now 

enable valid comparisons between studies. 

1.8 Organization of the Dissertation 

This dissertation is organized into seven sections: the introduction, five manuscripts, 

and a conclusion chapter. 

Chapter 2 reviews the marine benthic habitat mapping literature and highlights the 

importance of incorporating ecological scaling and geographical theories in this field. 

Recommendations are provided on more effective practices for marine benthic habitat 

mapping. 

Chapter 3 focuses on the use of terrain attributes derived from DTMs. An optimal 

combination of terrain attributes for use in marine benthic habitat mapping was proposed 

after testing 230 tools and algorithms on nine artificial surfaces. 

Chapter 4 uses the recommended selection of terrain attributes from Chapter 3 – 

defined in a theoretical context – in a practical context of marine benthic habitat mapping. 
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It demonstrates the selection’s superiority over others in the production of marine habitat 

maps and species distribution models.  

Chapter 5 addresses spatial data quality at multiple spatial scales. It describes how 

different types of data acquisition artefacts that are common in multibeam bathymetric 

data impact the derivation of terrain attributes from bathymetry. 

Chapter 6 pushes forward the analyses from Chapter 5 by exploring how the artefacts 

errors propagate to habitat maps and species distribution models when bathymetry and 

terrain attributes are used in their production.  

In Chapter 7 the relevance and implications of this research is discussed within the 

context of marine benthic habitat mapping but also in a wider context of ecological and 

marine research. Future research areas that can build upon this research but are beyond 

the scope of this dissertation are also discussed. 
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2. Spatial Scale and Geographic Context in Benthic Habitat Mapping: 

Review and Future Directions 

2.1 Introduction 

The volume of space that can host life on Earth is at least 150 times greater in the 

oceans than on land (Gjerde, 2006). However, scientific knowledge about marine 

environments is still sparse compared to terrestrial environments due to difficulties to 

access, observe, and sample most places in the marine realm (Solan et al., 2003; 

Robinson et al., 2011). The oceans, which cover 70% of our planet’s surface, are 

estimated to be 90% unexplored (Gjerde, 2006). Ocean research led by several 

international initiatives and groups (e.g. Census of Marine Life and the International 

Council for the Exploration of the Sea [ICES]) has increased significantly over the last 

decade (Heyman & Wright 2011; Borja, 2014), driven by efforts by many nations to 

better manage and protect marine resources. In the ocean realm, benthic ecosystems 

provide important services (Thurber et al., 2013; Galparsoro et al., 2014) but are also 

increasingly impacted by human activities (e.g. bottom-contact fishing, oil and gas 

extraction) (Halpern et al., 2008; Williams et al., 2010; Harris, 2012). Research on near-

bottom environments and their associated biota has become essential to support effective 

monitoring and management strategies (Thrush & Dayton, 2002; Ramirez-Llodra et al., 

2011). Anthropogenic impacts on the seafloor alter benthic biodiversity (Cook et al., 

2013; Grabowski et al., 2014), habitats (Jones, 1992; Puig et al., 2012), and modify 

ecosystem structures and functions (Koslow et al., 2000; Olsgard et al., 2008). Ramirez-
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Llodra et al. (2011) noted that exploration, scientific research, monitoring, and 

conservation measures are essential to ensure that exploitation of resources does not lead 

to massive destruction of ecosystems. To protect benthic species from such threats, 

distribution patterns and ecological dynamics must be better understood (Ramirez-Llodra 

et al., 2011; Mengerink et al., 2014). Managers need accurate, quantitative and spatially 

explicit information, at scales relevant to their objectives, in order to support protection 

and management plans (Anderson et al., 2008; Davies & Guinotte, 2011). Marine habitat 

mapping has become mandatory in some countries and contexts, such as the 1996 

amendment to the United States Magnuson-Stevens Fishery Conservation and 

Management Act regarding the description and identification of essential fish habitats 

(Benaka, 1999). To ensure that these efforts are as representative as possible, species 

distributions should be mapped at multiple scales (Lourie & Vincent, 2004; Smith & 

Brennan, 2012; Shucksmith & Kelly, 2014). Mapping seafloor based on species’ habitat 

requirements is essential and is the first step in implementing scientific management, 

monitoring environmental change, and assessing the impacts of anthropogenic 

disturbance on benthic habitats (Roff et al., 2003; Cogan & Noji, 2007; Harris & Baker, 

2012a). 

Habitats can be defined as physical spaces characterized by a combination of 

variables of different types in which species can survive (Whittaker et al., 1973). Several 

definitions of benthic habitats have been proposed. Harris & Baker (2012a, p. 8) define 

them as being “physically distinct areas of seabed that are associated with the occurrence 

of a particular species”. A more comprehensive definition of benthic habitats could 
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include the chemical environment and water properties known to influence benthic faunal 

distribution (Kostylev et al., 2001; Cogan & Noji, 2007; Brown et al., 2011a). A benthic 

habitat can hence be defined as an area of the seabed that is distinct from its surrounding 

in terms of physical, biological, and chemical variables. Brown et al. (2011a) provide a 

comprehensive review of types of benthic habitat maps, techniques of data collection, and 

methods that can be used to create habitat maps. Habitat-based approaches to estimate 

organism response to landscape heterogeneity have been used for decades in landscape 

ecology (Turner et al., 2001; Robinson et al., 2011). Because species have a range of 

environmental preferences and requirements (Hutchinson & MacArthur, 1959), many of 

these approaches focus on the structure and quantity of potential habitats, either instead 

of, or in addition to, the distribution of biological populations at the time of sampling. 

Habitat maps must be placed in context with the appropriate spatial, temporal, and 

thematic scales (Cogan & Noji, 2007). Scale is considered to be “one of the most critical 

aspects in habitat mapping, as well as one of the most misunderstood” (Greene et al., 

2007, p. 145). As Boyce (2006, p. 274) stated: “Ecologists are still at a fairly naïve 

pattern-documentation phase in understanding the importance of scale.” Despite the well-

known importance of spatial scale in benthic habitat mapping (Brown et al., 2011a), the 

topic is only briefly mentioned in texts (e.g. Todd & Greene, 2007; Harris & Baker, 

2012b) and only a few publications address the implications of scale for benthic habitat 

mapping. Brown et al. (2011a) includes a complete section on spatial scale in benthic 

habitat mapping. Other publications have addressed spatial resolution (e.g. Anderson et 
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al., 2008), the impact of scale in management and surrogacy assessment (e.g. McArthur et 

al., 2009, 2010), and its impact in shallow water monitoring (e.g. Van Rein et al., 2009). 

Scale is only briefly acknowledged in the extensive literature on benthic habitat 

mapping, often with little or no treatment of the role of spatial scale in the production of 

benthic maps and the interpretation of research results. This lack of treatment likely 

indicates little awareness and understanding of the importance and role that spatial scale 

plays in benthic habitat mapping. Figure 2.1 illustrates the increase in publications on 

benthic habitat mapping for the period 1995-2014, and the number of cases that address 

scale. Approximately a third of the articles and reviews used the term “scale” in the title, 

abstract or keywords, with 22% for “spatial scale”, less than 5% for “multiple scales” and 

1% for “multiscale”; these numbers are much lower than in landscape ecology-related 

publications, where scale is still considered as being insufficiently described (Lechner et 

al., 2012a). 

 

Figure 2.1: Cumulative number of publications (articles or reviews) listed in the Scopus database 

mentioning specific keywords (see key) in their title, abstract or keywords, by the end of 2014. 
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The aims of this contribution are (1) to review existing knowledge on spatial scale in 

benthic habitats and their mapping, including the related practices of surrogacy 

assessment and species distribution modelling, and (2) identify ways to improve benthic 

habitat mapping practices. The paper is organized as follows. We first review knowledge 

of scale in ecology, including the difference between scales of phenomenon, observation 

and analysis. We then introduce the concepts of benthic habitat mapping, including the 

natural characteristics that can influence marine species distribution, the basis of their 

representation as spatial data and of their analysis, and the importance of characterizing 

habitat at multiple scales. Thirdly, we emphasize the need to consider the spatial nature of 

data in analyzing species’ relationships with their environment. Fourth, we discuss 

current needs and future directions in habitat mapping, and propose a new standard for 

defining benthic habitat that includes the explicit statement of scale. Finally, we make 

recommendations regarding the integration of ecological scaling and geographical 

theories in habitat mapping. 

2.2 Scale in Ecology 

Three types of scale are typically recognized in the ecological literature: spatial, 

temporal, and thematic. Several definitions of spatial scale have been given depending on 

the contexts (Schneider, 1994, 2001a; Dungan et al., 2002; Lechner et al., 2012b). Spatial 

scale commonly refers to the spatial characteristic of an object or process, including both 

its spatial resolution (i.e. level of detail) and geographic extent (Schneider, 1994; 

Gustafson, 1998). Like spatial scale, temporal scale is characterized by both resolution 

(e.g. days vs. minutes) and extent (i.e. range of time) (Schneider, 1994). Space and time 
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are intrinsically linked and often depicted in joint space-time diagrams (Stommel, 1963; 

Steele, 1978; Delcourt et al., 1983). Thematic scale, also called level of organization, 

organizational scale, or ecological organization, is linked to the level at which objects of 

study are described, for instance taxonomic resolution (Levin, 1992; Larsen & Rahbek, 

2005). Thematic scale is important because the observed relationships of any 2 variables 

can vary across thematic scales (Pearson, 2002; Larsen & Rahbek, 2005; Brown et al., 

2011a, 2012). For instance, grouping species with different habitat requirements can 

result in conclusions that differ from when species are studied individually (e.g. Grober-

Dunsmore et al., 2007; Lecours et al., 2013). Understanding the effects of spatial, 

temporal, and thematic scale is challenging but essential, as many important ecological 

processes are scale-dependent (Turner et al., 2001; Schneider, 2009; De Knegt et al., 

2010). Changes in pattern with changes in scale have been recognized in ecology since 

the 1950s (Greig-Smith, 1952), but the importance of scale only became widely 

acknowledged in the 1980s (Meentemeyer, 1989; Schneider, 2001a). Research on scale, 

on methods to scale-up and scale-down across scales, and on the problem of relating 

phenomena across scales is fundamental and remains an important focus in many sciences 

(Wiens, 1989; Levin, 1992; Schoch & Dethier, 1996). According to Turner et al. (2001, 

p. 330): “The effects of scale are now well recognized, but the need for improved 

quantitative understanding remains critical.” 

Lechner et al. (2012a, b) distinguish the scale at which a pattern or process occurs 

from the scale of observation and the scale of analysis. The scale at which a pattern or 

process occurs is often referred to as intrinsic, operational, or ecological scale. The 
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observational scale relates to the data that are used to describe natural phenomena (e.g. 

the pixel size, or spatial resolution, on gridded bathymetric data), while the analysis scale 

relates to the method used to analyze these data (e.g. the size of the analytic window used 

to perform focal statistics in spatial analysis). 

Issues can arise when there is a mismatch between ecological, observational, and 

analytical scales: appropriate detection of species-habitat relationships and ecological 

patterns is dependent on the chosen observational and analysis scales (García & Ortiz-

Pulido, 2004; Gambi & Danovaro, 2006). For instance, using a 1 km resolution 

bathymetric dataset would likely not allow the understanding of how bathymetry relates 

to species distribution in a coral reef, as knowledge of smaller changes in depth would be 

required. Observational and analytic scales are often arbitrarily chosen in ecological 

studies (Levin, 1992), due to financial, technical or time constraints (Meentemeyer, 1989) 

and are typically not reported in sufficient details (Pittman & McAlpine, 2003). Wheatley 

& Johnson (2009) reviewed the use of multiple scales in terrestrial wildlife-habitat 

studies, finding that 70% of the articles used arbitrarily chosen scales, with no 

consideration of the scales relevant to wildlife or to environmental variables. They 

mentioned that when such choices are made, “published results may reflect scale 

artefacts” and scale-dependent processes may be missed “by examining irrelevant or 

redundant scales of observation” (Wheatley & Johnson, 2009, p. 151). Scale artefacts are 

observations that seem to explain the studied pattern or process, but may not be causally 

linked or cannot be validated due to the choice of observational scale (Wheatley & 

Johnson, 2009; Lechner et al., 2012b). In order to avoid scale artefacts and missing 
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important patterns or processes, data and analysis need to capture the essential elements 

of the habitat, meaning that the observational and analytic scales should encompass the 

ecological scales of the biological or environmental phenomenon being studied (Hobbs, 

2003; Mayor et al., 2009; Goodchild, 2011). Habitat structure must then be measured at 

spatial scales relevant to the organism of interest (Pearson, 2002; Gallucci et al., 2009; De 

Knegt et al., 2010). For instance, the habitat of a wide-ranging shark would not be 

measured at the same scales as the habitat of a small cavity-dwelling reef fish, even if 

they are found within the same geographic area. 

No single scale, be it spatial, temporal or thematic, is appropriate for the study of all 

ecological problems, and all scales do not have similar explanatory powers (Clark, 1985; 

Wiens, 1989; Levin, 1992; Willis & Whittaker, 2002). For instance, coarse-scale data can 

help understand regional patterns of terrestrial and marine species biogeography (e.g. 

Rahbek & Graves, 2001; Davies et al., 2008) but may be insufficient for identifying 

specific conservation areas (Davies & Guinotte, 2011). Models created with coarse-scale 

data to predict a species’ geographic distribution can be improved using better knowledge 

of its habitat requirements gained from finer-scale information (Bryan & Metaxas, 2007; 

Etnoyer & Morgan, 2007; Davies & Guinotte, 2011; Ross & Howell, 2013). However, 

saying that no single scale is appropriate does not mean that all scales serve a purpose 

equally well or that scaling laws or patterns cannot be defined (Levin, 1992). 

Spatial scale is an important consideration when studying organism and habitat 

structure interactions (McCoy et al., 1991; Pearson, 2002). Habitat selection by a 

particular species can occur and be measured at some scales and not necessarily at others 
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(Owen, 1972; Boyce, 2006). For instance, Anderson et al. (2005) found that elks select 

their habitat based on broad-scale spatial distribution of wolves in conjunction with fine-

scale selection of forage areas. In a marine context, the associations of infaunal (De Leo 

et al., 2014), sessile (Schneider et al., 1987), and mobile epibenthic species (Grober-

Dunsmore et al., 2007; Kendall et al., 2011) with their environment were all found to 

vary with spatial scale. The concept of habitat is both scale-dependent (Pearson, 2002) 

and species-specific (Pandit et al., 2009). For instance, habitat specialists, such as coral 

reef gobies (Munday et al., 1997), live in a very specific habitat characterized by a narrow 

range of environmental conditions and respond to more fine-scale processes. On the other 

hand, habitat generalists, such as the copepod Nitocra spinipes (Pandit et al., 2009), can 

tolerate a broad range of environmental conditions and respond to more broad-scale 

processes. More generally, Schneider et al. (1987) found that mobile species often show 

decoupling from the environment at finer scales, and habitat association at coarser scales, 

compared to finer-scale coupling with habitat by sessile species. Meyer & Thuiller (2006) 

reported that the majority of species respond to habitat characteristics at more than one 

scale at the same time. Despite that, a response measured at one particular scale cannot 

always be used to predict habitat use at another scale (VanderWerf, 1993; Apps et al., 

2001). 
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2.3 Scale in Benthic Habitat Mapping 

2.3.1 Review of Concepts and Methods 

2.3.1.1 Habitat Mapping 

The complex interactions between biological, physical, chemical, and behavioural 

elements of the marine environment can make benthic habitats difficult to map (Zajac, 

2008; Rigby et al., 2010). The integration of data representing these elements at multiple 

scales is especially challenging (Brown et al., 2011a). Traditional data-acquisition 

techniques can be limited by varying factors, including depth (as with optical remote 

sensing that only captures data in shallow waters), visibility (as with cameras), and time 

(as with SCUBA diving) (Dunn & Halpin, 2009; Costa et al., 2014). Whilst some 

techniques can help delineate benthic habitats at some specific scales, they present 

challenges when trying to delineate benthic habitats at other scales. For instance, seafloor 

acoustic mapping from the surface and sparse ground-truthing in deeper waters provide 

information at a scale that Davies et al. (2008) considered regional, but lack the capacity 

to characterize finer-scale patterns and processes (Stone, 2006; Davies et al., 2008; 

Tittensor et al., 2009). On the other hand, SCUBA diving allows the collection of fine-

scale data in shallow waters but cannot generate a broader characterization of ecosystem 

pattern (Costa et al., 2014). The use of bathymetric LiDAR (in shallow waters) and 

acoustic remote sensing (in deeper waters) can help reduce these sampling gaps, by 

providing continuous and high-resolution data necessary for mapping over greater areas, 

and thus at scales that may be more relevant for understanding pattern and process in 
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these habitats (Kenny et al., 2003). Despite their strengths, these techniques have their 

own limitations, as they do not necessarily provide data of sufficient resolution to 

understand very fine ecological processes. However, combining acoustic or LiDAR data 

with in situ observations, high-resolution geoscientific and environmental information, 

and spatial analytical techniques does allow for more accurate quantitative 

characterization of habitat at multiple scales, in addition to providing a framework for 

mapping the distribution of benthic species and interpreting spatial patterns in 

biodiversity (Whitmire et al., 2007; Wedding et al., 2008; Brown et al., 2011a; Harris & 

Baker, 2012a). 

Brown et al. (2011a) identified 3 of the most common approaches to benthic habitat 

mapping: abiotic surrogate mapping that does not consider biological data, and 

unsupervised (top-down approach) and supervised (bottom-up approach) classifications 

that integrate biological data in different ways (see Figure 4 in Brown et al., 2011a). 

These methods correspond to what the “Review of Standards and Protocols for Seabed 

Habitat Mapping” published by MESH (Mapping European Seabed Habitats) identified 

as the general approach to benthic habitat mapping: the spatial integration of different 

datasets, usually within a geospatial environment (Coggan et al., 2007). While a number 

of studies (e.g. Brock et al., 2004; Wedding & Friedlander, 2008) mapped benthic 

habitats in shallow environments using bathymetric LiDAR, optical remote sensing, or 

SCUBA diving, this approach often focuses on the use of acoustic remote sensing (e.g. 

multibeam echosounders, sidescan sonars) to collect spatial information on the 

characteristics of the seafloor (Brown et al., 2011a); most of the 57 case studies presented 
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in Harris & Baker (2012b) used either backscatter or bathymetric data, or both. For 

example, Copeland et al. (2012) combined information extracted from bathymetric and 

backscatter data with biota in a sub-Arctic fjord to determine 6 types of benthic habitats 

and to identify patterns of biodiversity. All the techniques used to map both shallow and 

deeper waters influence or determine the scale of data collection and analysis. For 

instance, the spatial resolution and extent of acoustic bathymetric data depends on the 

sensor-to-seafloor distance (e.g. Lecours & Devillers, 2015) and the systems used (Kenny 

et al., 2003): the shorter the distance, the higher the resolution and the lower the extent. 

In parallel, approaches from terrestrial ecology are increasingly used in marine 

ecology to represent environmental heterogeneity as habitat maps. Seascape ecology 

draws on techniques from landscape ecology, using spatial pattern metrics to quantify the 

seascape structure and delineate patch-based models of habitat type (see Boström et al., 

2011; Pittman et al., 2011; Wedding et al., 2011). The size of habitat patches can be an 

indicator of the spatial scale at which species use an environment when linked to species 

distribution and behaviour (Pittman & McAlpine, 2003; Pittman et al., 2007). For 

instance, Hitt et al. (2011) tracked fish movements, linking them to seascape structures to 

study habitat use in relation to patch types and connectivity, which allowed quantifying 

the extent of the environment that the fish were using. The literature on seascape ecology 

is however still scarce (Pittman et al., 2011). Applications are mostly in coastal shallow 

environments, using optical remote sensing (i.e. aerial photography or satellite remote 

sensing) (e.g. Kendall & Miller, 2010) or bathymetric LiDAR data (e.g. Purkis & Kohler, 

2008), and are often applied to reef fishes (e.g. Kendall et al., 2011). Despite its potential 
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to explain marine ecological patterns and processes at multiple scales (Schoch & Dethier, 

1996), seascape ecology has yet to be implemented in deeper water using acoustic 

bathymetric data. Habitat maps developed in a seascape ecology context also involve the 

consideration of spatial scale, as the spatial pattern metrics are dependent on the 

resolution and extent of the input data that influence the minimum mapping unit (MMU) 

(Saura, 2002; Fassnacht et al., 2006; Kendall et al., 2011). MMU is the size of the 

smallest area to be mapped as a discrete unit, and its selection determines the scale at 

which patches are defined in a seascape: as the MMU increases, rare and smaller features 

tend to not be considered by the analysis, which can lead to erroneous interpretation (see 

Kendall & Miller, 2008). 

Significant progress has been made in the understanding of benthic habitats in the 

last decade (see Todd & Greene, 2007; Harris & Baker, 2012b) despite the difficulties 

associated with their mapping, modelling, and management (Diaz et al., 2004). Much 

work remains to be done to gain an adequate understanding of these complex ecosystems 

at relevant scales. For instance, very little work has been done on infaunal benthos (see 

De Leo et al., 2014). Not only is most benthic diversity infaunal, but the rate of release of 

nutrients into the water column, a key benthic variable, is driven mostly by infaunal 

activity. Mapping benthic diversity to the species level is not possible in the absence of 

continuously mappable surrogates (see next subsection) for any one species. However, 

with sufficiently fine-scale data, it would be possible to map evidence of biogenic flux, 

such as castings or burrow diameters, through the sediment surface. For instance, acoustic 

reflectivity (backscatter) can capture fine-scale information of the sediment surface, 
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which can then be combined with in situ ground-truthing in a benthic modelling approach 

(e.g. Brown et al., 2011b; Freitas et al., 2011; Copeland et al., 2012). Another issue that 

constrains complete understanding of benthic ecosystems is the species-specific relation 

to habitat as a function of scale, which in turn complicates the study of species 

assemblages (Grober-Dunsmore et al., 2007; Howell et al., 2010, 2011; see also Brennan 

et al., 2002; Brown et al., 2011a). For example, Schneider et al. (1987) found that the 

scale-dependent association between population density and substrate differed between 

mobile and sedentary fauna. 

2.3.1.2 Surrogacy 

As in terrestrial ecology, the challenges associated with sampling marine organisms 

in relation to their environment has led to an increasing use of surrogates, also known as 

“proxies” (McArthur et al., 2009, 2010; Anderson et al., 2011). A surrogate can be 

defined as “a measurable entity that will represent, or substitute for, a more complex 

element of biodiversity that is more difficult to define or measure” (Harris & Baker, 

2012b, p. 899). Surrogates can be any measurable characteristic of the environment, 

sampled either in situ at specific locations (e.g. sediment pH), or provided as continuous 

or near-continuous coverage, such as bathymetry derivatives (e.g. seabed roughness or 

slope). Before mapping habitats, surrogate variables for a particular species first need to 

be identified, together with the strength of covariation in the study, and the establishment 

of a biological basis for the covariation. For instance, the selection of surrogates to be 

tested and the scale at which they should be tested may be based on knowledge gained 

from previous observations, experimental work or some evidence of causal connection 
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(Brennan et al., 2002). Surrogates may be relevant only at particular scales (Urban et al., 

1987; Gambi & Danovaro, 2006). For instance, Tong et al. (2013) found aspect (the 

geographic orientation of the slope) to be a good surrogate of the cold-water coral 

Paragorgia arborea’s presence over areas of 30 × 30 m and 90 × 90 m, but not at a 

broader scale. They linked this result to the presence of finer-scale bottom currents in the 

study area that bring food to the corals, which is not the case for broader-scale currents 

(Tong et al., 2013). Once defined, surrogates can be used to map habitats, predict or 

estimate species distribution, and build habitat suitability models (e.g. Lucieer et al., 

2013; Hill et al., 2014). The use of surrogates for these purposes cannot be trusted at 

spatial scales other than the scale at which the surrogate was defined. 

2.3.1.3 Species Distribution Modelling 

Combining georeferenced species occurrence data with environmental variables to 

develop habitat suitability and predictive distribution models is an important approach 

increasingly used in the marine environment (Heyman & Wright, 2011; Robinson et al., 

2011; Brown et al., 2012; Hill et al., 2014; Vierod et al., 2014), especially for protection 

and management purposes (Ross & Howell, 2013). These models build on existing 

knowledge of species-environment relationships, either directly or via surrogates, to 

predict the location and extent of potential habitat in areas where only environmental 

information is available (see Elith & Leathwick, 2009; Zimmermann et al., 2010 for 

general reviews; and Robinson et al., 2011 and Vierod et al., 2014 for specific reviews 

for the marine environment). The criteria (Brennan et al., 2002; Franklin, 2009) to 

consider in the selection of a model for a particular application are (1) species 
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characteristics, (2) data availability, (3) the observational and analysis scales, (4) stability 

in time (e.g. bathymetry compared to temperature), and (5) the biological and physical 

underpinnings (if any) of the model. As in terrestrial ecology, few marine studies address 

the issues of choosing an appropriate range of spatial scales at which to identify 

surrogates of species habitat or identify the appropriate scales at which to develop 

predictive models (Franklin, 2009). A coarser scale model may underrepresent the area of 

suitable habitat since the finer-scale habitat features that drive species distribution are not 

captured by the data (Seo et al., 2009; Vierod et al., 2014) (see also Figure 2.2). The scale 

(extent) of the study area also has a direct impact on the quality of the models 

(VanDerWal et al., 2009; Hijmans, 2012), and Meyer & Thuiller’s (2006) meta-analysis 

of species distribution modelling studies found that the use of environmental variables at 

more than one scale tends to give more accurate predictions. In the deep sea, the 

implementation of effective habitat suitability models is limited by the resolution and 

extent of environmental data (Vierod et al., 2014), and will only be possible if high-

resolution data become globally available (Davies et al., 2008). Some data may not be 

available for an area, or may be available at an inappropriate scale. Often, certain 

variables (e.g. temperature, bottom current speed) are only available at a coarser 

resolution than other variables (e.g. slope and rugosity, measured using acoustic remote 

sensing techniques). Down-scaling or improved spatial measurement of the former to a 

level in line with the latter is needed to free models from errors in cross-scaling and to put 

knowledge of species distribution relative to habitat on a sound basis. 
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2.3.2 Ecological Scale: Benthic Species and Their Environment 

2.3.2.1 Environmental and Biological Surrogates 

Several environmental variables were found useful in characterizing marine habitats, 

with differing degrees of importance depending on species (e.g. Freeman & Rogers, 

2003), locations (e.g. Georgian et al., 2014), settings (e.g. submarine canyons) (e.g. De 

Leo et al., 2014), and spatial scales (e.g. Gambi & Danovaro, 2006; Henry et al., 2013). 

This diversity in use of environmental variables highlights the difficulties in quantifying 

the distribution of benthic organisms in relation to habitat. Reviews of potential 

surrogates of marine benthic biodiversity can be found (e.g. McArthur et al., 2009; 

Howell, 2010; Harris & Baker, 2012b) but only McArthur et al. (2010) discuss the 

usefulness of surrogates in relation to spatial scale. 

In addition to physical and chemical factors, biological factors and ecological 

interactions likely explain the distribution of benthic organisms at different scales 

(Robinson et al., 2011). For example, reproduction strategies can influence species 

distribution, following spatial patterns in which organisms expect to disperse gametes 

over greater areas to reduce aggregation (Gage & Tyler, 1999). Ecological interactions 

can also be used as surrogates; if predation or commensalism is observed between 2 

species (e.g. between structure-forming species and fishes), the presence of one could 

predict the other (Ward et al., 1999; Tissot et al., 2006; Mumby et al., 2008; Baillon et 

al., 2012). Both intraspecific and interspecific interactions vary with scale on land (Wiens 

et al., 1986b; Sherry & Holmes, 1988) and in the ocean (Haury et al., 1978). Mellin et 

al.’s (2011) meta-analysis of the effectiveness of biological surrogates in marine studies 
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showed that biological surrogates tend to be more effective at finer spatial scales (i.e. 

smaller spatial extent). According to Leaper et al. (2012, p. 858), “the need for effective 

biological surrogates is especially critical in the marine realm, where a large number of 

species remain undescribed”. Yet biological surrogates are rarely used in habitat mapping 

as they are difficult to assess at meaningful (often fine) spatial scales (Muotka et al., 

1998; Mellin et al., 2011; Snickars et al., 2014). The addition of biological surrogates to 

species distribution models can potentially improve predictions (Austin, 2002; Robinson 

et al., 2011). 

2.3.2.2 Combined Environmental Influence and Multicollinearity 

Environmental variables identified as surrogates can act together to influence species 

distribution. For instance, the combination of topography and currents influences the 

levels of connectivity among populations for reproduction at different scales (Adams & 

Flieri, 2010; Rex & Etter, 2010). On seamounts, millimetre-scale colonization patterns 

are affected by coarser-scale flow patterns, however the motion of the fine-scale benthic 

boundary layer is also a determining factor (Gage & Tyler, 1999; Young, 2009). On 

continental slopes, rough seafloors interact with meso-scale currents to create complex 

circulation patterns that could potentially lead to the isolation of populations (Rex & 

Etter, 2010). Such relationships complicate data analysis because multicollinearity among 

variables occurs within and across scales (Rengstorf et al., 2012; Laffan et al., 2014). 

Multicollinearity occurs when 2 or more explanatory variables (e.g. water depth and 

temperature) are highly correlated (see Tabachnick & Fidell, 2013), obscuring the 

influence of each variable (Hengl & MacMillan, 2009; Tabachnick & Fidell, 2013). 
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Multicollinear explanatory variables are common in marine ecology but rarely considered 

in analyses (Wedding et al., 2011): multicollinearity should systematically be tested 

(Pittman et al., 2009). Statistical methods to address the problem can be found in 

Dormann et al. (2013) and Tabachnick & Fidell (2013). 

That explanatory variables covary raises a question: how many and which variables 

are necessary to best characterize a habitat? In the past, a single surrogate was often used, 

but it is now widely accepted that biogeographic patterns are best explained by a 

combination of multiple variables (Hagberg et al., 2003; McArthur et al., 2009). Too few 

covariates can result in an overly general habitat characterization (Barry & Elith, 2006; 

VanDerWal et al., 2009). The opposite, too many variables, can result in model over-

fitting (Peterson & Nakazawa, 2008). According to Peterson et al. (2011), the number of 

variables will depend on the studied species, the complexity of the habitat, the availability 

of data, and the observational and analysis scales. Mateo Sánchez et al. (2014) argue that 

it is as important to identify the relevant environmental factors as to identify the scales at 

which these drive species distributions. Selecting relevant variables and at relevant scales 

is essential to the quality of habitat maps and the performance of predictive models 

(Austin, 2002; Williams et al., 2012). The choices of variables and observational and 

analysis scales need to be based on their ecological relevance as these choices can impact 

the measurements of relationships between fauna and environmental variables (Araújo & 

Guisan, 2006; Synes & Osborne, 2011). Austin & Van Niel (2011) however report that 

assumptions made in the literature about the ecological relevance of variables vary among 
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publications, are sometimes inconsistent, and so need to be revisited with a consideration 

of spatial scale. 

2.3.3 Observational Scale: Representing Nature with Spatial Data 

2.3.3.1 Adequacy of Spatial Data 

When expressed as ecogeographical data (i.e. ecological variables with a geographic 

component), surrogates have a spatial dimension defined by their latitude, longitude, and 

depth (or altitude for terrestrial applications). A measure derived from these 3 spatial 

variables is geographical distance, an important predictor of fish species distributions in 

coral reefs (Pittman & Brown, 2011) and hard-bottom habitats (Dunn & Halpin, 2009). 

These spatial variables define the spatial scale (resolution and extent) of ecogeographical 

data and can themselves be used as surrogates (McArthur et al., 2009). For instance, 

small changes in depth can better explain changes in populations than larger changes in 

latitude and longitude (Rex & Etter, 2010). However, their ecological meaning is 

arguable (Pittman & Brown, 2011). Depth for instance may itself be a surrogate of a 

causal variable such as light or temperature. A strong relation between a biological 

variable and non-causal surrogate (e.g. depth) can therefore obscure the relation to an 

underlying causal variable (e.g. light or temperature), reducing the predictive power of 

important covarying environmental variables (e.g. Araújo & Williams, 2000; Clarke & 

Lidgard, 2000; Hothorn et al., 2011). 

All data are not equally good at capturing the relevant information. Figure 2.2 

illustrates this idea with the example of bathymetry: if one finds that only broad-scale 
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bathymetric features, such as a large seamount (dotted ellipses), drive species distribution, 

then finer-scale data are not needed. On the other hand, if intermediate-scale features (e.g. 

smaller pinnacles or banks; dashed ellipses in Figure 2.2) influence species biogeography, 

finer-scale data would be required. If the detailed topography (e.g. single boulder; solid 

ellipses in Figure 2.2) represent ecologically important habitats, even finer-scale data 

would then be essential to capture the important information. 

 

Figure 2.2: Seabed profiles (black lines) showing fine-scale (solid gray ellipses), intermediate-scale 

(dashed gray ellipses) and broad-scale (dotted gray ellipses) topographic features delineated using (A) 

finer-scale and (B) coarser-scale bathymetric data. By using only a coarse observational scale, 

information on potentially ecologically important finer-scale features is not captured. (Conceptual 

figure shows bathymetric profiles derived from the General Bathymetric Chart of the Oceans 

[GEBCO] dataset; www.gebco.net/). 

The role of spatial scale has never been formally assessed in marine habitat mapping, 

despite repeated calls for an improved scientific understanding of benthic habitats at finer 

scales to allow better prediction of the geographic distribution of benthic species (Etnoyer 

& Morgan, 2007; Davies et al., 2008; Davies & Guinotte, 2011; Rengstorf et al., 2013). 
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This lack of assessment makes it difficult to define which observational scales are “fine 

enough” and which ones represent the upper limit of usefulness (Wilson et al., 2007). In 

terrestrial environments, local biological interactions often complicate the observation of 

the relationships between species and abiotic variables; the opposite occurs at coarser 

scales (Levin, 1989; Sarkar et al., 2005), which makes fine-scale studies more appropriate 

to investigate details of biological mechanisms and broad-scale studies for generalizations 

(Wiens, 1989). Wiens (1989) suggested that these patterns were likely to be the same in 

the marine realm but Steele (1991) showed that biological and physical phenomena do 

not scale in the same way in the ocean as on land. Planktonic life stages, the ability of 

some pelagic larvae to remain in an undeveloped stage until they find a suitable location 

to settle, and ocean fluid dynamics allow broad-scale dispersal into fine-scale suitable 

environments, which is not comparable to the finer-scale dispersal of many terrestrial 

species (Gray, 1966; Carr et al., 2003; Kinlan & Gaines, 2003). In benthic habitat 

mapping, it is possible that an intermediate observational scale finer than the current 

coarse-scale studies (although not too fine) could provide more useful information (cf. 

dashed ellipses in Figure 2.2). For instance, Roberts et al. (2008) investigated 

communities at a local scale and concluded that intermediate-scale mapping might be 

useful to improve their results. 

2.3.3.2 Data Quality and Spatial Scale 

Several factors, including multicollinearity, autocorrelation (see “Adding geographic 

context: Spatial autocorrelation”), and spatial and thematic scales, can influence the 

accuracy of habitat maps (see Figure 4 in Wedding et al., 2011). Despite 
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recommendations to investigate and map variable uncertainty and error propagation when 

mapping habitats and species distribution (Rocchini et al., 2011; Beale & Lennon, 2012; 

Vierod et al., 2014), uncertainty and quality issues associated with spatial and non-spatial 

data are rarely addressed in habitat mapping (Lechner et al., 2012a). Spatial data quality 

directly impacts the reliability of habitat maps, predictive models, and statistical 

description of species-habitat relationships (Menke et al., 2009; Moudrý & Šímová, 

2012). Data quality is conceptually related to spatial scale (Zhang et al., 2014; Lecours & 

Devillers, 2015; Pogson & Smith, 2015). For instance, the finer the data resolution, the 

more that uncertainty and poor positional accuracy influence relationships between 

variables (Hanberry, 2013). Spatial matching between ecogeographical variables is 

particularly important: the positional error on biological data should always be smaller 

than the spatial resolution of the environmental data (Moudrý & Šímová, 2012; Lecours 

& Devillers, 2015) to avoid the emergence of false relationships between species and the 

environment, or the overestimation of a variable’s range of values associated with a 

species (Guisan & Thuiller, 2005; Guisan et al., 2007). 

In habitat mapping and predictive modelling, a trade-off between data quality (i.e. 

accuracy and precision), sample size, and spatial scale (i.e. resolution and extent) must be 

considered (Brennan et al., 2002; Lecours & Devillers, 2015). Despite attempts to address 

this challenge (e.g. Braunisch & Suchant, 2010), it is still unclear which characteristics 

should be given a higher priority in sampling strategy. Fine resolution data arguably 

yields better predictive models if the data quality is adequate, even if the sample size of 

biological data is smaller (Huston, 2002; Engler et al., 2004; Kaliontzopoulou et al., 
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2008; Reside et al., 2011; Williams et al., 2012), but this conclusion is not unanimous 

(Braunisch & Suchant, 2010). Some authors suggest using uncertainty to weight the 

variables in modelling and statistical analyses; information with less positional error can 

increase precision and thus improve models (Beale & Lennon, 2012; Moudrý & Šímová, 

2012). 

2.3.4 Analysis Scale: Influence on Analyzing Ecogeographical Data 

Statistical relationships depend on the scale of analysis and results can vary as a 

function of it (Greig-Smith, 1952; Rahbek & Graves, 2001; Dungan et al., 2002). An 

example is given in this sub-section using surrogate variables derived from bathymetry, 

which are among the most sensitive to the scale of analysis. Bathymetric data have 

proven their potential to advance understanding of seafloor ecosystems and their value for 

habitat mapping (Anderson et al., 2008; Brown et al., 2011a), and can be used in 

geomorphometry (i.e. terrain analysis) to quantify seafloor topography and complexity 

(Lecours et al., 2015). In the last decade, a range of terrain attributes (e.g. slope, 

curvature) were found to have a relationship to marine biodiversity (McArthur et al., 

2009), thus inducing an increase in the application of geomorphometric techniques in 

marine habitat mapping (e.g. Wedding et al., 2008; Zieger et al., 2009; Rengstorf et al., 

2012; Tong et al., 2013; Dolan & Lucieer, 2014). The relationship between spatial scale 

and terrain attributes has become an important research focus in geomorphometry (e.g. 

Florinsky & Kuryakova, 2000; Schmidt & Andrew, 2005; Deng et al., 2007; Li, 2008), 

but a good understanding of scaling methods is still missing from geomorphometric 

analysis (Drăgut et al., 2009). Terrain attributes vary with scale (Evans, 1972) and so 
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their computation does not result in only one true, real fixed value, but in a range of 

possible values that depend on the resolution of the data and the extent of the analysis 

window (Shary et al., 2002; Hengl, 2006). In the marine environment, coarse-scale 

geomorphometric analyses may not be adequate to resolve smaller features important for 

benthic biodiversity (Rengstorf et al., 2012; Lecours et al., 2013). The effects of the 

spatial resolution of bathymetry and terrain attributes on habitat suitability models are 

discussed in more detail by Rengstorf et al. (2012). Issues related to scale in 

geomorphometric analysis are similar to those in ecology and habitat mapping: it is 

widely accepted that a single scale (fixed resolution and window size) cannot completely 

describe a surface and capture all features of interest in an area (cf. Figure 2.2) 

(MacMillan & Shary, 2009; Goodchild, 2011). Yet many applications use a single scale, 

with an arbitrary choice of spatial resolution for the input surface and a single 

neighbourhood size (MacMillan & Shary, 2009). This limits analysis to those features 

that are observable at a single scale, which can have a significant impact on habitat maps 

and consequently on the resulting conclusions on species-habitat relationships. Similar 

scaling issues arise in the analysis of environmental data other than bathymetry. 

2.3.5 Multiscale and Multi-Design Approaches 

2.3.5.1 Multiple Scales and the MAUP 

It has long been argued that ecology and geography would benefit from the adoption 

of a multiscale perspective in research, applications, and management (e.g. Stone, 1972; 

Legendre & Demers, 1984; Wiens et al., 1986a; Addicott et al., 1987; Meentemeyer, 
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1989; Conroy & Noon, 1996; Brennan et al., 2002; Pittman & McAlpine, 2003). 

According to Wiens (1989, p. 394), “studies conducted at several scales or in which grain 

and extent are systematically varied independently of one another will provide a better 

resolution of domains, of patterns and their determinants, and of the interrelationships 

among scales.” The implementation of multiscale analysis is, however, challenging and 

thus remains sporadic (Wheatley & Johnson, 2009) due to various difficulties including 

objective choice of sampling scales, simultaneous sampling of multiple scales (Addicott 

et al., 1987; Brennan et al., 2002), and the modifiable areal unit problem (MAUP) 

(Gehlke & Biehl, 1934; Openshaw, 1984; Marceau, 1999), also known as change-of-

support (COS) in spatial statistics (Cressie, 1993; Cressie & Wikle, 2011). MAUP is 

defined by Harvey (2008, p. 284) as “the assumption that a relationship observed at one 

level of aggregation holds at another” and by Heywood et al. (2006, p. 416) as a 

“problem arising from the imposition of artificial units of spatial reporting on continuous 

geographic phenomena resulting in the generation of artificial spatial patterns.” 

Combining data from 2 observational scales (e.g. when developing a habitat map) is 

invalid due to MAUP, and results from 2 different analytic scales (e.g. results of the 

quantification of species-habitat relationships at different scales) are not comparable: the 

aggregation of information taking place across changing spatial resolution or extent 

modifies the statistical properties (e.g. means, variances, and covariances) of the data, 

possibly resulting in distorted relationships between variables. Thematic scales can be 

very sensitive to MAUP. MAUP is related to Goodchild’s (2011) concept of cross-scale 

inference, which occurs when inferences made at a coarser scale are transferred to a finer 
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scale. Cross-scale inference is directly related to the concepts of ecological and atomistic 

fallacies (Robinson, 1950; Cressie & Wikle, 2011; see Lloyd, 2014). The action of 

inferring across scales without checking for MAUP or cross-scale inference may lead to 

misinterpretation of results (Openshaw & Taylor, 1979; Meentemeyer, 1989) and 

unfounded conclusions. However, methods exist to deal with MAUP: Zhang et al. (2014, 

p. 147) elaborate on multivariate geostatistics “to facilitate multisource and multiscale 

data integration”, a relevant method for habitat mapping where data are often collected at 

different scales and with different sensors. 

2.3.5.2 Multiscale and Multi-Design Frameworks 

Wheatley & Johnson (2009) distinguish multiscale from multi-design sampling. The 

former is characterized by 2 elements: (1) the same environmental variables must be 

analyzed across scales and (2) there needs to be a change in only one of the 2 elements of 

spatial scale (i.e. resolution or extent). When both the spatial extent and resolution are 

changed, a study is multi-designed rather than multiscale (see Figure 2 in Wheatley & 

Johnson, 2009). Figure 2.3 illustrates the difference between the 2 approaches. In a 

number of studies, the term “multiscale” is inappropriately used to characterize the 

independent use of multiple scales, thus corresponding to a “multi-design” approach (e.g. 

Brennan et al., 2002; Anderson & Yoklavich, 2007; Georgian et al., 2014). The 

distinction is important as multi-designed studies cannot allow generalization and 

comparison of results between the different scales due to MAUP (Jelinski & Wu, 1996; 

Wu et al., 1997; Nelson, 2001; see Lechner et al., 2012b for MAUP in multiscale 
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studies). Despite potential errors of interpretation caused by MAUP, comparisons 

between scales are often performed in the literature without exploring its effects. 

 

Figure 2.3: (A) Multiscale and (B) multi-design continuum-based approaches. Both extent and 

resolution vary in a multi-design approach, while only one of these 2 scale characteristics is modified 

in a multiscale survey; each dotted line illustrates an example of how a single study could be framed. 

2.3.5.3 Studying Benthic Habitats at Multiple Scales 

Benthic habitat studies at multiple scales were first performed along transects (e.g. 

Schneider et al., 1987; Schneider & Haedrich, 1991). Extending knowledge gained from 

this type of study to 2-dimensional mapping is challenging in terms of logistics, data 

volume, and analytic complexity. Recent work has begun to meet these challenges by 

looking at the differences between local and regional settings, and showing the 

importance of observing and mapping seafloor habitats at more than one scale (Wilson et 

al., 2007; Davies et al., 2008; Wedding et al., 2008; Zieger et al., 2009; Tong et al., 

2013). In species distribution modelling, combining data from different scales has 
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improved model reliability and performance (Wu & Smeins, 2000; Store & Jokimäki, 

2003; Mateo Sánchez et al., 2014). 

Benthic habitat studies at multiple spatial scales have generated several insights. For 

instance, some variables (substrates, food supply) were found to best explain species 

distribution at relatively fine scales (Davies & Guinotte, 2011; Edinger et al., 2011). 

Conversely, other variables (e.g. productivity) were found to have a stronger influence at 

relatively coarse scales (Davies et al., 2008). Still other variables (e.g. depth) were found 

to be important at both finer and coarser scales. However, these conclusions are 

constrained by the observational and analysis scales used in these studies, which did not 

cover a broad continuum of spatial scales. For instance, fine-scale ocean chemistry could 

also be found to be locally important if studied within an appropriate range of fine scales. 

2.4 Adding Geographic Context by Considering the Spatial Nature of Data 

When mapping habitats, it is important to consider the spatial attributes of 

measurements. Beyond the questions of spatial scale, considering spatial properties of the 

data is vital in understanding ecological complexity in benthic habitats (Brown et al., 

2011a) and in supporting management decisions about these habitats (Katsanevakis et al., 

2011; Galparsoro et al., 2014). Spatial heterogeneity (spatial non-stationarity) and spatial 

autocorrelation (spatial dependence) are properties of most ecogeographical data: spatial 

heterogeneity refers to the level of variation of a property across space, i.e. if an observed 

variable varies locally or globally (Miller, 2012), while spatial autocorrelation (SAC) is 

“the correlation of a variable with itself” (Lloyd, 2014, p. 13) and quantifies the 

observation that spatially closer objects tend to be more similar than spatially distant 
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objects (Tobler, 1970). These 2 properties can strongly affect observed relationships and 

predictive models (Foody, 2004; Hothorn et al., 2011; Hijmans, 2012). Finley (2011) 

compared predictive statistical models that account for spatial heterogeneity and SAC to 

regular regression models. This comparison showed that models accounting for both 

properties performed better than non-spatial models or models accounting for SAC alone. 

Spatial heterogeneity and SAC are also strongly scale-dependent, varying with both 

resolution and extent (Meentemeyer, 1989; Legendre, 1993; Dutilleul & Legendre, 1993; 

Lloyd, 2014). Zhang et al. (2014, p. 67) stated that “the interactions between spatial 

dependence and spatial heterogeneity have been shown previously to alter local 

definitions of scales.” Consequently, standard statistics based on the assumptions of 

independent and identically distributed (IID) variables, while used in many ecological 

studies, should not be used if they violate these statistical assumptions (Meentemeyer & 

Box, 1987; Marceau & Hay, 1999; Brennan et al., 2002; Goodchild, 2004; Beale et al., 

2010; Windle et al., 2010). Demšar et al. (2013) identify the need to promote “spatially 

aware” statistical methods, and other authors advocate for “the need to move beyond 

potentially misleading global regression models which can obscure the space-varying 

nature of relationships between the outcome variable of interest and covariates” (Finley, 

2011, p. 149, based on Foody, 2004). Nevertheless, standard IID statistics are still often 

used (Austin, 2002; Brennan et al., 2002; Fortin et al., 2005). 

2.4.1 Spatial Autocorrelation 

While rarely considered in marine habitat mapping studies, SAC is a well-known 

scale-dependent phenomenon in geography and ecology (Legendre & Fortin, 1989; 
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Legendre, 1993) that should always be assessed before conducting spatial analysis 

(Dormann et al., 2007; Moudrý & Šímová, 2012; Laffan et al., 2014; Vierod et al., 2014). 

SAC can be present even when samples are collected using random sampling schemes 

(Lecours et al., 2013). Samples presenting SAC are not statistically independent, which 

can influence standard statistical tests (Moran, 1948; Cressie, 1993), introducing 

redundancy into the analyses, and often can induce cross-scale correlation among the 

variables (Battin & Lawler, 2006; Kristan, 2006; Rigby et al., 2010). In species 

distribution models, SAC of environmental covariates can increase the influence of 

positional uncertainty in species occurrence data (Moudrý & Šímová, 2012), and 

artificially increase the performance of models (Veloz, 2009; Hijmans, 2012). Segurado 

et al. (2006) demonstrated that SAC inflated the significance estimates of their species 

distribution models up to 90-fold. 

Several tools can be used to measure and handle SAC (see Zhang et al., 2014). The 

spatial scale at which SAC occurs needs to be identified to deal with SAC effects. 

Techniques to identify this scale include spectral analysis (e.g. Legendre & Demers, 

1984), study of the 3-term local quadrat variance metric (e.g. Boyce, 2006), and neutral 

landscape models (e.g. With & King, 1997). SAC has a strong potential to help resolve 

ecological complexities. Legendre (1993) indicates that it should be considered as one of 

the structural attributes of the landscape that needs to be understood, and not considered 

only as nuisance. SAC can be an indicator of spatial variability, and can be used to study 

patchiness as a function of scale across a landscape or seascape (Sokal & Oden, 1978; 

Sokal, 1979). The exploration of the structure of SAC in occurrence data can help 
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improve predictive models by presenting information on the dispersal potential of the 

organisms (Smith, 1994; Araújo & Williams, 2000; Keitt et al., 2002), even more when 

this is done at multiple scales (Václavík et al., 2012). De Oliveira et al. (2014) showed 

that accounting for SAC in environmental variables prevents over-fitting of models whilst 

improving accuracy. Despite its importance, Dormann (2007) found that less than 20% of 

species distribution modelling studies accounted for SAC, and most of them focused on 

trying to remove it, something that cannot be done (Mizon, 1995, see discussion in Fortin 

& Dale, 2009). According to Vierod et al. (2014), none of the species distribution 

modelling work performed in the deep sea has explicitly considered SAC (e.g. Ross & 

Howell, 2013). Failure to account for SAC can result in the selection of predictors with 

the greatest level of autocorrelation (Lennon 2000), the selection of broad-scale predictors 

over finer-scale ones (Diniz-Filho et al., 2003), and selection of models with too many 

predictors (Hoeting et al., 2006; Latimer et al., 2006). Beale et al. (2007) showed that 

precision tends to rapidly decrease when SAC increases when using standard non-spatial 

models. Dormann et al. (2007), Miller et al. (2007), Veloz (2009) and Miller (2012) 

review SAC in a context of species distribution modelling. 

The spatial structure of species distribution is influenced by the autocorrelation 

among environmental variables (exogenous autocorrelation) and by the autocorrelation 

among biological variables (endogenous autocorrelation) (Miller, 2012). Failing to 

consider SAC in the analysis and interpretation of data can lead to misinterpretation and 

incorrect conclusions about spatial structure and the variables that influence it (Lennon, 

2000; Keitt et al., 2002; Segurado et al., 2006). Incorporating SAC into modelling effort 
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allows additional knowledge to be gained from the analysis, allowing for habitat 

characterizations that are closer to reality (Hothorn et al., 2011; De Oliveira et al., 2014). 

Physical and biological processes can be used to generate testable hypotheses concerning 

change in SAC in benthic habitat structure and benthic fauna (Schneider & Haedrich, 

1991). Developments in geostatistical theory now allow prediction of changes in SAC 

and adaptation of standard statistics for use with spatial data, without violating any IID 

assumptions. These adaptations often result in better performance than standard statistics 

when compared on the same datasets (e.g. Brunsdon et al., 1996; Fotheringham et al., 

2002; Jombart et al., 2008). 

2.4.2 Using Spatial Statistics to Account for Spatial Heterogeneity 

The interpretation of species-environment relationships and predictive models can be 

influenced by the choice of statistics used to perform the analysis (Dormann et al., 2007; 

Finley, 2011). Most habitat mapping studies have relied on simple statistics to test 

species-environment relationships (e.g. Pearson’s correlation) before the application of 

multivariate statistics (Brown et al., 2011a). Multivariate techniques such as linear 

discriminant function (e.g. McLeod et al., 2007) or principal components analysis (PCA) 

(e.g. Anderson et al., 2011) allow the inclusion of correlation structure in models and are 

now more common. With these techniques, the independent variables correspond to the 

values of environmental covariates at certain point locations corresponding to species 

occurrences. Often, geographical effects are not considered when statistical analyses are 

performed on these points and their associated environmental values, and results are 

represented non-spatially in tables (e.g. Antunes et al., 2008; Preston, 2009). Other works 
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use raster-based statistical analyses where each pixel is considered a sample point (e.g. 

Maina et al., 2008; Verfaillie et al., 2009). However, despite the fact that pixels are 

georeferenced, the geographical effects are not taken into consideration in the 

calculations, but only in the representation of the output maps (Demšar et al., 2013). 

Current developments in statistical sciences extend traditional methods to include the 

spatial component. Locally and geographically weighted statistical methods that account 

for spatial heterogeneity are becoming increasingly common (Lloyd 2014), particularly in 

social sciences (e.g. Lloyd, 2010a, b), helped by the development of tools for 

implementation (e.g. the R package GWmodel) (Lu et al., 2014b). Rare examples of their 

use in marine ecology come from Windle et al. (2010, 2012), who demonstrated that the 

use of Geographically Weighted Regression (GWR) could improve the detection of 

interspecies relationships (cod and invertebrates) and species-environment relationships, 

with identification of the scale(s) at which these relationships were relatively strong. In 

addition to these methods that consider spatial effects, future developments in 

geostatistics will likely improve capacity to detect patterns of variations across spatial 

scales (see Atkinson & Tate, 2000; Zhang et al., 2014). For instance, Pardo-Igúzquiza & 

Dowd (2002) introduced a geostatistical technique (namely a factorial cokriging) to 

identify how cross-correlation between variables varies with scale. 
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2.5 Future Directions – Integrating Spatial Concepts in Habitat Mapping 

2.5.1 Past, Current and Future Trends in Benthic Habitat Mapping 

Studies of species-environment relationships often use a limited number of surrogates 

at either one scale or at multiple arbitrarily chosen scales (Lechner et al., 2012b). Studies 

of habitats at multiple scales tend to be multi-designed rather than multiscale. While such 

studies can contribute to our knowledge of marine ecosystems, they may produce results 

that are not comparable among scales and studies (e.g. because of MAUP) (Mayor et al., 

2009; Lechner et al., 2012b). Also, the lower and upper limits of “useful” scales at which 

to study benthic habitats are unknown: while there is a belief in the benthic habitat 

mapping community that finer-scale data will improve the understanding of benthic 

ecosystems, such an assumption is not necessarily correct as fine-scale data do not always 

reveal associations present at coarser spatial scales (Schneider et al., 1987). 

As highlighted in this review, a multiscale perspective needs to be adopted in benthic 

habitat mapping (Nash et al., 2014), using objective and non-arbitrary methods to select 

observational and analytic scales (Wiens, 1989; Lechner et al., 2012b). Data collection 

should be planned to characterize as much as possible of the physical, chemical, and 

biological environment, with emphasis on those variables relevant to the purpose of the 

survey. Over the past 10 years, bathymetric LiDAR, acoustic remote sensing, and 

underwater vehicles have revolutionized how the seafloor environment can be mapped 

and studied. There are, however, some fundamental technical limitations, such as the 

footprint size (the size of the area of seafloor surveyed at a particular moment), that will 

dictate the scale at which the data are available (Kenny et al., 2003; Diaz et al., 2004). 
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These considerations should be integrated in the scale assessment of given studies even 

though they are often neglected or ignored once the data enter the realm of geographic 

information systems (GIS) for analysis and map production (Brown et al., 2011a). 

The importance of identifying changes in spatial pattern on a continuum has long 

been recognized in physical and biological oceanography (e.g. Stommel, 1963; Steele, 

1978), and in ecology (Wiens, 1989; Levin, 1992; Brennan et al., 2002). In terrestrial 

ecology, Mayor et al. (2009) recommended using a spatial, continuum-based approach to 

identify the ranges of scales over which organisms associate with their habitat. Advances 

in spatial statistics (Cressie, 1993) put continuum-based analysis on a sound mathematical 

basis. A continuum-based approach, using coarse-graining, has been applied to benthic 

transect data (Schneider et al., 1987), but has yet to be implemented in 2-dimensional 

benthic habitat mapping due to the lack of available data covering a substantial range of 

scales. The computational power needed to analyze and store such data (Vierod et al., 

2014) further limits the application of such approach to quantify the strength of 

association with habitat as a function of scale. Hierarchical data models could eventually 

be used to map habitats at multiple scales and implemented in GIS environments so that 

one habitat map can be represented in different ways depending on the intended 

application or question. 

The idea of identifying the “best” or “right” scale to study habitat association and 

habitat selection has proven elusive. A logical candidate for “best” scale is that at which 

variance in either density or a habitat variable reaches a maximum. However, spectral 

analyses show no peaks in variance in physical and biological variables in either the 
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pelagic (Horne & Schneider, 1997) or benthic realms (Schneider et al., 1987). Similarly, 

peaks in the scale at which organisms are associated with habitat are another logical 

candidate for “best scale”. Peaks in covariance were not found for any epibenthic species 

in a study on the outer continental shelf of Newfoundland (Schneider et al., 1987) and 

have yet to be reported in subsequent studies. Competing with the idea of “right” scale, 

Wiens (1989) introduced the concept of scale domains, which he defined as ranges of 

continuous scales for which there is no change (or a constant change) in the observed 

pattern or process and separated by “chaotic” transitions (see Figure 4 in Wiens, 1989). 

He argued that these domains were key to understanding ecological systems and could 

define the limits of generalizations (i.e. the bounds within which it is possible to scale-up 

or scale-down). Scale domains, as defined graphically by Wiens (1989), have not yet been 

confirmed by empirical data. Graphic representations of patterns and processes as a 

function of resolution scale in a benthic context (Schneider et al., 1987; Schneider & 

Haedrich, 1991) show a variety of patterns, with no evidence of transitions as depicted by 

Wiens (1989). The term “scale domain” has however been used by other authors to 

characterize levels in hierarchical theory and modelling frameworks (e.g. Wu, 1999; 

Pearson & Dawson, 2003; Muñoz-Reinoso, 2009). The concept of “scale-dependent 

pattern and process” is arguably of more utility in habitat mapping than attempts to 

“detect the right scale” or identify “scale domains”. Scaling manoeuvres (Schneider, 

2001b), in either the distance domain (e.g. lagging) or frequency domain (e.g. coarse-

graining) are available for characterizing the association of benthic biota with habitat, and 

quantifying habitat association as a function of scale. Figure 2.4 illustrates how such 
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techniques can be implemented by quantifying the association between a species and 

several characteristics of its environment at multiple scales. 

 

Figure 2.4: Conceptual representation of the implementation of a continuum-based multiscale 

approach to explore scale-dependency of species-environment relationships. By sampling several 

environmental characteristics (z axis) at multiple spatial scales (x axis), it is possible to quantify the 

strength of association (y axis) between a species and its habitat as a function of scale (blue curves). 

The black horizontal line represents a given significance threshold. Note that if a coefficient of 

correlation was to be used to measure significance, there would be 2 significance thresholds: one for 

strongly positive correlations and one for strongly negative correlations. Curves are hypothetical and 

inspired by results from Horne & Schneider (1997) (pelagic species), and Schneider et al. (1987) and 

Kendall et al. (2011) (benthic and epibenthic species). 
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Because benthic habitats are being altered or destroyed at a faster pace than we 

discover and understand them (Ramirez-Llodra et al., 2011), it becomes urgent to make 

effective use of resources to map benthic habitats. Identifying useful surrogates will 

become possible as this field shifts from studies at multiple scales that only tell part of the 

story, to continuum-based multiscale approaches. When studying species-habitat 

relationships, it is as important to identify the scales at which environmental factors drive 

species distributions as to identify the relevant environmental factors (Williams et al., 

2012; Mateo Sánchez et al., 2014). Sampling should be planned with a full combination 

of efforts to survey as many characteristics of the environment as possible and at as many 

scales as possible. Because all species cannot be studied, species assemblages (e.g. 

Howell et al., 2010) or those species that interact strongly with other species (e.g. Buhl-

Mortensen et al., 2010; Baker et al., 2012), or that modify/create habitats (engineer 

species) (e.g. Howell et al., 2011), or that serve as umbrella species in a conservation 

context (Larsen & Rahbek, 2005), should be targeted. Techniques such as bivariate 

scaling (e.g. Mateo Sánchez et al., 2014), spectral analysis (e.g. Schneider et al., 1987), or 

scalewise variance (e.g. Detto & Muller-Landau, 2013) could then be used to identify the 

strength of association of a particular species with habitat variables at multiple scales. 

Muotka et al. (1998) demonstrated how geostatistics can be efficiently used to 

characterize the spatial associations between lotic fish and macroinvertebrate species and 

their habitat at multiple scales while avoiding MAUP effects. Geostatistics and spatial 

analysis also include methods to deal with the concept of fuzzy boundaries, which are 

characteristic of many habitats (Dale & Fortin, 2014). The problem is rarely 
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acknowledged in the practice of habitat mapping, which typically imposes sharp 

boundary delineation. 

Benthic ecosystem research often lacks sufficiently extensive datasets at several 

scales, particularly in the deep sea where sampling is limited and sporadic (Benn et al., 

2010). Current data acquisition techniques often cannot capture biological and 

environmental patterns and processes at a fine resolution over extensive areas (Wilson et 

al., 2007; Huang et al., 2012), resulting in the need to identify tools to fill the gap. 

Ongoing improvements in bathymetric LiDAR and multibeam echosounders data analysis 

are generating some of the most extensive and accurate seafloor data available (Costa et 

al., 2009; Schimel et al., 2010). Development of remotely operated vehicles (ROV) and 

autonomous underwater vehicles (AUV) has increased both the range and extent of 

seafloor data (Wright, 1999; Heyman & Wright, 2011) at ever decreasing costs per 

megabyte. ROV-and AUV-mounted sensors have the capacity to sample the chemical, 

physical, and biological environment at fine spatial scales. These new technologies allow 

biological, geological, chemical, and physical observations to be situated in an accurate 

multiscale and geospatial context, allowing identification of surrogate variables (e.g. 

Costa et al., 2014; see Van Rein et al., 2009). Metadata are essential to improve the use of 

geospatial data and to build what Devillers et al. (2007) call a “quality-aware” 

community: all collected datasets will need to be associated with complete metadata files 

reporting scale information, error and uncertainty quantification, the species or 

environmental variables that were targeted, the other species that were observed, and 

other information relevant to further use of the datasets. 
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Technological developments will continue to drive progress in benthic habitat 

mapping. Of interest are developments in automatic species detection and analysis on 

video data (e.g. Purser et al., 2009; Lüdtke et al., 2012; Seiler et al., 2012; Tanner et al., 

2015), in methods for generating photomosaics of the seafloor for accurate 

georeferencing (e.g. Prados et al., 2012; Kwasnitschka et al., 2013; Marsh et al., 2013), in 

spatial statistics (e.g. Harris et al., 2011; Lu et al., 2014a,b), in computationally fast 

algorithms capable of processing high-dimensional datasets (e.g. Mumby, 2006; 

Filzmoser et al., 2008; Bermejo et al., 2011; Oyana et al., 2012), in species distribution 

models that consider spatial autocorrelation, non-stationarity, and scale (e.g. Miller & 

Hanham, 2011; Robinson et al., 2011; Beale et al., 2014; Vierod et al., 2014), and in 

geomorphometry (Gessler et al., 2009; Guth, 2013). Analyses at multiple scales with 

many datasets require substantial computational time and effort, and tools that can iterate 

analyses at multiple scales will become necessary. Surveying multiple characteristics of 

an area at multiple scales generates immense amounts of data. As in satellite remote 

sensing (Turner et al., 2015), adequate software and institutional arrangements are needed 

to realize the potential for these data to be used for purposes other than habitat mapping, 

to become a valued repository (Borja, 2014), and to notify stakeholders of their existence. 

This resource-sharing philosophy is important to implement (Turner et al., 2015) if 

marine scientists are to make effective use of the data and to understand benthic 

ecosystems before they become substantially altered (Vierod et al., 2014). In some cases, 

data have been stored for decades waiting for the development of appropriate analytical 

tools (Knobles et al., 2008). Conversely some researchers might have developed tools 
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applicable to more than their own application, but lack the platform to share these tools 

with the relevant communities. 

2.5.2 Improving Standards for Defining Benthic Habitats 

In the previous sections we review the ways that scale and the spatial nature of data 

influence the way we perceive, measure, analyze, and interpret the environment and 

species-habitat relationships in benthic habitats. We found that information on scale is not 

always clearly reported in published works, that a quantitative understanding of habitats 

and scale is needed, and that results depend on the geographic context of habitat mapping. 

We thus propose a better standard for defining benthic habitat, one that builds upon the 

habitat definition of Harris & Baker (2012a). With these standards benthic habitats can be 

defined as “areas of seabed that are (geo)statistically significantly different from their 

surroundings in terms of physical, chemical and biological characteristics, when observed 

at particular spatial and temporal scales”. This revised definition of benthic habitat 

addresses some of the critiques discussed in the previous sections. First, it addresses the 

growing realization that habitats must be quantitatively delineated and that what 

constitutes the description of a habitat is dictated by the scale of the techniques employed 

(Diaz et al., 2004). Then, it addresses the argument for considering the chemical 

environment in the characterization of benthic habitats (Kostylev et al., 2001; Brown et 

al., 2011a). Finally, it addresses the case made by Cogan & Noji (2007) that habitats be 

placed in context with the appropriate spatial, temporal and thematic scales when being 

mapped. The reference to geostatistics encompasses the consideration of the spatial nature 

of data and the concepts of fuzzy boundary delineation, while the biological 
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characteristics relate to thematic scale and allow the study of species assemblages as 

much as individual species, and the mention of spatial and temporal scales makes habitats 

explicit about scale. Being explicit about temporal scale is important when studying 

migratory species that do not inhabit the same space through time. 

2.5.3 Recommendations 

The previous section on trends in benthic habitat mapping highlighted some of the 

main issues currently encountered in benthic habitat mapping, proposed some solutions 

and gave an insight on what the future developments might bring to the field. Based on 

this discussion, it is possible to identify 3 elements in the habitat mapping process that 

can be improved: project planning and data collection, data analysis and interpretation, 

and communication/dissemination of research results and data. Project planning and data 

collection can be improved from a biological, environmental and/or approach point of 

view. For the biology, we recommend focusing on the study of ecosystem engineer or 

umbrella species that would indirectly allow collecting data on other species. For the 

environment, we recommend sampling as many environmental variables as possible to 

aim for a comprehensive understanding of the environment and its dynamics. In terms of 

approach, we recommend adopting continuum-based multiscale methods, which involves 

sampling the environment over an extensive range of spatial scales. To improve data 

analysis and interpretation, we recommend using spatial statistical analyses that consider 

spatial heterogeneity and autocorrelation of data, rather than standard statistics based on 

the assumptions of IID, to establish results on a sound inferential basis. We also suggest 

always quantifying errors and spatial uncertainty. Finally, to improve communication and 
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dissemination of research and data, we recommend making available metadata in which 

the results from the quantification of errors would be reported together with the spatial 

scales at which the data was collected (observation scale), at which the research was 

intended to be conducted (ecological scale), and at which the analysis was performed 

(analysis scale). In terms of dissemination, we suggest developing and automating tools 

(e.g. GIS, statistical, ecological) for processing or analyzing data and make them 

available, together with datasets and complete metadata, to maximize research and 

application potential. 

2.6 Conclusions 

Organisms inhabit a space that suits their needs. Understanding what controls benthic 

species distribution requires understanding the physico-chemical properties and dynamics 

within the water column, and at the seafloor interface (Clark et al., 2012; Vierod et al., 

2014). The structure and spatial arrangement of habitats constrain, and can potentially 

become predictors of, species distribution, abundance, and richness. The cost and 

difficulties associated with sampling the marine environment highlight the need for better 

predictions of species distributions and improvement in sampling strategies. This will 

become possible with a better understanding of ecological patterns and processes as a 

function of scale, and should bring an overall improvement to benthic research efficiency. 

Using appropriate surrogates at appropriate scales is likely to be more effective than the 

use of opportunistic or arbitrarily chosen variables and scales. Generating habitat maps is 

a complex process that requires multidisciplinary efforts (Heyman & Wright, 2011). 

Technological advances will help marine scientists address the current challenges of their 
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field and develop new approaches to understand and so protect benthic habitat structure 

and function (Ramirez-Llodra et al., 2011). Geospatial data and techniques from 

geomatics and geostatistics show potential to tackle core issues in spatial ecology 

(Skidmore et al., 2011; Laffan et al., 2012) and in the marine sciences (Wright & 

Goodchild, 1997; Heyman & Wright 2011). 

The need for fundamental ecological and conservation theory, including explicit 

treatment of spatial scale has been noted repeatedly (e.g. Guisan & Thuiller, 2005; Levin 

& Dayton, 2009). Spatial scale is central to understanding habitat use, to selecting a 

sampling method, and to statistical analysis. Despite being recognized as a central issue, 

scales are often arbitrarily chosen, and studies regularly fail to report the scale(s) 

investigated and how the results depend on spatial scale. As stated by Dungan et al. 

(2002, p. 632): “If ecologists are explicit about all of the components and dimensions of 

scale so that the spatial characteristics of the quantities measured can be correctly 

interpreted, there will be new opportunities to gain experience and improve understanding 

of the effects of observations and analysis scale changes.” Evidence-based scaling 

functions, which link pattern to process as a function of scale, are needed to identify 

reliable surrogates of species distribution, to scale-up and scale-down relevant 

information, and for improved quantitative understanding of benthic habitats. 

Based on this review, we provide 8 recommendations that could lead to more 

efficient practices in benthic habitat mapping: (1) umbrella species’ habitats should be 

prioritized for mapping and prediction; (2) sampling should be conducted to obtain data 

covering an extensive range of spatial scales and as many environmental variables as 
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possible; (3) continuum-based habitat characterization approaches should be adopted; (4) 

statistical methods that consider the spatial nature of data should systematically be used; 

(5) errors and spatial uncertainty should be quantified at every step of habitat mapping 

(i.e. data collection, surrogacy testing, predictive modelling); (6) existing tools should be 

automated and new tools (e.g. GIS, statistical, ecological) should be developed for 

processing data and defining surrogates of species distribution and habitat at multiple 

scales; (7) data, complete metadata, and tools should be made available to maximize 

research and applications potential; and (8) the spatial extent and resolution (scale) at 

which the research was intended to be conducted, at which the data was collected, and at 

which predictive or monitoring aims were directed should always be clearly reported. We 

further recommend that benthic habitat be defined to the following standards: (1) explicit 

statement of observational scale (i.e. spatial resolution and extent); (2) inclusion of 

chemical variables along with physical and biological variables; and (3) placement in 

context with the appropriate spatial, temporal and thematic scales when being mapped. 
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3. Towards a Framework for Terrain Attribute Selection in 

Environmental Studies 

3.1 Introduction 

Combining georeferenced species data with environmental datasets has become 

common practice in environmental studies both in the terrestrial (Elith & Leathwick, 

2009) and marine realms (Brown et al., 2011). Exploring species-environment 

relationships is important for habitat mapping, biogeographical classification, 

conservation, and management (Harris & Baker, 2012). Research in these fields has been 

fueled by progresses in remote sensing and Geographic Information Systems (GIS), along 

with the increase in data availability and computing power (Wiersma et al., 2011; Vierod 

et al., 2014). In parallel, these elements have motivated the development of 

geomorphometry (Bishop et al., 2012; Zhou & Zhu, 2013), the field that helps 

quantitatively describe digital terrain models (DTM) using terrain attributes such as slope, 

orientation or rugosity (Pike, 1995). Terrain attributes have been found to be linked with 

the distribution of many terrestrial and marine species in different types of environments 

(e.g. forests, agroecosystems, deep-sea, continental shelf) and are now routinely 

integrated in environmental studies (Bouchet et al., 2015). Other environmental 

disciplines that make use of terrain attributes include hydrology, soil mapping, vegetation 

mapping, geomorphology, meteorology and agriculture (Florinsky et al., 2002; Lacroix et 

al., 2002; Schwanghart & Heckmann, 2012; Hengl & Reuter, 2009). 
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Led by the increasing availability of different types of intuitive GIS tools that 

“automatically” derive terrain attributes from DTMs (Bishop et al., 2012; e.g. Klingseisen 

et al., 2008; Han et al., 2012; Rigol-Sanchez et al., 2015) - either digital elevation (DEM) 

or bathymetric (DBM) models - ecologists and other GIS users often select a small subset 

of terrain attributes to perform their analyses. Non-expert GIS users do not always 

understand the underpinnings of the numerous options available (Bishop & Shroder, 

2004; Bouchet et al., 2015), and a lack of guidance can lead them to select an arbitrary 

and sub-optimal set of terrain attributes. Such selections are often based on the 

availability and simplicity of the GIS tools rather than on statistical grounds or ecological, 

biological, or geomorphological relevance. An inappropriate selection of terrain attributes 

can however produce results that do not accurately represent the observed phenomenon, 

fail to capture the key properties of the terrain relevant to the question or problem, and 

influence subsequent analysis (e.g. species-environment relationship measurements).  

A same terrain attribute derived using different algorithms can also produce 

significantly different outcomes. For instance, Dolan & Lucieer (2014) demonstrated that 

five different slope algorithms derived from DBMs resulted in different slope surfaces, 

confirming previous work performed on DEMs (Jones, 1998a) and artificial surfaces 

(Jones, 1998b). Since the algorithms used by GIS tools are not always made explicit 

within the software, users are often left with little choice on which one to use and 

sometimes are not free to decide the details of particular parameters such as the 

neighbourhood size. These elements, combined with the lack of explicit statements in the 

ecological literature of algorithms and parameters used for deriving terrain attributes 
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(Dolan & Lucieer, 2014), may lead to misleading and incorrect comparisons of results 

from different studies. To add to the confusion, geomorphometry is a field recognized for 

its ambiguous terminology (Bishop et al., 2012), where terrain attributes measuring a 

same terrain characteristic can be named differently depending on the source or software. 

Finally, a poor selection of terrain attributes may cause covariation between 

variables. Being all derivatives of the same DTM, terrain attributes are likely to covary 

and induce redundancy in the analysis (Pittman et al. 2009), violating the basic 

assumptions of many statistical analysis methods used. For instance, Rooper & 

Zimmermann (2007) calculated a correlation of 0.90 between their measures of slope and 

rugosity. Assessing covariation between variables is however rarely performed (Graham, 

2003), despite being recognized to obscure the influence of individual drivers on a 

response variable, and to impact statistical models, species distribution models and 

regression analyses (Hijmans, 2012; Dormann et al., 2013).  

Selecting a suitable set of independent variables, including terrain attributes, is 

essential to ensure robust analyses and increase reliability of results in environmental 

studies (King & Jackson, 1999). A theoretical and operational framework to 

geomorphometric analysis is still to be defined (Pike, 1995), and “the use of quantitative 

geomorphological knowledge must be revisited in an analytical framework” (Bishop et 

al., 2012, p.6). This paper bridges geomorphometry and environmental studies by 

proposing an operational framework that addresses the common issue of terrain attribute 

selection in environmental applications like ecology. It aims to identify combinations of 

available terrain attributes that minimize covariation between attributes and optimize the 
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information given on the characteristics of a terrain. The specific objectives are to 1) 

explore existing GIS software to compute available terrain attributes, 2) identify groups 

of terrain attributes that represent unique morphological terrain characteristics, 3) and 

explore the relationship between the importance of these groups and terrain complexity. 

3.2 Materials and Methods 

A summary of the methods is presented in Figure 3.1. First, DTMs were generated 

from which terrain attributes were derived. Then, three iterative statistical methods were 

used to explore independence and both linear and non-linear relationships amongst terrain 

attributes: Principal Component Analysis (PCA), Variable Inflation Factor (VIF), and 

Mutual Information (MI). Because of the intricacy of the methods used in this study, 

more details on how and why they were used are provided in Appendix A to allow 

potential replication and generalization. 
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Figure 3.1: Conceptual model of the analysis performed on each artificial surface.  
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3.2.1 Surfaces and Terrain Attributes 

3.2.1.1 Artificial Surfaces 

Artificial surfaces have proven to be valuable tools in ecology (With & King, 1997) 

and geomorphometry (Jones, 1998b). Since terrain attributes are sensitive to DTM errors 

and uncertainty (Raaflaub & Collins, 2006; Kinsey-Henderson & Wilkinson, 2013), 

artificial surfaces provide a controlled environment in which to test hypotheses (Halley et 

al., 2004). Nine artificial surfaces of 106 m x 106 m, with a 1 m spatial resolution, and 

presenting different complexity levels were created using spectral synthesis in LandSerf 

2.3 (step 1A in Figure 3.1; Figure 3.2). The spectral synthesis technique, developed by 

Peitgen & Saupe (1988), is one of the methods that provide the most realistic artificial 

landscapes (Chipperfield et al., 2011). It generates surfaces so that their correlative 

characteristics, which are studied in this paper, are present at all spatial scales (Keitt, 

2000). LandSerf requires a user-specified fractal dimension to create surfaces. Fractal 

dimension expresses and encodes the degree of complexity of objects (Dimri, 2005) and 

is a “useful simple summary of roughness distribution” that can be used to compare DTM 

characteristics (Lloyd, 2014, p.152). Fractal dimension was chosen to differentiate 

surfaces because of its scale-invariance properties (Pfeifer, 1984). These properties and 

the preservation of the correlative characteristics of the surfaces make results from this 

study generalizable to other surfaces with the same fractal dimension at different scales 

(see Appendix A). The fractal dimension of the computed surfaces ranges from 2.06 to 

2.79 (Figure 3.2), covering most complexity levels found in real terrain (2.20 to 2.60, 
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Hofierka et al. (2009)) and other natural elements (2.28 to 2.61 in coral reefs, Zawada & 

Brock (2009)). 

 

Figure 3.2: Artificial surfaces computed and analyzed in this study, from least complex (A0) to most 

complex (A8). 
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3.2.1.2 Terrain Attributes and GIS Tools 

For each of the nine surfaces, 230 terrain attribute surfaces were derived (step 1B in 

Figure 3.1; Appendix B) using 11 different commercial and open-source software (Table 

3.1). A 3 x 3 analysis window was used as several software packages use this as default 

and do not allow modifying it. As commonly performed in ecology, measures of aspect 

(orientation) were transformed into northerness and easterness to remove circularity in the 

data (Olaya, 2009). To eliminate edge contamination, the outer 3 m were removed from 

all resulting attribute surfaces, reducing the extent to 100 m x 100 m surfaces. 

Table 3.1: List of software used, number of terrain attributes that were computed using each of them, 

and percentage of these terrain attributes that reached the final PCA solution for each surface. 

 

3.2.1.3 Preparation of the Data 

To identify terrain attributes computed using the same algorithm, each attribute was 

tested against the others to detect pairs giving identical results (step 2A, Figure 3.1). For 

each set of duplicates, only one of the two attributes was kept for further analysis to 

A0 A1 A2 A3 A4 A5 A6 A7 A8

ArcGIS 10.2.2 with Python 2.7.8 22 86 91 82 77 73 77 77 82 82

ArcGIS 10.2.2 with DEM Surface 

Tools (v.2.1.399)
17 82 76 76 76 71 65 65 71 65

ArcGIS 10.2.2 with Benthic Terrain 

Modeler 3.0 rc3
12 83 92 83 83 83 83 83 83 67

Diva-GIS 7.5.0 7 86 86 100 100 100 100 100 100 100

Idrisi Selva 17.0 7 86 86 71 71 86 86 86 86 86

Landserf 2.3 12 75 58 58 58 58 50 50 42 42

Quantum GIS 2.4.0 Chugiak 13 100 100 100 100 100 100 100 100 85

SAGA GIS 2.0.8 96 76 74 80 80 78 58 71 68 66

TNTmips Free 2014 (MicroImages) 25 100 100 80 84 96 56 92 84 80

uDig 1.4.0b 9 89 100 78 67 78 78 78 56 56

Whitebox GAT 3.2.1 Iguazu 10 90 90 100 90 90 70 80 80 70

Total Number of Attributes: 230 83 83 81 80 81 67 77 74 70

Software and Versions
Number of Attributes 

Computed

Percentage of Terrain Attributes in the Final Solution
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account for each algorithm only once. To keep the analysis objective in terms of software 

used, the attributes removed were added back before interpreting the results, assuming 

that their behaviour through the analyses would have been the same as their duplicate. 

Cardinality (i.e. the number of different values for a variable) was assessed for each 

terrain attribute (step 2B, Figure 3.1). Terrain attributes with low cardinality were 

identified and not used as input in PCA analyses (Section 2.2): such variables are known 

to complicate PCA solution as they account for only a negligible amount of the total 

variance (Tabachnick & Fidell, 2014). They were however carried over to the VIF and MI 

analyses (Section 3.2.3 below). 

3.2.2 Principal Component Analysis 

The first statistical analysis performed on the datasets of terrain attributes for each 

surface was an iterative PCA (step 3, Figure 3.1). PCA was chosen to address the second 

objective as it helps removing collinearity and redundancy, and regrouping variables into 

uncorrelated groups of correlated variables (i.e. components) while minimizing 

information loss (Tabachnick & Fidell, 2014). PCA is often used in ecology to explore 

patterns in large multidimensional datasets as it can handle variable dependency where 

other multivariate techniques cannot (King & Jackson, 1999; McGarigal et al., 2000). 

PCA were performed using IBM SPSS Statistics software v.22, correlation matrices with 

standardized data, and a Varimax orthogonal rotation with Kaiser Normalization (Kaiser, 

1958) (step 3B in Figure 3.1; Appendix A). The orthogonal rotation of the solution allows 

for a “theoretically more meaningful” component structure that is easier to interpret 
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(McGarigal et al., 2000, p.59), and the Varimax method is the most widely used and often 

performs better than others (Bhattacharyya, 1981; Henson & Roberts, 2006). 

3.2.2.1 Identifying the Optimal Number of Components 

An over-extraction or under-extraction of components in ecological studies can lead 

to inferential issues (Franklin et al., 1995; Wood et al., 1996) (Appendix A). Several 

methods exist to estimate the appropriate number of PCA components to use (Zwick & 

Velicer, 1986). Since these methods are known to often give different results (Zwick & 

Velicer, 1986; O’Connor, 2000), Thompson & Daniel (1996, p.200) state that it is 

“appropriate and often desirable” to simultaneously use multiple methods. Using 

O’Connor’s (2000) SPSS programs, four methods were combined to determine the 

statistically optimal number of components to retain (step 3A, Figure 3.1): Minimum 

Average Partial Correlation (MAP) (Velicer, 1976), Parallel Analysis (PA) (Horn, 1965), 

and modifications of MAP and PA respectively proposed by Velicer et al. (2000) and 

O’Connor (2015). The mode of the four results was chosen as the appropriate number of 

components to retain. Since this number depends on the number of PCA input variables, 

this step was performed before each PCA computation. 

3.2.2.2 Complexity of Variables 

Our third objective required comparing components from different solutions, which 

is only possible if solutions reach a simple structure. A simple structure has an invariance 

property (Kaiser, 1958) that allows generalization (Rummel, 1970). When a simple 

structure is reached, PCA solutions from different computations will always find the same 
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components regardless of the insertion of other variables in the dataset (Rummel, 1970). 

A simple structure is deemed to be reached when most components have “marker” 

variables, i.e. those that load strongly on only one component. Variables that load 

strongly on more than one component are called “complex” variables. They are 

redundant, do not contribute to the model, and have to be removed for the solution to 

reach a simple structure (Tabachnick & Fidell, 2014). After removing complex variables 

(step 3C, Figure 3.1), steps 3A and 3B were performed again, and more terrain attributes 

were removed if new complex variables appeared. Iterations stopped once the PCA 

ceased to isolate complex variables. 

3.2.2.3 Towards a Final Solution 

After removing complex variables, the previously obtained optimal number of 

components may need to be adjusted. If the last component had no or only one marker 

variable loading on it, the PCA was re-run with one less component (step 3D, Figure 3.1). 

Once there were no more complex variable and no more components with less than two 

variables, the solutions had reached a simple structure and were ready for validation. 

3.2.2.4 Validation 

Components’ internal consistency was assessed in SPSS using Cronbach’s α 

coefficient of reliability (Cronbach, 1951) (step 4A, Figure 3.1; Appendix A). Unreliable 

components (α index below 0.6) were made reliable when possible (i.e. if unreliability 

was caused by a single variable, Appendix A) by removing the variable, and PCA was re-
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run (steps 4B and 4C, Figure 3.1). When unreliable components could not be made 

reliable, they were not considered in the interpretation of results.  

Components with less than three variables are considered weak and unstable 

(Costello & Osborne, 2005) and do not meet the criteria of replicability (Gorsuch, 1983). 

Variables in these components have a higher probability to be grouped by chance 

(Gorsuch, 1983). Components demonstrating this characteristic were thus not carried over 

to the interpretation (step 4D). 

3.2.2.5 Comparisons 

In step 5A (Figure 3.1), a quantitative comparison of the general configuration of the 

solutions (i.e. one per surface) was performed using two measures that together represent 

a “geometrically important and meaningful” way of comparing components (Rummel, 

1970, p.462): a similarity coefficient (SC) (Harman, 1967) and a coefficient of 

congruence (CC) (Tucker, 1951) (see Appendix A). These coefficients measure different 

underlying characteristics of the PCA solution. SC quantifies similarity of components in 

terms of magnitude and direction of the components, while CC looks at pattern and 

magnitude of the components through the shared variance of the components (Cattell, 

1978). 

3.2.2.6 Interpretation 

Rummel (1970) identified five elements to look at when interpreting and comparing 

PCA solutions: number of components, variance, complexity, communality, and 

configuration. The number of components is an indication of the convergence level of the 
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dataset to a certain dimensionality. The variance indicates the relative importance of each 

component and helps investigate if a component’s importance is specific to a particular 

surface or is generalizable (Gorsuch, 1983). Communality is a measure of the variance of 

a variable that is accounted for by the sum of the components. It can help identifying 

which variables are unique: if the communality of a particular variable is very low, this 

variable does not match very well the solution and needs to be further explored (see 

Section 3.2.3). The configuration corresponds to the pattern and magnitude of loadings of 

variables on a solution. Finally, the complexity represents the behaviour of a variable, i.e. 

if it shifts from a component to another in a different solution. The PCA results are 

presented below and interpreted according to these five elements. 

3.2.3 Covariation assessment: variable inflation factor and mutual information 

Two drawbacks of PCA are that it does not account for non-linear relationships and 

that if a variable does not covary with any others (potentially being unique), it will not 

load on any component. To address these issues, two independent stepwise measures of 

covariation were computed in the statistical software R v. 3.1.1: the Variable Inflation 

Factor (VIF) and Mutual Information (MI) (step 5B in Figure 3.1; Appendix A). The VIF 

is one of the most commonly used methods to detect covariation due to its simplicity 

(Belsey et al., 2004) and is recommended over other methods by Dormann et al. (2013) to 

assess covariation in datasets. MI is a measure of co-expression widely used in 

information theory that has the capacity of detecting non-linear relationships and is often 

used to generalize the correlation structure of a dataset through a Mutual Information 

Matrix (MIM) (Steuer et al., 2002; Song et al., 2012). For each measure, the variables 
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were ranked from least covarying to most covarying and an average of the two rankings 

was made (Appendix A). This average ranking was used to confirm PCA results and 

explore the uniqueness of the variables that did not load on any component, had a very 

low amount of variance accounted for by the sum of the components (i.e. low 

communality), or were not considered in the PCA because of their low cardinality. 

3.3 Results 

3.3.1 Terrain Attributes and Software 

Of the 230 computed terrain attributes, 48 were found to be identical to another one 

and were removed from further analysis (Appendix B). Eight other terrain attributes were 

not considered for the PCA analyses because of their low cardinality (Appendix C). 

SAGA GIS offered the most terrain attributes (n=96), while Diva-GIS and Idrisi Selva 

offered the least (n=7) (Table 3.1). However, more terrain attributes computed from a 

software package did not necessarily result in more of them being useful in describing 

surface variability. For instance, the 13 attributes computed using Quantum GIS were all 

found in the final PCA solutions of the eight least complex surfaces (A0 to A7). LandSerf 

was the software that had the lowest percentage of terrain attributes reaching the final 

solutions, with an average of 55% (Appendix C). 
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3.3.2 Principal Component Analysis 

3.3.2.1 Number of Components, Variance and Communality 

A general pattern did not emerge from the number of components extracted with 

regards to surface complexity (Appendix C). A slight decreasing trend of total variance 

accounted for could be observed with increasing surface complexity (Appendix C). The 

solution corresponding to the lowest complexity surface accounted for 91.67% of the 

topographic structure, while the solution of the highest complexity surface accounted for 

86.56%. A minimum was reached with surface A6 (85.35%). The average percentage of 

variance was 88.91%. When only considering reliable components, the percentage of 

variance ranged from 80.88% (A7) to 87.37% (A0), with an average of 84.34%.  

Information on the communalities of each variable for each PCA solution can be 

found in Appendix C. 72% of the terrain attributes showed a negative trend where 

communality decreased with increasing surface complexity, which is also shown by the 

decreasing proportion of high communality terrain attributes as complexity increases 

(Appendix C). Over 90% of the variables of the least complex surfaces (A0 to A3) have 

high communalities. Surfaces A4 and A8 have the highest percentage of variables with 

low communalities, with 2.7% and 2.4% respectively. 

3.3.2.2 Configuration 

Several terrain attributes were found to be consistently grouped on the same 

components across solutions. These groups are presented in Figure 3.3 and their category, 

or interpretation, was based on the variables with the highest loadings in each of them 



109 

 

 

(McGarigal et al., 2000). The locations of these groups on the different solutions are 

represented in the configuration summary presented in Figure 3.4. 

A visual interpretation of Figure 3.4 allows identifying the groups that loaded on the 

same component for more than one surface, thus indicating similarity between the 

solutions. This similarity was confirmed quantitatively by the SC and CC values, 

measured on reliable components of consecutive solutions: the pairs of solutions A0-A1, 

A2-A3, A4-A5, and A5-A6 are all considered identical, with a one to one match of their 

components. Three other pairs of solutions were considered very similar, with only one 

inversion in components: A1 and A2 are the same except for the inversion of the second 

and fifth components, A6 and A7 show the same configuration but the inversion of the 

statistical parameters and slope attributes (fifth and sixth components), and A7 and A8 

would be considered identical if it were not for the inversion of the fourth and fifth 

components. 
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Figure 3.3: Main groups of multicollinear terrain attributes that consistently loaded together on the different components. 
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Figure 3.4: Summary of the PCA solutions' configuration. The different groups are detailed in Figure 

3.3. Characters in italic represent the unreliable components as assessed by Cronbach's α, and 

underlined characters indicate components with less than three variables. 

Only one pair of consecutive solutions, A3-A4, is considered significantly different. Only 

three out of ten pairs of components were found to be matching: the first, fifth and sixth 

components. The overall mismatch is caused by the decreasing relative importance of the 

two groups of rugosity indices (groups 2 and 7), and the increased relative importance of 

the second group of slope algorithms (group 5B). 
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3.3.2.3 Complexity of Variables 

Figure 3.4 shows how the complexity of the major groups of terrain attributes 

presented in Figure 3.3 vary with surface complexity. Only Group 1 (interpreted as 

curvatures and relative position) does not vary in complexity across solutions. In general, 

the aspect (Groups 3A-3B) and local statistical attributes (Group 4) shift to a higher 

component as surface complexity increases. On the opposite, slopes (Groups 5A-5B) shift 

to a lower component as surface complexity increases. Group 2 does not demonstrate any 

particular pattern.  

Table 3.2 presents a summary of the solutions according to variable’s behaviour (e.g. 

complex or marker variables), and Appendix C helps assessing changes in behaviour with 

changing surface complexity. Some of the variables that are not included in the major 

groups of terrain attributes previously identified show particular patterns. For instance, a 

small number of northerness measures (ID104, ID105, ID107, ID108, ID109) are marker 

variables in solutions from low complexity surfaces, and become complex variables as 

surface complexity increases. A similar pattern is observed for measures of total 

curvature. On the other hand, some terrain attributes, such as a few measures of profile 

curvature (ID135, ID141, ID142, ID144) are complex variables for low complexity 

surfaces and become marker variables as surface complexity increases. 
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Table 3.2: Percentage of the 230 variables that formed each solution or were removed during the 

iterative PCA. Complex variables that loaded equally on more than one component were removed, 

while complex variables that loaded more strongly on one component were kept (Appendix A). 

 

3.3.3 Variable Inflation Factor and Mutual Information 

The average rank of each variable according to VIF and MI is presented in Appendix 

C. 114 variables became more multicollinear (i.e. ranked lower) with increasing surface 

complexity, while 116 variables became less multicollinear with increasing surface 

complexity. Variables from Group 1 were generally losing some positions in the ranking, 

while variables from Group 2 and 7 were gaining ranks.  

Of the eight variables whose cardinality values were too low to enter the PCA, three 

of them consistently ranked in the top 50 least collinear variables: center versus 

neighbours variability (ID2), and one measure of easterness (ID42) and northerness 

(ID101). Of the variables that had low communality for any surface, mean of residuals 

(ID70), representativeness (ID158), standard deviation of slope (ID195), and one measure 

of profile curvature (ID146), plan curvature (ID120), tangential curvature (ID204), 

Marker Variables Reliability Cardinality

A0 66.1 17.4 13.0 0.0 3.5

A1 63.0 19.6 13.9 0.0 3.5

A2 62.2 19.1 14.8 0.4 3.5

A3 63.5 17.0 16.1 0.0 3.5

A4 65.2 15.7 15.2 0.4 3.5

A5 63.9 3.0 29.1 0.4 3.5

A6 70.4 7.0 18.3 0.9 3.5

A7 63.9 10.9 20.9 0.9 3.5

A8 62.2 8.3 24.8 1.3 3.5

In the Final Solution Removed during Iterations

Complex Variables
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easterness (ID42) and northerness (ID104) were consistently falling in the top 50 least 

collinear variables. 

3.4 Discussion 

3.4.1 Surface Complexity and Importance of Terrain Attributes 

Results indicate that the relative importance of terrain attributes in capturing relevant 

information on terrain characteristics varies with surface complexity. For instance, the 

relative importance of slope diminishes as surfaces become more complex, while local 

statistical attributes importance increases. Also, the importance of differentiating the 

algorithms used to compute a terrain attribute seems to vary with surface complexity. For 

instance, most slope algorithms are grouped into one component for the least complex 

surfaces, indicating that they are all highly correlated, but get separated across several 

components as surface complexity increases, indicating that some of them are not 

correlated anymore. An opposite trend can be observed for vector ruggedness measures 

(VRM) algorithms. For low complexity surfaces, VRMs computed with Sappington’s 

(2007) method are relatively important (they load on the second component), while the 

VRMs computed with SAGA GIS’ algorithms load on the tenth component. VRMs 

however all load together on the tenth component of the most complex surfaces, with no 

difference between the algorithms used. 

Also, both the quantitative (SC and CC) and qualitative (Figure 3.4) comparative 

assessments of the solutions’ configuration allowed finding an important break when 

surface complexity reaches a fractal dimension of 2.40 (surface A4). This is likely to 
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correspond to a threshold where a significant number of terrain attributes’ behaviour 

changes in relation to terrain characteristics. This threshold is located somewhere between 

a fractal dimension of 2.30 and 2.40, representing approximately the middle of the range 

of complexities tested. 

3.4.2 Terrain Attributes, Algorithms and Software 

The diversity and amount of variables loading on the same components demonstrate 

high level of covariation amongst terrain attributes. For low complexity surfaces for 

instance, measures of slope covary with local fractal dimension, measures of roughness, 

and VRM, attributes often used together in ecological studies (Harris & Baker, 2012). 

Group 1 also shows high variable diversity (Figure 3.3). About one third of the attributes 

were found to correlate with several components (i.e. the complex variables), thus being 

very collinear and holding low potential for ecological applications. For instance, 

measures of longitudinal curvature were complex variables for all surfaces, and their high 

level of covariation was confirmed by their VIF-MI ranking. Of the 230 computed 

attributes, 79% were found to be unique (with no identical attribute surfaces), confirming 

and extending the conclusions from Dolan & Lucieer (2014) and Jones (1998a; 1998b) 

that same terrain attributes derived using different algorithms or software can give 

different results.  

The extent to which different slope algorithms are divided into sub-groups as surface 

complexity increases and how they rank on the different components is particularly 

interesting. Skidmore (1989) argued that Zevenbergen & Thorne’s (1987) method was 

better than Horn’s (1981) even if results for the latter were not very different from those 
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of the former. Our results demonstrate that while this is the case for low complexity 

surfaces, Horn’s method captures more variance in more complex surfaces. Skidmore’s 

(1989) conclusions may then be limited by, and dependent on, the surfaces that were 

used. On the other hand, Hodgson (1995) argued that Zevenbergen & Thorne’s (1987) 

method worked best on rough surfaces, while Horn’s (1981) worked best on smooth 

surfaces, without further distinction on what are rough and smooth surfaces. Our results 

suggest that Horn’s (1981) method (Group 5A) captures more variance than others for 

rougher surfaces (fractal dimension ≥ 2.30) and that there are no differences for low 

complexity, or smoother, surfaces (fractal dimension ≤ 2.20). Jones (1998b) found that 

the performance of slope algorithms depended on the relative importance of random noise 

versus mean smooth elevation difference: in general the 4-cell method and Horn’s method 

performed better than others, but when a surface was very noisy, Sharpnack & Akin’s 

(1969) method, from which Zevenbergen & Thorne (1987) method is derived, performs 

better.  

Some ambiguity in the names and types of terrain attributes was found during the 

analysis, confirming previous observations (Bishop et al., 2012). For instance, 

topographic position index (TPI) measures from SAGA GIS (ID214, ID217) were found 

identical to “difference from mean values” (ID23, ID26) attributes. Some attributes 

identified simply as “curvature” (ID14, ID16) were found to be duplicates of measures of 

profile (ID143, ID145) and plan curvature (ID123, ID125); profile and plan curvatures 

are however supposed to describe different terrain characteristics. Solely using 

“curvature” to describe a measure could mislead a user into believing that it is a measure 
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of general or total curvature. Also, different types of curvatures were often found to be 

inter-correlated when computed with the same software, but uncorrelated to those 

generated from other software. For instance, Groups 9C, 9D, 9E, 9F and 9G all combine 

correlated measures of curvature that should theoretically be uncorrelated, but that are 

generated from the same software. Finally, several terrain attributes from SAGA GIS 

computed from three different methods (no distance weighting, inverse of the distance, 

and squared inverse of the distance) often gave identical results. Since these measures are 

directly dependent on the window size used (distance-based algorithms), it is possible that 

these attributes would give different outcomes if a bigger window size would be used. 

Further work will be necessary to assess the behavior of terrain attributes with changing 

surface complexity using different window sizes. 

3.4.3 Suitable Subset of Terrain Attributes 

The five major groups of terrain attributes presented in Figure 3.3 were always the 

ones accounting for the most variance, regardless of terrain complexity. These groups 

alone accounted for an average of 75% of the overall topographic structure (Appendix C). 

Based on psychometric methods, a suitable subset of variables in a PCA consists of 

selecting one variable from each component (Gorsuch, 1983). Since these five groups 

always loaded on different but the highest components for all levels of topographic 

complexity, a suitable subset of terrain attributes would include one variable from each of 

the groups 1, 2, 3A, 3B, 4, and 5A. 

While any attributes from each of these groups could be a good choice, we 

recommend a specific combination that, in addition to reducing covariation and 
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redundancy, also reduces ambiguity: relative difference to mean value (Group 1), local 

standard deviation (Group 2), easterness and northerness (Groups 3A-3B), local mean 

(Group 4), and a measure of slope preferably computed with Horn’s method (Group 5A, 

Table B.2 in Appendix B). Relative difference to mean value is a measure of relative 

position, local standard deviation is a measure of rugosity, and easterness and northerness 

are measures of orientation derived from aspect. Local mean may however not be 

required if users include elevation or depth in the analysis, as the local mean will be 

highly correlated with the input DTM. However, local mean could potentially be more 

reliable than the initial DTM if a surface is noisy, as using the mean may filter out some 

of the noise. This recommendation of six attributes increases replicability and generality 

as it selects terrain attributes that are easily computed from any software over terrain 

attributes that are only available in some of them. For instance, we recommend using 

local standard deviation in Group 2 over terrain ruggedness index or roughness as there is 

no ambiguity on how to compute standard deviation and all software have focal statistics 

tools that can compute it. To help potential users of this method, we provide with this 

paper a toolbox developed for ArcGIS, named TASSE (Terrain Attribute Selection for 

Spatial Ecology), that automatically generates the six proposed terrain attributes (Lecours, 

2015). 

While using the proposed terrain attributes helps optimize the information extracted 

from the terrain, it does not necessarily mean that all of the proposed attributes will be 

useful for a given ecological application (Lecours et al., submitted). For instance, using 

them in species distribution modelling exercises will not necessarily result in these six 
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terrain attributes being drivers or surrogates of species distribution. Rather, it means that 

most of the terrain properties, or topographic structure, and the variation in these 

properties will be accounted for when performing the analysis and modelling. An analyst 

that includes such selection can be assured that most of the topographic structure is 

considered in the analysis, and can then focus on the integration of the selection with 

other environmental data (e.g. remotely sensed data, climate data, oceanographic data, 

vegetation data). Also, if slope and rugosity are spatially found in the same regions of a 

study area, the slope and standard deviation terrain attributes would be correlated, despite 

extracting different information from the surface. 

It is important to note that this combination of attributes and the alternatives (if 

selecting one different attribute from each group) are mainly based on the PCA analysis. 

However, the exploration of communality combined with the covariation assessment 

using VIF and MI allowed identifying unique variables that do not correlate highly with 

any other but could potentially give information on unique terrain characteristics. Some 

of these variables may improve the proposed selection of terrain attributes, and we 

recommend further exploration of these unique attributes in future work. 

3.5 Conclusion 

If the use of terrain attributes in environmental studies is now common, selecting an 

appropriate set of terrain attributes is a challenge rarely approached carefully in these 

studies. This can have potential consequences that can invalidate the analyses and not 

make the best use of terrain data. This study conducted an extensive analysis to suggest a 

suitable selection of terrain attributes that optimizes the information derived from DTMs. 
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Three methods were used to iteratively assess the relationships between 230 terrain 

attribute surfaces computed on nine artificial surfaces of different complexity using 11 

different software packages. Results confirm that (1) different algorithms computing a 

same terrain attribute (e.g. slope, curvature) can produce different outcomes, that (2) 

terrain attributes are highly multicollinear, that (3) there is some ambiguity in the 

denomination of terrain attributes, and that (4) their selection for any application needs to 

be carefully performed. Our conclusions highlight the importance to explicitly report the 

software, algorithms, and parameters used to generate terrain attributes in ecological 

studies to allow careful interpretation of the results and comparison between studies. We 

also encourage software and tools developers to be explicit in their documentation or 

metadata about the methods or algorithms used by their products.  

Based on our analysis, we recommend the use of six terrain attributes that optimize 

the topographic structure accounted for when performing environmental studies: (1) 

relative difference to mean value (a measure of relative position), (2) local standard 

deviation (a measure of rugosity), (3) easterness and (4) northerness (measures of 

orientation), (5) local mean, and (6) slope (preferably computed with Horn’s method). 

The proposed selection reduces redundancy, covariation and ambiguity, and improves 

generality and replicability, and can be applied across a wide range of terrain complexity. 

While the six proposed attributes can easily be computed using any GIS package, an 

ArcGIS toolbox was provided with this paper to easily generate these attributes (Lecours, 

2015). Our work has also identified unique terrain attributes that were not considered by 
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the PCA analysis but that showed potential to represent different characteristics of a 

terrain and that needs to be further explored.  

Our recommendations provide an operational framework to any users willing to 

incorporate topography or bathymetry and their derivatives (i.e. terrain attributes) in 

environmental models and analyses. While the six proposed attributes may not 

necessarily be useful for all applications and should be tested separately, for instance as 

effective surrogates, their combination ensures that the amount of topographic structure 

accounted for is optimized in the analysis. The proposed operational framework can help 

users make more robust analyses and bridge geomorphometry with disciplines like 

ecology, biogeography, habitat mapping and distribution modelling. An application of our 

recommended terrain attributes and their comparison to other subsets is presented in a 

real ecological application, namely a marine benthic habitat mapping exercise, in Lecours 

et al. (submitted). 

3.6 Literature Cited 

Bouchet, P.J., Meeuwig, J.J., Kent, C.P.S., Letessier, T.B., & Jenner, C.K. (2015) 

Topographic determinants of mobile vertebrate predator hotspots: current knowledge and 

future directions. Biological Reviews, 90:699-728. 

Belsey, D.A., Kuh, E., & Welsch, R.E. (2004) Regression diagnostics: identifying influential 

data and sources of multicollinearity. Wiley, Hoboken. 

Bhattacharyya, H., (1981) Theory and methods of factor analysis and principal components. 

In: Capen, D.E. (Ed.) The use of multivariate statistics in studies on wildlife habitat, U.S. 

Forest Service General Technical Report RM-87, pp. 72-79. 

Bishop, M.P., & Shroder Jr., J.F. (2004) GIScience and mountain geomorphology: overview, 

feedbacks, and research directions. In: Bishop, M.P., & Shroder, J.F. (Eds) Geographic 

Information Science and Mountain Geomorphology, Springer-Praxis, Chichester, pp.1-31.  



122 

 

 

Bishop, M.P., James, L.A., Shroder Jr., J.F., & Walsh, S.J. (2012) Geospatial technologies 

and digital geomorphological mapping: concepts, issues and research. Geomorphology, 

137:5-26. 

Brown, C.J., Smith, S.J., Lawton, P., & Anderson, J.T. (2011) Benthic habitat mapping: a 

review of progress towards improved understanding of the spatial ecology of the seafloor 

using acoustic techniques. Estuarine, Coastal and Shelf Science, 92:502-520. 

Cattell, R.B. (1978) The scientific use of factor analysis in behavioral and life sciences. 

Plenum Press, New York. 

Chipperfield, J.D., Dytham, C., & Hovestadt, T. (2011) An updated algorithm for the 

generation of neutral landscapes by spectral synthesis. PLos ONE, 6:e17040. 

Costello, A.B., & Osborne, J. (2005) Best practices in explanatory factor analysis: four 

recommendations for getting the most from your analysis. Practical Assessment Research 

& Evaluation, 10:1-9. 

Cronbach, L.J. (1951) Coefficient alpha and the internal structure of tests. Psychometrika, 

16:297-334. 

Dimri, V.P. (2005) Fractals in geophysics and seismology – an introduction. In: Dimri, V.P. 

(Ed.) Fractal Behaviour of the Earth System, Springer-Verlag, Berlin, pp. 1-22. 

Dolan, M.F.J., & Lucieer, V.L. (2014) Variation and uncertainty in bathymetric slope 

calculations using geographic information systems. Marine Geodesy, 37:187-219. 

Dormann, CF., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., García Marquéz, J.R., 

Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., 

Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., & Lautenbach, S. (2013) 

Collinearity: a review of methods to deal with it and a simulation study evaluating their 

performance. Ecography, 36:27-46. 

Elith, J., & Leathwick, J.R. (2009) Species distribution models: ecological explanation and 

prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 

40:677-697. 

Florinsky, I.V., Eilers, R.G., Manning, G.R., & Fuller, L.G. (2002) Prediction of soil 

properties by digital terrain modelling. Environmental Modelling and Software, 17:295-

311. 



123 

 

 

Franklin, S.B., Gibson, D.J., Robertson, P.A., Pohlmann, J.T., & Fralish, J.S. (1995) Parallel 

analysis: a method for determining significant principal components. Journal of 

Vegetation Science, 6:99-106. 

Gorsuch, R.L. (1983) Factor analysis (second edition). Erlbaum, Hillsdale. 

Graham, M.H. (2003) Confronting multicollinearity in ecological multiple regression. 

Ecology, 84:2809-2815. 

Halley, J.M., Hartley, S., Kallimanis, A.S., Kunin, W.E., Lennon, J.J., & Sgardelis, S.P. 

(2004) Uses and abuses of fractal methodology in ecology. Ecology Letters, 7:254-271. 

Han, W., Di, L., Zhao, P., & Shao, Y. (2012) DEM Explorer: an online interoperable DEM 

data sharing and analysis system. Environmental Modelling and Software, 38:101-107. 

Harman, H.H. (1967) Modern factor analysis (revised edition). University of Chicago Press, 

Chicago. 

Harris, P.T., & Baker, E.K. (2012) Seafloor geomorphology as benthic habitat: GeoHab atlas 

of seafloor geomorphic features and benthic habitats. Elsevier, Amsterdam. 

Hengl, T., & Reuter, H.I. (2009) Geomorphometry: concepts, software, applications. 

Developments in Soil Science, 33, Elsevier, Amsterdam. 

Henson, R.K., & Roberts, J.K. (2006) Use of explanatory factor analysis in published 

research: common errors and some comment on improved practice. Organizational 

Research Methods, 7:191-205. 

Hijmans, R.J. (2012) Cross-validation of species distribution models: removing spatial bias 

and calibration with a null model. Ecology, 36:27-46. 

Hodgson, M.E. (1995) What cell size does the computed slope/aspect angle represent? 

Photogrammetric Engineering and Remote Sensing, 61:513-517. 

Hofierka, J., Mitášová, H., & Neteler, M. (2009) Geomorphometry in GRASS GIS. In Hengl, 

T., & Reuter, H.I. (Eds) Geomorphometry: concepts, software, applications, Elsevier 

Science, Amsterdam, pp. 387-410. 

Horn, B.K.P. (1981) Hill shading and the reflectance map. Proceedings of the IEEE, 69:14-

47. 

Horn, J.L. (1965) A rationale and test for the number of factors in factor analysis. 

Psychometrika, 30:179-185. 



124 

 

 

Jones, K.H. (1998a). A comparison of algorithms used to compute hill slope as a property of 

the DEM. Computers and Geosciences, 24:315-323. 

Jones, K.H. (1998b) A comparison of two approaches to ranking algorithms used to compute 

hill slopes. GeoInformatica, 2:235-256. 

Kaiser, H.F. (1958) The varimax criterion for analytic rotation in factor analysis. 

Psychometrika, 23:187-200. 

Keitt, T.H. (2000) Spectral representation of neutral landscapes. Landscape Ecology, 15:479-

493. 

King, J.R., & Jackson, D.A. (1999) Variable selection in large environmental data sets using 

principal components analysis. Environmetrics, 10:67-77. 

Kinsey-Henderson, A.E., & Wilkinson, S.N. (2013) Evaluating Shuttle radar and interpolated 

DEMs for slope gradient and soil erosion estimation in low relief terrain. Environmental 

Modelling and Software, 40:128-139. 

Klingseisen, B., Metternicht, G., & Paulus G. (2008) Geomorphometric landscape analysis 

using a semi-automated GIS-approach. Environmental Modelling and Software, 23:109-

121. 

Lacroix, M.P., Martz, L.W., Kite, G.W., & Grabrecht, J. (2002) Using digital terrain analysis 

modeling techniques for the parametrization of a hydrologic model. Environmental 

Modelling and Software, 17:127-136. 

Lecours, V. (2015) Terrain Attribute Selection for Spatial Ecology (TASSE), v. 1.0. URL 

www.marinegis.com. 

Lecours, V., Brown, C.J., Devillers, R., Lucieer, V.L., & Edinger, E.N. (submitted). 

Comparing selections of environmental variables for ecological studies: a focus on terrain 

attributes. 

Lloyd, C.D. (2014) Exploring spatial scale in geography. Wiley, United States. 

McGarigal, K., Cushman, S.A., & Stafford, S.G. (2000) Multivariate statistics for wildlife 

and ecology research. Springer-Verlag, New York. 

O’Connor, B.P. (2000) Using parallel analysis and Velicer’s MAP test. Behavior Research 

Methods, Instruments, & Computers, 32:396-402. 

http://www.marinegis.com/


125 

 

 

O’Connor, B.P. (2015) SPSS, SAS, MATLAB, and R programs for determining the number of 

components and factors using parallel analysis and Velicer's MAP test. URL 

https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html [accessed 21 January 2015] 

Olaya, V. (2009) Basic land-surface parameters. In: Hengl, T., & Reuter, H.I. (Eds) 

Geomorphometry: concepts, software, applications, Elsevier Science, Amsterdam, pp. 

141-169. 

Peitgen, H.O., & Saupe, D. (1988) The science of fractal images. Springer-Verlag, New 

York. 

Pfeifer, P. (1984) Fractal dimension as working tool for surface-roughness problems. 

Applications of Surface Science, 18:146-164. 

Pike, R.J. (1995) Geomorphometry: progress, practice, and prospect. Zeitschrift für 

Geomorphologie, 101:221-238. 

Pittman, S.J., Costa, B.M., & Battista, T.A. (2009) Using lidar bathymetric and boosted 

regression trees to predict the diversity and abundance of fish and corals. Journal of 

Coastal Research, 53:27-38. 

Raaflaub, L.D., & Collins, M.J. (2006) The effect of error in gridded digital elevation models 

on the estimation of topographic parameters. Environmental Modelling and Software, 

21:710-732, 

Rigol-Sanchez, J.P., Stuart, N., & Pulido-Bosch, A. (2015) ArcGeomorphometry: A toolbox 

for geomorphometric characterisation of DEMs in the ArcGIS environment. Computers & 

Geosciences, 85:155-163. 

Rooper, C.N., & Zimmermann, M. (2007) A bottom-up methodology for integrating 

underwater video and acoustic mapping for seafloor substrate classification. Continental 

Shelf Research, 27:947-957.  

Rummel, R.J. (1970) Applied factor analysis. Northwestern University Press, Evanston. 

Sappington, J.M., Longshore, K.M., & Thompson, D.B. (2007) Quantifying landscape 

ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave 

desert. Journal of Wildlife management, 71:1419-1426. 

Schwanghart, W., & Heckmann, T. (2012) Fuzzy delineation of drainage basins through 

probabilistic interpretation of diverging flow algorithms. Environmental Modelling and 

Software, 33:106-113. 



126 

 

 

Sharpnack, D.A., & Akin, G. (1969) An algorithm for computing slope and aspect from 

elevations. Photogrammetric Engineering, 35:247-248. 

Skidmore, A.K. (1989) A comparison of techniques for calculating gradient and aspect from a 

gridded digital elevation model. International Journal of Geographical Information 

Systems, 3-4:323-334. 

Song, L., Langfelder, P., & Horvath, S. (2012) Comparison of co-expression measures: 

mutual information, correlation, and model based indices. BMC Bioinformatics, 13:328. 

Steuer, R., Kurths, J., Daub, C.O., Weise, J., & Selbig, J. (2002) The mutual information: 

detecting and evaluating dependencies between variables. BMC Bioinformatics, 18:S231-

S240. 

Tabachnick, B.G., & Fidell, L.S. (2014) Using multivariate statistics, sixth edition. Pearson 

Education Limited. 

Thompson, B., & Daniel, L.G. (1996) Factor analytic evidence for the construct validity of 

scores: a historical overview and some guidelines. Educational and Psychological 

Measurement, 56:197-208. 

Tucker, L.R. (1951) A method for synthesis of factor analysis studies. Personnel Research 

Section Report 984, Department of the Army, Washington D.C.  

Velicer, W.F. (1976) Determining the number of components from the matrix of partial 

correlations. Psychometrika, 41:321-327. 

Velicer, W.F., Eaton, C.A. & Fava, J.L. (2000) Construct explication through factor or 

component analysis: a review and evaluation of alternative procedures for determining the 

number of factors or components. In: Goffin, R.D., & Helmes, E. (Eds) Problems and 

solution in human assessment, Kluwer, Boston, pp. 41-71. 

Vierod, A.D.T., Guinotte, J.M., & Davies, A.J. (2014) Predicting the distribution of 

vulnerable marine ecosystems in the deep sea using presence-background models. Deep-

Sea Research II, 99:6-18. 

Wiersma, Y.F., Huettmann, F. & Drew, C.A. (2011) Introduction. Landscape modeling of 

species and their habitats: history, uncertainty, and complexity. In: Drew, C.A., Wiersma, 

Y.F., & Huettmann, F. (Eds) Predictive Species and Habitat Modeling in Landscape 

Ecology, Springer, New York, pp. 1-6.  



127 

 

 

With, K.A., & King, A.W. (1997) The use and misuse of neutral landscape models in 

ecology. Oikos, 79:219-229. 

Wood, J.M., Tataryn, D.J., & Gorsuch, R.L. (1996) Effects of under- and overextraction on 

principal axis factor analysis with Varimax rotation. Psychological Methods, 1:354-365. 

Zawada, D.G., & Brock, J.C. (2009) A multiscale analysis of coral reef topographic 

complexity using lidar-derived bathymetry. Journal of Coastal Research, 53:6-15. 

Zevenbergen, L.W., & Thorne, C.R. (1987) Quantitative analysis of land surface topography. 

Earth Surface Processes and Landforms, 12:47-56. 

Zhou, Q., & Zhu, A.X. (2013) The recent advancement in digital terrain analysis and 

modeling. International Journal of Geographical Information Science, 27:1269-1271. 

Zwick, W.R., & Velicer, W.F. (1986) Comparison of five rules for determining the number of 

components to retain. Psychological Bulletin, 99:432-442. 



128 

 

 

4. Comparing Selections of Environmental Variables for Ecological 

Studies: a Focus on Terrain Attributes  

4.1 Introduction 

Due to the difficulty in sampling ecological data at sufficient spatial and temporal 

resolutions, many ecological studies rely on the use of surrogates to understand species 

distribution and ecological processes. Amongst commonly used surrogates, terrain 

attributes (e.g. slope, rugosity, aspect) derived from digital elevation (DEM) or 

bathymetric (DBM) models have proven their value in a broad range of terrestrial and 

marine ecological studies (Bouchet et al., 2015). Such attributes can now be derived 

easily using tools available in most Geographic Information Systems (GIS). While tools 

are increasingly user-friendly, a lack of transparency in most software on the actual 

algorithms used (Dolan & Lucieer, 2014) can prevent users from making an informed 

decision on which tools to use. Also, terrain attributes sharing the same name but 

generated using different algorithms (e.g. slope) have been shown to produce different 

derivative surfaces (Jones, 1998; Dolan & Lucieer, 2014). Software developers and 

authors of published work are often not explicit on the methods they use to derive terrain 

attributes (e.g. algorithm or tool). This lack of information can possibly influence the 

analysis and interpretation of the resulting terrain attribute surfaces, and consequently the 

ecological application for which they are being used.  

Choosing an appropriate selection of terrain attributes for specific ecological 

applications can be challenging, and users will often simply use the terrain attributes 
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made available by the software they have access to or are familiar with, without further 

questioning if those attributes are the most appropriate ones for their study. In a related 

study, Lecours et al. (submitted) showed that many terrain attributes covary, which may 

cause potential problems for many statistical analyses. In an attempt to identify an 

optimal combination of terrain attributes to use in ecology, the authors recommended 

using six easily computable attributes for ecological studies that consider topography or 

bathymetry: (1) relative difference to mean value, which is a measure of relative position 

that can identify local peaks and valleys, (2) standard deviation, which is a measure of 

rugosity, (3) local mean, (4) slope, and (5-6) easterness and northerness, which together 

provide information on the orientation of the slope (i.e. aspect).  

This article aims to describe the effects of subjectively selecting input variables for 

ecological applications. The specific objectives are (1) to compare the performance of 

Lecours et al. (submitted) recommended selection of terrain attributes to other selections 

in a real ecological context, (2) to demonstrate the relative importance of terrain 

morphology in aiding our understanding of ecological questions compared to other 

environmental variables, and (3) to report on the consequences of selecting different input 

variables on both the accuracy of habitat maps and the spatial distribution of the outputs. 

4.2 Materials and Methods 

Benthic habitat mapping is the act of mapping significantly distinct areas of the 

seafloor based on their physical, chemical and biological characteristics at particular 

spatial and temporal scales (Lecours et al., 2015). The marine environment presents 

particular challenges in observing and sampling seafloor characteristics. However, 
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developments in acoustic remote sensing technologies, specifically multibeam 

echosounders (MBES), now allow the collection of high-resolution remotely sensed data 

of the seafloor. Bathymetric measurements from MBES can be used to generate DBMs, 

from which terrain attributes can be derived (Lecours et al., 2016). Additionally, MBES 

systems can also record acoustic reflectance (backscatter) data that provide information 

on seafloor properties (e.g. surficial geology, porosity). In combination, these attributes 

are commonly used for the production of benthic habitat maps. 

4.2.1 Data 

Datasets from Brown et al. (2012), covering 3,650 km
2 

of German Bank, an area of 

the Canadian continental shelf off Nova Scotia (Figure 4.1), were used to address the 

objectives of this study. These data comprised a 50 m resolution DBM, 3,190 geo-

referenced underwater images of the seabed visually classified into five bottom types 

(glacial till, silt and mud, rippled silt, rippled sand, reef), 4,816 geo-referenced sea scallop 

observations, and three backscatter data derivatives (Q1, Q2, Q3; Figure 4.1). Details on 

how the data were collected and processed can be found in Brown et al. (2012). 

According to Brown et al. (2012), the 50 m resolution was chosen to reduce the 

computation time and limitations for the classifications (cf. next sub-sections), and 

because that scale met a range of ocean management needs in the context of their study. 

For comparison with surfaces used in Lecours et al. (submitted), the fractal dimension, 

which is a quantitative representation of surface complexity, was measured over 10,000 

m
2
 areas of German Bank. Values ranged from 2.09 to 2.93, thus including regions of low 

(towards 2.00), moderate and high complexities (towards 3.00). 
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Figure 4.1: German Bank study area with some of the input variables used in this study: the ground-

truth data for the bottom types, the sea scallops observations, the bathymetry, the three backscatter 

derivatives and the six terrain attributes from Selection 1. 
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Two types of habitat maps were generated from this dataset. First, biophysical 

classifications of the area were performed to create benthoscape maps (Zajac, 2008). This 

top-down, unsupervised approach segments the MBES derived data layers into a 

statistically optimum number of units which are then compared and subsequently 

recombined based on best match against independently classified in situ photographic 

data, classified into broad biophysical benthoscape classes. Using this approach, 

biophysical features can be delineated at a broader scale over the study area to generate a 

benthoscape map. Second, a bottom-up supervised approach was performed in which the 

in situ data were used to segment the environmental data to predict sea scallop 

(Placopecten magellanicus) habitat on German Bank. In both cases, different selections 

of terrain attributes were used in combination with other environmental data (seafloor 

bathymetry and backscatter derivatives) within the classification methodologies to test 

which combination of variables performed the best. 

A total of 24 different terrain attributes were derived from the DBM and grouped into 

seven selections of six terrain attributes each (Table 4.1). The terrain attributes were selected 

from groups of variables that exhibited various behaviours during the statistical analyses 

performed in Lecours et al. (submitted) (see caption of Table 4.1). Selection 1 corresponds to 

our recommended selection of six terrain attributes. These terrain attributes were computed 

using the TASSE (Terrain Attribute Selection for Spatial Ecology) toolbox for ArcGIS 

(Lecours, 2015). Selections 2 to 7 were built to maximize variability and resemblance to 

Selection 1 (e.g.to avoid having two measures of slope or curvatures within one selection). 

Particular focus was also given to terrain attributes that were identified as potentially 

important by Lecours et al. (submitted). 
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Table 4.1: Selections of terrain attributes used to build the habitat maps and models. The ID numbers refer to Lecours et al. (submitted) and 

allow finding the software and parameters with which the attributes were generated. Marker variables correspond to important variables; 

whether they were found on strong components (Sel. 1) or weak components (Sel. 4) is linked to the amount of topographic structure they 

accounted for. Variables with low cardinality (Sel. 2) did not have many different values, thus limiting their ability to explain slight variations in 

terrain morphology. Complex variables (Sel. 3) correspond to redundant variables.  
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4.2.2 Unsupervised Classifications of Potential Habitat Types 

A total of 29 benthoscape maps were built using the Modified k-Means unsupervised 

classification tool in Whitebox GAT v.3.2 “Iguazu”. This modified k-means algorithm is 

similar to the more common k-means or isocluster algorithms, but in this case the user 

does not have to subjectively select a number of desired classes. The algorithm starts by 

overestimating the number of classes, and then iteratively merges classes that have cluster 

centres close to each other, as defined by a user-defined threshold that relates to the 

minimum mapping unit. The resulting number of classes is thus statistically optimal and 

objectively achieved. To assess the relative importance of the different environmental 

variables and the consequences of using different input variables in habitat mapping, four 

scenarios were tested with each of the seven selections, resulting in 28 habitat maps. 

Maps were first created using each selection alone (six input layers), then adding the 

bathymetry (seven layers), the three backscatter derivatives (nine layers), and finally both 

the bathymetry and the backscatter derivatives (ten layers). In order to quantify the 

relative influence of terrain morphology in potential habitat characterization of German 

Bank, an additional habitat map was produced using only the backscatter derivatives and 

the bathymetry (four layers, not accounting for terrain morphology).  

Following the method outlined in Brown et al. (2012), the resulting clusters for each 

classification were spatially compared to the 3,190 photographs of the seabed. Clusters 

corresponding to the same habitat types were grouped together and mapped as the 

corresponding habitat types. Confusion matrices, summarizing agreement and 

disagreement between the ground-truth data and the results from the classified bottom 
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types (Jensen, 2005), were built to compute the overall accuracy and kappa coefficient of 

agreement of each habitat map. The two measures are commonly used in ecology (Boyce 

et al., 2002) and in remote sensing (Congalton, 1991; Jensen, 2005). The success of the 

discrimination of each individual bottom type by the 29 classifications was assessed using 

the producer’s accuracy (Jensen, 2005), and a spatial comparison of the outputs was made 

to assess the amplitude of change caused by selecting different variables. This was 

quantified using the percentage of pixels that were classified as the same bottom type by 

different classifications. 

4.2.3 Supervised Classifications of Sea Scallop Habitats 

Maximum entropy (MaxEnt) (Jaynes, 1957; Phillips et al., 2004), which was shown 

to perform better than other species distribution models (SDM) in both terrestrial (Phillips 

et al., 2006) and marine realms (Monk et al., 2010), was used to perform supervised 

classification of scallops habitat. Following the method of Brown et al. (2012), the 

classifier was run in the MaxEnt software v.3.3.3k with the default settings, except that 

the number of background points was increased to 50,000 to account for background 

conditions in full measure in such a large area. The 3,813 scallop observations selected by 

Brown et al. (2012) were used to train the model, while the remaining 1,003 observations 

were kept for validation. A total of 29 MaxEnt models were run: for each of the seven 

selections, four models were run according to the scenarios previously mentioned 

resulting in 28 models, and one model was run without terrain attributes.  

The MaxEnt software was also used to perform jackknife tests and to calculate the 

area under the curve (AUC) derived from threshold independent receiver operating 
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characteristic (ROC) curves; the former quantify the percentage contribution of each 

input variable to the models while the latter serves to assess the performance of SDMs 

(Phillips et al., 2006). We acknowledge that there is currently a debate in the literature 

surrounding the use of AUC as a measure of model evaluation (e.g. Jiménez-Valverde, 

2012); some authors argue that AUC can be inappropriate when different modelling 

techniques are used (Peterson et al., 2008) or if two different species or areas are 

compared (Lobo et al., 2008). However, AUC often performs better than other measures 

(McPherson et al., 2004; Vaughan & Ormerod, 2005) and is appropriate when the 

species, study area, and the training and test samples are the same across the compared 

models (Elith et al., 2011; Merow et al., 2013), like in the current study.  

Model outputs were evaluated in terms of their statistical fit to the validation data 

(AUCTest) (Fitzpatrick et al., 2013). A non-parametric 95% confidence interval around the 

AUCTest values was used to identify the significant differences in performances (Zweig & 

Campbell, 1993). The goodness-of-fit of the models to the training data (AUCTrain) was 

used to assess models’ generalizability (i.e. transportability, transferability). 

Generalizability is described by Vaughan & Ormerod (2005, p.720) as “a basic 

requirement for predictive models” that describes the ability of a model to produce 

accurate predictions with data other than the training dataset. Generalizability was 

measured using the difference (AUCDiff) between AUCTrain and AUCTest (Warren & 

Seifert, 2011). A model that over-fits the training data will have a high AUCTrain but a low 

AUCTest as it performs poorly on the test dataset, thus resulting in a high AUCDiff. Such a 

model is too specific to the training data and less generalizable. A diagnostic of the input 
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variables contribution to the different models was also performed based on the results 

from the jackknife procedure, in order to identify the loss or gain in explanatory power as 

each variable is removed from the models or used alone (Khatchikian et al., 2011). 

Finally, a spatial comparison of the models was performed to evaluate the consequences 

of variable selection on the model outputs. 

4.3 Results 

4.3.1 Unsupervised Classifications 

4.3.1.1 Performance of Classifications 

The overall accuracies and kappa coefficients of the 29 habitat maps are presented in 

Figure 4.2. Selection 1 (i.e. the proposed attribute selection) outperformed the others with 

the highest overall accuracy and kappa coefficient in three of the four scenarios. The 

highest kappa coefficient was obtained when combining Selection 1 with bathymetry and 

the backscatter derivatives. The highest overall accuracy, 68.3%, was reached when 

combining Selection 5 with bathymetry (Figure 4.2B). Selection 1 combined with 

bathymetry had the second highest overall accuracy (67.1%). Selections with only three 

attributes from Selection 1 (i.e. Selections 5, 6 and 7) usually outperformed their related 

selection with none of the proposed attributes (i.e. Selections 2, 3 and 4). Selection 4 

resulted in poor classifications, and Selections 2, 3 and 6 performed generally poorly 

except when bathymetry was added. Compared to the classification that only used 

bathymetry and the backscatter derivatives (i.e. no topography), eight classifications had a 

higher overall accuracy: the four classifications that used Selection 1 as input, Selections 
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5 and 6 combined with bathymetry, and Selections 5 and 6 combined with both 

bathymetry and the backscatter derivatives. In terms of kappa coefficients, only four 

classifications performed better than the one with no topography: Selection 1 with the 

backscatter derivatives, Selection 1 with both bathymetry and the backscatter derivatives, 

Selection 5 with bathymetry, and Selection 6 with both bathymetry and the backscatter 

derivatives. 

Differences up to 45.5% were observed between the overall accuracy values and the 

kappa coefficients for a same selection and scenario. Differences were substantial with an 

average of 28.5% and a standard deviation of 11.9%. The average difference between the 

two measures of accuracy for the four maps using Selection 1 was the lowest, followed by 

the average difference for the four maps of Selections 5, 7, 6, 2, 3 and 4. 
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Figure 4.2: Map accuracies measured with (A) a kappa coefficient of agreement and (B) the overall 

accuracy. 
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4.3.1.2 Discrimination of Benthoscape Classes 

Selection 1 performed on average better than the others when discriminating between 

the five bottom types (see Figure D.1 of Appendix D). When looking at the individual 

habitat types, 25 of the 28 other classifications discriminated glacial till better than the 

classification with only bathymetry and the backscatter derivatives (producer’s accuracy 

of 77.1%), indicating that terrain morphology is not a good surrogate of the presence of 

glacial till. The “silt and mud” class seemed driven primarily by bathymetry and sediment 

properties (i.e. backscatter derivatives), with a producer’s accuracy of 87.4% for the 

classification that did not account for terrain morphology. Only two of the 28 remaining 

classifications discriminated that habitat type better, although several other classifications 

were very close to achieving that accuracy. Reefs were generally poorly discriminated. 

The classification with no topography reached a producer’s accuracy of 19.8%, and only 

six of the remaining classifications performed better, including three of the classifications 

using Selection 1. Rippled silt seemed to be better explained by the bathymetry and the 

backscatter derivatives, with the corresponding classification reaching an accuracy of 

57.6%. Only four other classifications did better, including two classifications that 

included Selection 1. Finally, rippled sand was very poorly discriminated by all the 

classifications, which may be due to its small sample size (only 49 photographs).  

In terms of mean producer’s accuracy for the five habitat types, only three 

classifications did better than the one with no topography (48.4%): Selection 1 with the 

backscatter derivatives (48.5%), Selection 1 with bathymetry and the backscatter 

derivatives (51.6%), and Selection 6 with bathymetry and the backscatter derivatives 



141 

 

 

(51.3%). When averaging the mean producer’s accuracies from the four scenarios for 

each selection, Selection 1 ranked first, followed by Selections 5, 7, 6, 3, 2 and 4. 

4.3.1.3 Spatial Variations of Outputs from Different Selections 

The most accurate map according to the kappa coefficients of agreement was made 

from Selection 1 combined with bathymetry and the backscatter derivatives. The spatial 

similarity indices of that map with the other habitat maps built with ten layers are 

presented in Table 4.2. Compared to Selection 1, Selection 6 produced the most spatially 

similar map with 90.0% similarity. Selection 4 is the least similar with only about 41.7% 

identically classified pixels. The other maps were between 73.3% and 79.4% similar to 

the map with Selection 1, except for the map with no topography (i.e. only bathymetry 

and the backscatter derivatives) with 82%. 

Table 4.2: Spatial similarity of the habitat maps and SDMs generated from Selections 2 to 7, 

compared to the map and model built from Selection 1. A similarity of 90% indicates that 90% of the 

pixels were classified as the same habitat type in the two compared maps, or that 90% of the pixels 

were within ±5% of probability distribution in the two compared models. 
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4.3.2 Supervised Classifications 

4.3.2.1 Predictive Capacity and Robustness 

Figure 4.3 shows the performance of the 29 MaxEnt models. All models performed 

significantly better than random (i.e. AUCTest ± 95% confidence interval > 0.500). Models 

with higher AUCTest and lower standard deviations are more robust and present the 

highest predictive capacity (Palialexis et al., 2011). In general, adding bathymetry, the 

backscatter derivatives, or all of them to the terrain attributes improved the models 

predictive capacity. However, Selection 1 and other selections that include terrain 

attributes from Selection 1 did not always follow that trend. For instance, Selection 1 used 

alone (only six terrain attributes; black diamond in Figure 4.3) performed better than 

other selections combined with bathymetry or the backscatter derivatives (e.g. blue and 

green squares and triangles in Figure 4.3). Selection 1 combined with the backscatter 

derivatives (black triangles in Figure 4.3) performed better than other selections that were 

combined with both bathymetry and the backscatter derivatives (i.e. most circles in Figure 

4.3). 
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Figure 4.3: Performance and robustness of the 29 MaxEnt models. Models in the top-left corner of 

the graph performed better and are more robust. Colour legend: Selection 1 (black), Selection 2 

(blue), Selection 3 (red), Selection 4 (green), Selection 5 (purple), Selection 6 (orange), Selection 7 

(white). 

In the scenario where only terrain attributes are used (diamonds in Figure 4.3), 

Selection 1 performed the best, followed by the three selections that include three terrain 

attributes from Selection 1 (Selections 5, 6, and 7). The same pattern was observed when 

combining the selections with the three backscatter derivatives (triangles in Figure 4.3). A 

different pattern arose when adding bathymetry to the selections, one in which Selection 1 

performed second best behind Selection 6. However, the 95% confidence intervals 

measured around the AUC values show that the difference in performances between 
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Selection 1 and 6 are not significant for the two scenarios where Selection 6 performed 

better than Selection 1. 

4.3.2.2 Generalizability  

Figure 4.4 shows the generalizability of the 29 SDMs. Models with higher AUCTrain 

fitted better the training data while models with lower AUCDiff predicted more efficiently 

the validation data. Models with high AUCTrain and low AUCDiff are therefore the most 

generalizable, as they do not over-fit the training data (Palialexis et al., 2011). Figure 4.4 

shows that the models that included bathymetry (scenarios with seven and ten layers; 

squares and circles in Figure 4.4) are more similar than the other models, especially for 

the models that combined ten input layers. 

Models that used only terrain attributes or combined them with backscatter 

derivatives (diamonds or triangles in Figure 4.4) showed similar patterns, where the best 

models in terms of AUCTrain also had a higher AUCDiff, an indication that the best models 

were also the ones that over-fitted the data the most. In those two scenarios, Selection 1 

clearly stands out as a good trade-off between predictive ability and over-fitting of data, 

making it the most likely to be generalizable and to perform well. When considering 

bathymetry (squares and circles in Figure 4.4), a similar pattern emerged whether or not 

the backscatter derivatives were added: Selections 1, 3 and 6 stand out as being more 

generalizable. Selections 7 and 4 have the highest AUCTrain, but also the highest AUCDiff, 

therefore having a tendency to over-fit the training data. 
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Figure 4.4: Generalizability of the 29 MaxEnt models. Models closer to the top-left corner are more 

generalizable as they performed well on the training data and replicated well to the validation data. 

See Figure 4.3 for colour legend. 

4.3.2.3 Variables Contribution 

The percentage of contribution of each variable used as input in the 29 models can be 

found in Figure D.2 of Appendix D. When used, bathymetry and two of the backscatter 

derivatives (Q1 and Q2) contributed the most to the models, with a respective average of 

39.2%, 25.4% and 19.6% for the 15 models that used them. Bathymetry contributed less 

to the models that include local mean as input, resulting from the high collinearity 

between these two variables; when two variables are correlated, MaxEnt is known to 

assign a more important percentage contribution to one of the two and a lower one to the 
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other (Khatchikian et al., 2011). Consequently, local mean is a surrogate of bathymetry 

and appears as an important variable, with an average contribution of 51.2% for the 12 

models that include it. In general, measures of rugosity like standard deviation and vector 

ruggedness measure also contributed to the models.  

The analysis of changes in model gain based on the jackknife procedure described 

the impact on model gain of removing each variable from the models, in addition to 

provide what would be the model gain if each variable would be used alone. This analysis 

provided additional information on the variables contribution and the performance of 

models. In MaxEnt, a variable with a high gain when used alone in a model contributes 

useful information to the model (Khatchikian et al., 2011). On the other hand, a variable 

that contributes unique information to a model makes the gain decrease when it is 

excluded from the model (Khatchikian et al., 2011). In this study, all variables in all 

models provided unique information in training the models, except for the four models 

that included Selection 2. In terms of transferability of this uniqueness to the training data 

(i.e. if the variables still provide unique information when applied to the validation data), 

Selection 1 performed better than the others in three of the four scenarios. It only failed to 

outperform the other selections when ten layers were used, likely due to spatial 

correlations between local mean and bathymetry, and slope and local standard deviation. 

Regarding usefulness, Selection 1 generally did not provide as many useful variables to 

the models being trained as the other selections. However, these useful variables were 

generally also useful for the validation data, thus transferable, which was not the case for 

the other selections. For instance, Selection 1 in combination with bathymetry and the 
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backscatter derivatives had six variables providing useful information to the trained 

model, and these six variables were all useful for the validation data, an indication of 

robustness and generalizability. Finally, only two models would not have reached a 

higher AUCTest if any one of their inputs were removed: Selection 1 combined with the 

backscatter derivatives and Selection 1 combined with bathymetry. 

4.3.2.4 Spatial Variations of Predictions from Different Selections 

The model computed from the combination of Selection 1 with bathymetry and the 

backscatter derivatives showed the best trade-off between robustness, uniqueness and 

generalizability. It was therefore used as a reference to spatially compare the outputs of 

comparable models, i.e. those computed with ten layers (Table 4.2). The most similar 

model to the reference one, based on a ±5% margin in probability distribution, was the 

model computed with Selection 5 (81.4% similar). The lowest similarity was 64.6% 

(Selection 3). In average, the six other models were 71.1% similar to the one made from 

Selection 1. The map produced without terrain morphology had a spatial similarity index 

of 66.9% with the map from Selection 1 combined with bathymetry and the backscatter 

derivatives. 

4.4 Discussion 

4.4.1 Framework for Terrain Attribute Selection 

The operational framework proposed in Lecours et al. (submitted) was based on two 

literature-grounded assumptions: fractal-based surfaces created with spectral synthesis are 

appropriate representations of natural surfaces (Peitgen & Saupe, 1988; Chipperfield et 
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al., 2011), and the scale-invariance property of fractals allows results to be generalized to 

other spatial scales (i.e. different resolution and/or extent) (Pfeifer, 1984; Keitt. 2000). 

Artificial surfaces proved their value in ecology (With & King, 1997) and 

geomorphometry (Jones, 1998). DTMs of real terrains are actually geographic 

“representations” of real terrains, thus in theory no different than DTMs representing 

artificial terrains with characteristics found in real terrains. However, a number of authors 

argue that fractal-based surfaces should be limited to the development of null hypotheses 

(With & King, 1997). The debate is still unsettled; while some claim that “it is 

heuristically clear that seafloor or landscape topography is best described by fractal 

geometry” (Herzfeld & Overbeck, 1999, p. 981), others prefer to argue that despite 

demonstrating fractal-like properties (Milne, 1992), real terrains are not perfectly fractal 

(Halley et al., 2004). Without necessarily contributing to this debate, the current study 

confirmed that results gained from the artificial fractal surfaces in Lecours et al. 

(submitted) hold when using a DTM representation of a real terrain (i.e. German Bank) at 

another spatial scale (i.e. an extent of 3,650 km
2
 represented at 50 m resolution). 

Consequently, it confirmed the appropriateness of the proposed framework for selecting 

terrain attributes and its application to any terrestrial and marine ecological application, 

regardless of the scale of the environmental data. 

4.4.2 Selections of Terrain Attributes 

The findings from this study, utilizing MBES-derived surfaces from German Bank, 

support many of the findings presented by Lecours et al. (submitted) based on terrain 

attributes generated from artificial surfaces. First, the proposed selection of terrain 
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attributes performed better than the other selections tested, both in the application of top-

down and bottom-up approaches to habitat mapping: they generally (1) produced more 

accurate habitat maps, (2) better discriminated individual habitat types, (3) produced 

SDMs with higher AUC values, (4) produced more robust and generalizable SDMs, (5) 

provided SDMs with the most variables carrying unique information, and (6) had the 

highest number of variables carrying useful information that replicated well to the 

validation data. Using real data, these results confirm that the six recommended terrain 

attributes best describe the topographic structure of the terrain by capturing different and 

unique characteristics of the terrain. Results also indicate robustness and generalizability 

of the proposed framework. Many aspects of this study highlighted better performances 

of Selection 1 compared to Selections 2, 3 and 4, thus confirming the limited ability of 

these three selections to adequately and fully describe terrain geomorphology. 

4.4.3 Terrain Morphology as an Environmental Factor 

Results of both types of classifications indicate that bathymetry and substrate 

characteristics (for which the backscatter derivatives were a proxy) had a positive, and 

sometimes more important impact on the performance of the classifications than terrain 

morphology (quantified through terrain attributes); adding bathymetry and the backscatter 

derivatives to terrain attribute variables often increased map accuracy for both 

benthoscape and sea scallop suitability distributions on German Bank. For the 

unsupervised classifications, only two of the five bottom types (glacial till and reefs) 

seemed to be driven to a certain level by local geomorphology. In addition, reefs and 

rippled silt were poorly discriminated by a majority of classifications, likely because their 
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distribution is influenced by other environmental factors or that the variables tested were 

measured and analyzed at a scale that did not match the scale of the relevant 

geomorphological features (Lecours et al., 2015). In agreement with results from Brown 

et al. (2012), the MaxEnt analysis showed that bathymetry, sediment properties and 

rugosity are important variables in predicting sea scallops distribution, but that aspect, 

slope and relative position are not. Only four SDMs out of 28 performed better than the 

model with no topography (only bathymetry and the three backscatter derivatives).  

Other variables (e.g. physical, oceanographic, ecological) may drive particular 

species or assemblage distributions more than terrain geomorphology. However, they 

were not used in this study as they were not available at the same spatial scale as the 

MBES data. When including more variables, users need to keep in mind that covariation 

may influence models like MaxEnt. If an oceanographic variable is correlated with a 

terrain characteristic, the user needs to keep only one of them. This is also true of the 

proposed selection of terrain attributes; as demonstrated in Lecours et al. (submitted) and 

confirmed in the current study, each of the six proposed terrain attributes captures a 

unique characteristic of the terrain, but some of these characteristics may be spatially 

correlated in a certain area. 

The framework for selecting terrain attributes for ecological studies proposed by 

Lecours et al. (submitted), and supported by the findings of this study, aims at helping the 

end-users select a robust combination of terrain attributes that best captures the different 

characteristics of terrain geomorphology. The recommended selection of six terrain 

attributes serves as a guide as to which set of attributes should be tested in order to 
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achieve the best outcome. It provides end-users with an optimal set of attributes, from 

which a subset combined with other environmental variables can result in a high accuracy 

map or model output. The best results will not necessarily come from the use of all six 

terrain attributes, but may only come from some of them. For instance, if particular 

terrain characteristics have no ecological meaning in an application, using the terrain 

attributes that capture these characteristics will not yield the best outcome. It is therefore 

highly site and case specific as to which variables should be included (Lecours et al., 

2015). Nonetheless, the recommended approach provides the optimal starting point from 

which terrain attributes can be selected. 

4.4.4 Consequences of Variable Selection 

Results highlight the importance of appropriately selecting input variables in both 

unsupervised and supervised classifications, and consequently the inappropriateness of 

making such selection arbitrarily. For instance, the benthoscape map generated from the 

combination of Selection 1 with bathymetry and the backscatter derivatives yielded an 

overall accuracy and a kappa coefficient of agreement that are respectively only 0.2% and 

0.6% different than the map built from Selection 6, bathymetry and the backscatter 

derivatives. It would be quite intuitive to interpret the difference in map outputs as 

insignificant based only on these measures of accuracy. However, 10.0% of the study area 

was classified differently by these two classifications, an area corresponding to about 362 

km
2
. In addition, the differences occurred in all regions of the study area and across all 

the habitat types. In the worst case scenario (i.e. the difference between Selection 4 and 

Selection 1, Table 4.2), the total area that was mapped differently covers over 2,115 km
2
. 
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The results of this study indicate that a subjective selection of terrain attributes could 

potentially provide a map that is in average 26.7% different in terms of the location and 

boundaries of benthoscape classes, which has serious implications for ecological 

applications that use these maps and models for decision-making. 

4.4.5 Comparisons with Other Studies: Terrestrial and Marine  

Many different terrain attribute selections have been used in terrestrial and marine 

ecology (Bouchet et al., 2016; Lecours et al., 2016; references therein). In a meta-analysis 

of ecological studies using geomorphometry, Bouchet et al. (2015) found that about a 

third of the studies only used one terrain attribute and that very few authors used more 

than four. While focusing on forest ecosystems, Sharaya & Sharyi (2011) wrote that in 

general, one to three basic terrain attributes are used to study landscape phenomena and 

that the “insufficient representativeness” (ibid, p. 2) of terrain attributes makes for an 

inefficient use of topography as a variable in ecology. In a management context and using 

the same dataset as in the current study, Brown et al. (2012) selected six terrain attributes 

based on previous use in marine ecology studies and “iterative testing of a large number 

of different layers by the authors” (ibid, p. 3). This relatively subjective way of selecting 

terrain attributes is the most common one in ecology. However, it provides many 

significant and valid insights for many applications; most of the common terrain attributes 

found in the ecological literature (e.g. local mean, slope, aspect) (Bouchet et al., 2015) are 

part of our proposed selection, or are related to one of the proposed attributes. For 

instance, different types of curvature are commonly used, which Lecours et al. 

(submitted) found to be correlated to the recommended relative difference to mean value, 
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although more ambiguously defined and thus not included in the recommended selection. 

Despite using a subjective selection of terrain attributes, Brown et al. (2012) yielded valid 

results. Their MaxEnt model had a high predictive capacity, although it had some level of 

over-fitting and was less robust than some of the best models of the current study. If 

implemented in the current study using the same method, an unsupervised classification 

made from their selection of variables would rank amongst the best benthoscape maps 

and be 90.8% similar to the map built with Selection 1 and the four other environmental 

variables. This demonstrates that despite potentially resulting in huge differences (cf. 

“Consequences of Variable Selection” above), subjective selection of terrain attributes 

can sometimes produce relevant and valid results. 

Finally, the observed differences between the overall accuracy measures and the 

kappa coefficients of agreement confirm that the overall accuracy might be a poor guide 

of the value of a classification, something that has been already argued in the literature 

(Felix & Binney, 1989; Fielding & Bell, 1997). Based on our results, we recommend the 

kappa coefficient as a more appropriate measure than the overall accuracy for ecological 

mapping. 

4.5 Conclusion 

Selecting the most appropriate environmental variables to use in a specific study can 

be very challenging. This study demonstrated the importance of carefully selecting 

variables for ecological work; maps and models that perform similarly can still produce 

very different spatial outcomes, which can have important implications when these maps 

and models are used in decision-making for conservation and management. Using two 
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different approaches to habitat mapping, this paper also confirmed that the selection of 

terrain attributes recommended in Lecours et al. (submitted) performs better than other 

selections, thus serving as a guide to make better use of geomorphometry in ecology. 

Results also showed that while this selection of terrain attributes ensures that most of the 

local topographic structure is captured when performing terrestrial or marine ecological 

studies, and while terrain morphology can help improve maps and models, it is not always 

the most important environmental factor for all ecological applications. The relationship 

between terrain morphology and ecological phenomena is species, area and scale-

dependent (Lecours et al., 2015). The use of the proposed selection of terrain attributes, in 

combination with other environmental variables (e.g. precipitations, climate, currents), 

will help ecologists produce more robust analyses and generate maps and models with a 

higher degree of confidence. In order to get the best representation of the environment as 

possible and to best inform policy, conservation and management efforts, we recommend 

(1) that stakeholders prepare more than a single map using different combinations of 

environmental variables, and (2) that they select the best outcome based on map accuracy 

or model performance quantification. 
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5. A Multiscale Analysis of the Impact of Artefacts in Multibeam 

Bathymetric Data on Terrain Attributes 

5.1 Introduction 

In recent years, the growing availability of remotely sensed data and the diversity of 

geospatial tools, such as geographic information systems (GIS), have revolutionized the 

science of geomorphometry that studies the quantitative measurement of terrain 

morphology. Geomorphometric analyses are commonly conducted in five steps (Pike et 

al., 2009): (1) sampling the terrain, (2) generating a digital terrain model (DTM) from the 

samples, (3) processing the DTM to prepare it for the next step, (4) generating terrain 

attributes (e.g. slope, aspect, rugosity) or extracting terrain features (e.g. ridges, channels, 

peaks), and (5) employing these surfaces to answer a specific question or to use in further 

statistical analyses. The third step, the processing of the DTM, usually involves the 

detection and possibly correction of artefacts, noise and systematic errors (Wise, 2000; 

Pike et al., 2009). Artefacts are “distinct erratic features”, often but not always systematic 

in nature, caused by unrealistic, erroneous values (Reuter et al., 2009, p.91). They can 

potentially be found in all types of DTMs, regardless of the data collection technique and 

the interpolation method used to generate the surface (Gessler et al., 2009). In terrestrial 

DTMs, or Digital Elevation Models (DEM), artefacts can be obvious, very subtle, or 

invisible (Regan et al., 2002; Albani & Klinkenberg, 2003). Artefacts were shown to 

impact data quality more than random noise (Rousseaux, 2003; Van Niel et al., 2004), 

and to propagate and sometimes amplify in derived terrain attributes like curvature 
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(Temme et al., 2009; Sofia et al., 2013). Despite this, DTMs and other remotely sensed 

data are often analyzed by end-users as if they were error-free and a real surface, rather 

than a representation or model of a real surface. This was observed both on land (e.g. 

Evans, 1997; Oksanen & Sarjakoski, 2005) and underwater (e.g. Dolan & Lucieer, 2014). 

Developments in geomorphometry have traditionally focused on the exploration of 

terrestrial and extra-terrestrial environments, but recent efforts have been made to 

highlight the need for a dedicated science of marine geomorphometry (Lecours et al., 

2015a; 2016); the nature of the marine environment and the techniques used to sample 

depth have implications for the subsequent geomorphometric analyses that are different 

than in terrestrial applications. The increased availability of multibeam echosounder 

systems (MBES) that enable the collection of reliable continuous underwater terrain data 

(i.e. bathymetry) (Brown et al., 2011; Erikstad et al., 2013) has revolutionized several 

fields of research and applications like marine habitat mapping (Smith & McConnaughey, 

2016) and marine geomorphology (Hughes-Clarke et al., 1996). MBES bathymetric data, 

or Digital Bathymetric Models (DBM), are now commonly used in GIS to derive terrain 

attributes that can be used as surrogates for other phenomena in different disciplines 

(Lecours et al., 2016). For instance, measures of aspect, which informs on the orientation 

of the slope, can act as a proxy of currents in hydrodynamics modelling (Gille et al., 

2004) or of food supply in habitat mapping (e.g. Tong et al., 2013). Rugosity has also 

been shown to be a good surrogate of biodiversity: complex habitats are known to shelter 

higher levels of biodiversity than less complex areas (e.g. Kostylev et al., 2005; Dunn & 

Halpin, 2009).  
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DBM are more prone to errors and artefacts than DEM for several reasons (also see 

discussion in Lecours et al., 2016). First, the motion of the supporting platform, which 

can be a ship, a remotely operated vehicle (ROV), or an autonomous underwater vehicle 

(AUV), is more influenced by environmental conditions (e.g. wind, currents, waves, 

tides) than are airborne platforms or satellites. Second, similarly to the influence of 

atmospheric conditions on electromagnetic radiations, the properties of the water column 

(i.e. temperature, salinity and pressure) strongly influence sound waves propagation 

(Jianhu & Jingnan, 2003). However, water properties are less predictable than 

atmospheric conditions as they demonstrate finer spatial and temporal variability and are 

more difficult to measure at an appropriate scale (Cushman-Roisin & Beckers, 2011). 

Consequently, it is sometimes difficult to account for the effect of these properties on 

sound waves, which may result in what is called “refraction artefacts” in the DBM (see 

Lurton, 2010). Third, when using underwater platforms such as ROV and AUV, the 

quality of the DBM is limited by the precision and accuracy of ancillary data; because of 

the inability of GPS to work underwater, additional instruments (e.g. ultra-short baseline, 

Doppler velocity log) need to be integrated to the system, which can result in issues of 

positional accuracy, timing, and data logging (Lecours & Devillers, 2015). Finally, the 

limitations of instruments like inertial measurement units (IMU) and GPS receivers to 

measure truly continuous phenomena like the movement of the platform caused by wave 

actions prevent the appropriate (continuous) correction of data (Hughes-Clarke et al., 

1996; Zhao et al., 2007). As a result of the combination of these elements, most DBMs 

generated from MBES data present a certain level of artefacts (Hughes-Clarke, 2003a; 
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Roman & Singh, 2006) that can be directly visible in published works (e.g. Lucieer et al., 

2012; Georgian et al., 2014). Since artefacts are usually within hydrographic error 

standards (Hughes-Clarke, 2003a), they are typically considered as acceptable in 

hydrography. However, problems may arise when such data are used by end-users (e.g. 

habitat mappers, ecologists, geologists) with limited knowledge about the characteristics 

of the data and how they were collected: the presence of artefacts can lead to 

misinterpretation of seafloor features, patterns and processes in many disciplines (de 

Moustier & Kleinrock, 1986; Hughes-Clarke et al., 1996). 

While each of the five steps of geomorphometry has been extensively studied in 

terrestrial settings (Hengl & Reuters, 2009), marine geomorphometry studies have mainly 

focused on the two last steps. There have been studies that looked at errors and 

uncertainty in DBMs, particularly in the hydrographic surveying literature: some work 

has been done on quantifying uncertainty propagation at the data collection level (e.g. 

Calder & Mayer, 2003), identifying the cause of artefacts (Hughes-Clarke, 2003a), and 

reducing refraction and motion artefacts in post-processing (Yang et al., 2007; Landmark 

et al., 2015). However, despite their prevalence, there has been no studies of how 

artefacts in bathymetry can impact the derivation of terrain attributes, resulting in little 

understanding of artefacts influence on the geomorphometric workflow, even though “we 

are more often than not interested in how these errors and artifacts influence our analysis 

rather than elevation [or depth] per se” (Wilson, 2012, p. 108).  

As reviewed in Lecours et al. (2016), most marine geomorphometry applications 

tend to overlook the presence of artefacts that are not removed in post-processing, using 
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judgement to exclude them for practical purposes. Some methods for dealing with 

artefacts have been proposed in both the terrestrial (e.g. Lindsay & Creed, 2006) and 

marine (e.g. Hughes-Clarke, 2003a; Landmark et al., 2015) literature, but are not widely 

used in a more applied context. There could be many reasons for this. First, it could be 

because of the lack of implementation of proper tools in software that are easily 

accessible to end-users, like open-source GIS (Bonin & Rousseaux, 2005). It could also 

be because spatial analysts cannot always access the hydrographic software to improve 

the output. Finally, the data may simply be of poor quality. Principles of error 

propagation make artefacts in DBM very likely to impact any subsequent analyses 

regardless of context (Heuvelink, 1998; Bangen et al., 2014). A goal of this paper is to 

start answering the call made by Wilson (2012, p.117) to improve “knowledge of the 

presence of and propagation of errors” in remote sensing data sources, namely in MBES 

data, as previously done by Fisher & Tate (2006) for other technologies. The specific 

objectives are (1) to assess how different types of artefacts in DBMs impact derived 

terrain attributes for marine geomorphometric applications, (2) to assess if those impacts 

vary with spatial scale, and (3) to explore the role of sampling density in attenuating or 

increasing the influence of artefacts. 

5.2 Material and Methods 

5.2.1 Data 

An area covering 3,650 km
2
 of German Bank, off Nova Scotia, Canada, was mapped 

by the Canadian Hydrographic Service (CHS) (Figure 5.1) using a Simrad Subsea 
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EM1000 MBES attached to the hydrographic Canadian Coast Guard Ship “Frederick G. 

Creed”. This vessel is a Small Waterplane Area Twin Hull (SWATH) designed to limit 

the impact of sea surface conditions on the ship, making it a highly suitable platform for 

bathymetric data collection: Collins et al. (2005) showed that in the same conditions, the 

range of motion of a SWATH vessel was about half the range recorded by a more 

traditional single-hull vessel. Details of the German Bank surveys are described in DFO 

(2006) and Brown et al. (2012). Raw data (i.e. soundings) were imported in the 

bathymetric processing software CARIS HIPS and SIPS, were corrected for tide, motion, 

and sound velocity, and erroneous soundings were removed. This standard post-

processing was performed by the CHS. Corrected soundings were used to generate 

reference DBMs at five different spatial resolutions (10 m, 25 m, 50 m, 75 m, and 100 m), 

using the interpolation algorithm “swath angle” in CARIS HIPS and SIPS. While no 

terrain models can really be free of artefacts, these five surfaces were assumed artefact-

free and considered as reference surfaces for further analysis, as done in other studies 

(e.g. Sofia et al., 2013). While some artefacts were present – although very subtle (cf. 

Figure 5.1) – in the data associated with the deeper areas of German Bank, their 

amplitude was small compared to that of artefacts introduced in this study (see below).
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Figure 5.1: 50 m resolution DBM of German Bank (top) with its six terrain attributes derived 

(bottom). Two specific sub-areas, one in shallower waters (A) and one in deeper waters (B), were used 

in the analyses and are indicated by a black square in the main map. 
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Four types of artefacts that are typical sources of error in bathymetric surveys were 

chosen for this study based on their impact on the bathymetric data: heave, pitch, roll and 

time artefacts. The first three often result from misalignments among the different 

systems during calibration or an inappropriate correction of motion, whilst time can be 

caused by an improper synchronisation of the different components used in data 

collection. Pitch induces a horizontal displacement of soundings – either ahead or behind 

the platform – while heave induces a vertical shift of the soundings. Roll impacts the 

outer beams in the vertical plane and thus affects areas that overlap between different 

survey lines. Finally, time synchronisation error can shift adjacent survey lines on the 

horizontal plane. Animated visual representations of the effect of these artefacts on 

bathymetric data can be found in Hughes-Clarke (1997, 2002), and details on how these 

artefacts occur, their characteristics and how they alter DBMs can be found in Hughes-

Clarke (1996, 2003a, 2003b) and Lurton (2010). We also note that these four types of 

artefacts form only a subset of the different possible types of artefacts and were chosen 

based on their prevalence in other studies. However, some of the results gained in the 

current study can potentially be extrapolated to other types of artefacts: different authors 

have mentioned that artefacts caused by roll are very similar to those caused by 

refraction, that imperfect tide correction can have a similar impact to an improper 

calibration of heave, that heading artefacts are thought to behave similarly than time 

artefacts, and that in some cases a heading misalignment can also introduce roll and pitch 

errors (Hughes-Clarke, 2003a; Roman & Singh, 2006; Yang et al., 2007). 
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The recorded ship motion at the time of the surveys was used to compute statistics on 

the vessel’s range of motion (Table 5.1). CARIS HIPS and SIPS was then used to 

introduce artificial motion artefacts in the original data: within the vessel configuration 

file, calibration values of roll, pitch and heave were altered at 10 different levels based on 

the standard deviation of the recorded motion (Table 5.1). Time artefacts were simulated 

by inducing time delays between sensors. The time delays were arbitrarily chosen to 

encompass the range of calibration values used by the CHS: five calibration values 

ranging from -0.70 to 0.26 seconds (Table 5.1). These alterations applied artificial 

systematic corrections to the raw soundings that were then used to generate new DBMs 

with artefacts at the five scales of study, totalizing 200 altered surfaces (i.e. 10 levels of 

artefacts for four types of artefacts at five spatial scales). We acknowledge that systematic 

errors are not the only type of errors found in bathymetric data, but they provide 

controlled conditions that enable direct comparisons of results. Such approach is 

commonly adopted in geomorphometry to evaluate terrain attributes sensitivity to 

properties of the input DBMs (Florinsky, 1998; Zhou & Liu, 2004; Reuter et al., 2009). 

We also acknowledge that while many surveying systems have internal quality control 

filters and would potentially flag some of these artefacts when surveying from a surface 

vessel, this is not necessarily the case when surveying from a submersible platform in 

deeper waters, where the uncertainty associated with different components of the system 

is known to prevent the appropriate correction of motion and to contribute to the presence 

of artefacts (Lecours et al., 2013; Lecours & Devillers, 2015). 
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Table 5.1: Statistics of the range of motion recorded during the surveys, and levels of artefact induced 

to the five reference DBMs. Statistics for time values are based on the five calibration values used by 

the CHS. The sign convention used is positive pitch with the bow up and positive roll with the port 

side up. 

 

As recommended in Chapter 3, a combination of six terrain attributes that together 

best capture the topographic variability of an area were derived from the reference and 

altered DBMs: relative difference from mean value (RDMV) (i.e. a measure of 

topographic position), local standard deviation (i.e. a measure of rugosity), easterness and 

northerness (i.e. measures of orientation), local mean, and slope using Horn’s (1981) 

algorithm. A total of 1,230 terrain attribute surfaces were generated (30 from the 

reference surfaces and 1,200 computed from the altered DBMs) using the TASSE toolbox 

for ArcGIS (Lecours, 2015). Examples computed from the 50 m resolution DBM are 

presented in Figure 5.1. For the remainder of this paper, in order to avoid confusion with 

statistical terms, RDMV will be referred as topographic position, local standard deviation 

as rugosity, and local mean as topographic mean. 

Analyses were performed on the full extent of the study area and on two sub-areas 

(Figure 5.1) to evaluate differences in the effect of artefacts based on sampling density 

(cf. third objective). The two sub-areas were selected for having similar depth distribution 

characteristics and similar complexity (quantified with fractal dimension), but different 

density and total amount of soundings (i.e. data density) (Table 5.2). 

-5σ -4σ -3σ -2σ -σ σ 2σ 3σ 4σ 5σ

4094390 -0.16 0.33 -2.72 21.27 Heave (m) -1.65 -1.32 -0.99 -0.66 -0.33 0.33 0.66 0.99 1.32 1.65

4094382 -0.76 1.65 -9.88 8.94 Pitch (°) -8.25 -6.60 -4.95 -3.30 -1.65 1.65 3.30 4.95 6.60 8.25

4077894 -0.24 1.01 -11.95 10.04 Roll (°) -5.05 -4.04 -3.03 -2.02 -1.01 1.01 2.02 3.03 4.04 5.05

5 -0.07 0.37 -0.70 0.26 Time (s) -1.25 -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 1.25

Standard 

Deviation
Mean

Total 

Records
MaximumMinimum

Level of Induced Artefact
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Table 5.2: Comparison of the characteristics of the shallower (A in Figure 5.1) and the deeper (B in 

Figure 5.1) sub-areas. 

 

5.2.2 Comparisons 

Four elements were studied for bathymetric and terrain attributes surfaces: (1) how 

the reference surfaces’ spatial and statistical distributions vary with spatial scale, (2) the 

spatial similarity of the altered surfaces to the reference surfaces, (3) the error induced by 

the artefacts in the altered surfaces, and (4) the impacts of artefacts on the values of the 

different surfaces (e.g. depth or slope values). Spatial similarity between surfaces was 

quantified using a correlation coefficient (r). The impact of scale and artefacts on the 

values of the different surfaces was quantified using different descriptive statistics: range 

of values, mean, standard deviation, distribution (quantified through skewness and 

kurtosis), spatial autocorrelation (Moran’s I), and fractal dimension (i.e. representation of 

terrain complexity; only for bathymetry and topographic mean). The error induced was 

considered as the absolute difference between the altered bathymetric and terrain attribute 

Shallower    

Sub-Area (A)

Deeper       

Sub-Area (B)

Minimum 1 1

Maximum 121 24

Mean 33.4 6.9

Standard 

Deviation
16.5 4.2

208,129 42,896

Mean -21.94 -134.12

Range 14.48 14.47

Standard 

Deviation
2.14 2.71

Skewness -0.10 -0.14

Kurtosis 2.71 2.42

Moran's I 0.97 0.98

2.42 2.44Fractal Dimension

Density of 

Soundings per Pixel 

(10m Resolution)

Total Number of Soundings in 

the Area

Statistics of Depth 

Values
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surfaces and their respective reference surfaces (Zhang et al., 2014). Absolute differences 

were calculated using ArcGIS 10.2.2, and were used to avoid having mean errors of zero 

(Wise, 2011a). Visual representations of error for each type of artefacts are presented in 

Figure 5.2 and Figure 5.3 using the two sub-areas. As done in other studies (Fisher, 1998; 

Holmes et al., 2000; Van Niel et al., 2004), the same statistics as for the previous analysis 

were calculated to characterize the error, except for fractal dimension that has no meaning 

in this case. These statistics were computed using a combination of tools from the GIS 

software ArcGIS 10.2.2, WhiteBox GAT 3.3, and LandSerf 2.3. Spatial similarity among 

the different levels of error was also calculated to estimate if the error affects the same 

locations based on the intensity of the artefact.  

To enable comparisons of the impact of artefacts on bathymetric data and terrain 

attributes that have different units and ranges of possible values, statistical changes (e.g. 

in mean or correlation) were modelled against the amplitude of artefacts using quadratic 

regressions, thus enabling the comparison of rates of change (i.e. the first term of the 

equations). The relationships between the statistics of errors and the amplitude of artefact 

were also modelled with quadratic regressions, while the relationships between scale and 

the different surfaces were modelled using linear regressions. The quadratic regressions 

provided the best fit for the studied relationships. The proportion of the variance 

explained by the models was assessed with coefficients of determination (r
2
), model 

significance was assessed using the F statistic of overall significance based on model 

residuals, and the significance of each term in the regression equations was assessed using 

Student’s t-test. All significance tests were performed using ρ = 0.05. 
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Figure 5.2: The reference panels to the left show the bathymetry and terrain attributes of the 

shallower sub-area, A, at 10 m resolution (2.5 km by 2.5 km; same colour scheme as Figure 5.1). The 

panels to the right show examples of error (absolute difference between the reference and altered 

surfaces) for that sub-area. The level of error represented is the highest one (5σ, Table 5.1). Numbers 

in the right margins indicate error ranges (note differences in scales). Colours range from yellow 

(lowest) to red (highest). 



171 

 

 

 

Figure 5.3: The reference panels to the left show the bathymetry and terrain attributes of the deeper 

sub-area, B, at 10 m resoltuion (2.5 km by 2.5 km; same colour scheme as Figure 5.1). The panels to 

the right show examples of error (absolute difference between the reference and altered surfaces) for 

that sub-area. The level of error represented is the highest one (5σ, Table 5.1). Numbers in the right 

margins indicate error ranges (note differences in scales). Colours range from yellow (lowest) to red 

(highest). 
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5.3 Results and Interpretation 

5.3.1 Reference Surfaces (No Artefact) 

Figure 5.4 shows correlations between the reference bathymetric and terrain attribute 

surfaces at 10 m resolution and their corresponding surfaces at the four other scales. 

While no correlation was perfect, bathymetry and topographic mean had an r value very 

close to 1 for the full extent (r = 0.996 for bathymetry and r = 0.995 for topographic mean 

at 100 m resolution) and the deeper sub-area (r = 0.999 for both types of surface at 100 m 

resolution). Overall, topographic mean was always the least impacted by change in spatial 

resolution, followed by bathymetry. The most impacted was always topographic position, 

having the sharpest drop in correlation strength between 10 m and 25 m resolution, and 

consistently the lowest overall correlations. In general, changes in correlation were 

smaller for the full extent than for the sub-areas, except for bathymetry and topographic 

mean in the deeper sub-area that showed the smallest changes in correlation. When 

comparing the two sub-areas, bathymetry, topographic mean and rugosity changed more 

with spatial resolution in the shallower sub-area than in the deeper one. An opposite trend 

was observed for measures of easterness, which can be caused by the orientation of the 

seabed features found in the different areas. No consistent trend was found for 

northerness, slope and topographic position. Overall, these results show that different 

characteristics of the terrain are captured when the spatial resolution at which the terrain 

attributes are derived changes. 
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Figure 5.4: Correlations between the 10 m resolution surfaces and the same surfaces computed at 

different scales. For instance, the 50 m topographic position surface of the full study area is 

correlated at about 0.10 with the 10 m topographic position surface of the full area.  

Table 5.3 summarizes changes in statistics as spatial resolution changed, quantified 

using linear regression models, which provided the best fit to the data. When looking at 

the full extent of the study area, significant models adequately explained the observed 

relationships, having r
2
 values ranging from 0.793 to 0.998 (average of 0.935). In general, 

the range of values of the surfaces decreased as the spatial resolution of the surfaces 

coarsened, except for easterness and northerness. The mean and standard deviation of 

slope and northerness decreased with coarser spatial resolution and increased for rugosity. 

The mean of easterness values decreased with coarser resolutions while their standard 

deviation increased. In terms of statistical distribution of the values (i.e. skewness and 

kurtosis), bathymetry, topographic position and topographic mean tended towards a 

normal distribution, easterness and northerness were symmetrical but slightly platykurtic, 

and rugosity and slope were skewed right and leptokurtic. The distribution of bathymetry, 

topographic mean, slope and rugosity values did not change with scale. As scale 
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coarsened, the distribution of topographic position became more left-skewed. The 

skewness and kurtosis values of northerness increased with spatial resolution, while only 

skewness increased significantly for easterness. Spatial autocorrelation was positive at all 

scales for all surfaces except for topographic position values that were not autocorrelated. 

In all cases but northerness, models showed that spatial autocorrelation decreased with 

coarsening spatial resolution. Finally, the fractal dimension of bathymetry increased with 

coarser scales, and fractal dimension values of topographic mean were always smaller 

than those of bathymetry. 

Table 5.3: Change in statistical distribution of values with coarsening scales, based on linear 

regressions. Grey cells indicate non-significant relationships (assessed with the F statistic). White cells 

indicate significant relationship; the sign in them indicates whether the equations had a positive or 

negative slope. 

 

Range Mean
Standard 

Deviation
Skewness Kurtosis

Spatial 

Autocorrelation

Fractal 

Dimension

Full Extent - - +

Shallower Area - +

Deeper Area - - - -

Full Extent - -

Shallower Area - - -

Deeper Area - - - -

Full Extent - + + -

Shallower Area - + - -

Deeper Area - - + +

Full Extent - - + +

Shallower Area - - +

Deeper Area - - + +

Full Extent - - - -

Shallower Area - - - - -

Deeper Area - - - -

Full Extent - + + -

Shallower Area + + + - - -

Deeper Area - + + - - -

Full Extent - - -

Shallower Area - +

Deeper Area

Topographic  

Position

Bathymetry

Topographic  

Mean

Easterness

Northerness

Slope

Rugosity
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Significant models for the sub-areas also had high r
2
 values, ranging from 0.774 to 

0.997 (average of 0.921). Some differences in the patterns of change in distribution 

statistics as a function of scale were observed for the sub-areas compared to the full 

extent. First, the fractal dimension of bathymetry decreased with coarsening spatial 

resolution in the deeper sub-area, similarly to the fractal dimension of topographic mean 

in the two sub-areas. Standard deviation of topographic mean values also decreased with 

coarser resolutions in the shallower sub-area, similarly to the range of easterness values. 

The standard deviation of easterness values in the deeper sub-area decreased with 

coarsening scale. The range of rugosity values increased in the shallower sub-area as the 

resolution became coarser, so did the spatial autocorrelation of topographic position 

values. 

5.3.2 Altered Surfaces 

A description of the key results is presented in this section but details are described in 

Appendix E. Three elements are presented in Appendix E for both the full extent and the 

two sub-areas. First, the analysis of spatial similarity between the altered surfaces and the 

reference surfaces, for which 420 regressions were computed, is described. Then, the 

analysis of error modelling is presented. Overall, 2,436 regressions were computed to 

describe changes in errors with artefacts. Finally, results of analysis of changes in 

bathymetric and terrain attributes surfaces caused by the introduction of artefacts are 

presented. A total of 2,548 regressions were computed to describe changes in surfaces 

with artefacts. 
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5.3.2.1 Artefacts 

Results indicate that artefacts impact bathymetry and propagate significantly to its 

derived terrain attributes (cf. Appendix E). 

The assessment of spatial similarity demonstrated that heave artefacts do not alter the 

relative spatial distribution of bathymetry and topographic mean but do alter the spatial 

distribution of values of other terrain attributes. While the mean error, its standard 

deviation and spatial autocorrelation increased with greater heave, it did not affect the 

statistical distribution of any of the bathymetric and terrain attributes surfaces. This is 

explained by the fact that since the heave artefact was induced in a systematic way, it 

shifted all depth values from the reference DBMs by a given height, thus altering the 

absolute values of bathymetry but not their relative values (see Franklin et al., 2000; 

Wise, 2000). Consequently, it did not create actual changes in relief and therefore did not 

alter values of aspect (i.e. easterness and northerness), slope, rugosity and topographic 

position. In the particular case of heave, the necessity to have controlled conditions 

(Reuter et al., 2009) to evaluate the impact of artefacts on DBMs and terrain attributes 

prevented an appropriate representation of what typically occur during surveys. Instead of 

the constant vertical shift induced in this study, heave artefacts are usually recognized as 

irregular vertical shifts that can result in a bathymetric surface characterized by waves 

patterns, as represented in Schmidt et al. (2010). Conclusions gained from the analysis of 

heave are however still transposable to real surveys: Hughes-Clarke (2003b) highlighted 

the difference between relative and absolute alignment of the different sensors. The 

former consist of aligning the different sensors in reference to each other, while the latter 
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consist of positioning the different sensors in the platform’s frame of reference. Hughes-

Clarke (2003b) indicated that the relative alignment is always performed through the 

patch test, but that the absolute alignment is not consistently addressed in calibration 

procedure, which is of concern and can result in systematic position biases (Hughes-

Clarke, 2003a,b), just like the one introduced by the current study design. Such 

systematic bias, often seen in other types of remote sensing like LiDAR (Filin, 2003; 

Lichti & Skaloud, 2010), can be significant for subsequent analyses as they are not 

obvious (Brown & Bara, 1994). The magnitude and direction of the induced bias need to 

be known to correct for them; however these are often challenging to determine (Regan et 

al., 2002; Wilson, 2012). 

The study design provided many insights on how systematic pitch, roll and time 

artefacts influence bathymetric surfaces and their derived terrain attributes. The analysis 

of spatial similarity between altered and reference surfaces showed that pitch generally 

had a negative impact on the relative spatial distribution of depth and terrain attributes 

values. The distribution of errors caused by pitch became less centered on the mean as 

pitch amplitude increased. Pitch also transformed the studied surfaces by altering their 

statistical distribution, particularly their mean, standard deviation, and spatial 

autocorrelation. Pitch decreased spatial autocorrelation of values of most surfaces except 

topographic mean. The decrease in kurtosis and increase in skewness and standard 

deviation of northerness and topographic position suggest an increase in extreme values. 

Error characteristics suggest that pitch impacted the deeper sub-area more than the 

shallower one, which was also confirmed by the statistical distribution of the values in 
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each surface. This could be caused by the higher density of soundings in shallow water 

that could attenuate pitch impact, or could result from the increased effect of angular 

differences with deeper water that shift soundings positions further along-track (i.e. fore 

and aft of the transducer) with increasing water depth. Roll impacted bathymetry and 

terrain attributes even more than pitch in all three studied elements (spatial similarity, 

statistical characteristics of errors, and statistical characteristics of depth and terrain 

attributes values). However, the shallower sub-area appeared to be more impacted by roll 

than the deeper sub-area, suggesting that a higher density of soundings amplifies the 

error. This particular result goes against what would be expected from such angular error: 

in theory, angular errors like those caused by pitch and roll are amplified when the 

sensor-to-seafloor distance increases. We would thus expect from these errors to have 

greater effects in the deeper waters, like what was observed for pitch in this study. 

However, because roll has a greater impact on outer beams, the overlapping areas 

between survey lines would be most impacted by roll; these observations are thus likely 

explained by a higher degree of overlap between survey lines in shallower waters 

compared to in deeper waters. As expected since they induce a shift in the horizontal 

plane, time artefacts changed the relative spatial distribution of values for all types of 

surfaces. In terms of statistical distribution of error, bathymetry and topographic mean 

behaved differently than the other surfaces by becoming more spatially autocorrelated 

with increasing time artefacts. Time artefacts did very little to the statistical distribution 

of the different surfaces, except that it increased spatial autocorrelation in easterness, 

northerness and topographic position values. Although the impacts of time artefacts were 
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subtle compared to those of pitch and roll, the deeper sub-area was more impacted than 

the shallower sub-area, which could be a consequence of using different ping rates; it is 

common to use slower ping rates in deeper waters compared to shallower waters as sound 

takes more time to reach the seafloor and come back towards the sensor. 

Our results provided quantitative confirmation of more anecdotal observations 

previously made in the literature. For instance, while evaluating disparities in bathymetric 

measurements made from repeated surveys, Roman & Singh (2006) observed that pitch 

and roll artefacts did induce important errors in bathymetry. In trying to reduce the 

influence of different errors in bathymetry, Singh et al. (2000) noted that roll was often 

the most significant source of error. Hughes-Clarke et al. (1996) mentioned that roll 

artefacts were more common in deeper waters. Our results showed that while it is true 

that errors caused by roll in DBMs were greater in deeper waters because of their angular 

nature, the impacts on the statistical distribution of bathymetric and terrain attributes 

values were greater in shallower waters, likely because of the overlap between survey 

lines that amplifies the effect of this type of error. 

5.3.2.2 Bathymetry and Terrain Attributes 

As expected for environmental data (Legendre, 1993), bathymetry and most terrain 

attributes were spatially autocorrelated. This was however not true of topographic 

position, a very spatially heterogeneous terrain attributes (cf. Figure 5.1). Likely because 

of this spatial heterogeneity, topographic position was very often the terrain attribute most 

impacted by artefacts. There was however one exception to this observation with roll 
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artefacts, for which slope was the most impacted in terms of loss of spatial similarity with 

the reference slope surfaces, followed by rugosity and topographic position. 

Topographic mean, which is directly related to bathymetry (see Chapter 3), was 

generally the least impacted terrain attribute, and was the only terrain attribute that was 

less impacted than bathymetric surfaces. This confirms observations made in terrestrial 

contexts that errors in DTMs are amplified in terrain attributes (Temme et al., 2009; Sofia 

et al., 2013). For bathymetry and topographic mean, pitch decreased their range and 

standard deviation of values while roll increased these two statistics. This raises questions 

about whether or not the combined effect of these two artefacts (i.e. if they are both 

impacting the same DBM) could be smaller than their individual effect. Often there will 

be multiple problems influencing data, and it is likely that these problems will have a 

combined effect on the resulting surface. Such effect should be documented in future 

work. Both pitch and roll artefacts artificially increased measures of fractal dimension, 

making surface representations (i.e. DBMs) appear more complex than they actually are. 

Roll also decreased spatial autocorrelation and increased standard deviation of depth 

values, likely because of the introduction of local outlier values. 

5.3.2.3 Spatial Scale 

Results yielded several insights in terms of scale. First, the description of the 

reference surfaces confirmed that spatial autocorrelation is scale-dependent 

(Meentemeyer, 1989; Legendre, 1993), changing with both resolution and extent (more 

autocorrelated at finer resolutions and greater extent). In terms of spatial similarity, 

results showed that when the same level of artefact is affecting the data, finer-scale 



181 

 

 

altered surfaces are more dissimilar to the reference surfaces than broader-scale altered 

surfaces. The spatial similarity between bathymetric and topographic mean surfaces of 

different scales was particularly impacted in the shallower sub-area. As expected, the 

descriptive statistics of bathymetric and terrain attributes surfaces, combined with the 

multiscale assessment of spatial similarity, demonstrated that the range of values 

decreases as scale broadens, which results in the attenuation of the observed terrain 

characteristics. This phenomenon has been described many times before, particularly in a 

context of coarse-graining, both in terrestrial (e.g. Chow & Hodgson, 2009; Grohmann, 

2015) and marine DTMs (e.g. Wilson et al., 2007; Rengstorf et al., 2012), although less 

for terrain attributes other than slope. In one of the earliest study, Evans (1980) reported a 

decrease in mean and standard deviation of slope with coarser scales, which was 

confirmed by our results. Northerness also behaved that way, but interestingly easterness’ 

standard deviation increased with coarser scales. This is likely caused by the fact that 

northerness and easterness are the only two measures that cover their entire range of 

possible values (-1 to 1), and that coarsening the scale increases the frequency of the 

minimum and maximum values, which represent for easterness slopes fully oriented 

towards the East of the West. Because of the anisotropy in the dataset, for instance caused 

by the decrease in depth values as one moves west through the study area and which 

causes more slope values to be oriented west, may lead to more extreme measures of 

easterness and explain the increase in standard deviation. Also, the orientation of the 

survey line may cause the artefacts to appear in a specific direction, thus inducing local 

anisotropy that would impact values of easterness and northerness. Measures of rugosity 
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also behaved differently: both mean and standard deviation increased with coarser scales, 

which is in line with the increase in fractal dimension of bathymetric surfaces for both the 

full extent and the shallower sub-area as spatial resolution coarsens. Roll also had a 

greater impact on the complexity of coarser-scale DBMs, as shown by measures of fractal 

dimension. In the shallower sub-area, the mean of topographic position also increased 

with coarser scales. The deeper sub-area sometimes presented a different trend from 

observations made from the shallower sub-area. For instance, when roll artefacts were 

propagating to aspect, slope and rugosity, measures of spatial similarity were lower at 

coarser scales than at finer scales. In terms of error, error values were more spatially 

autocorrelated in finer-scale surfaces than in coarser-scale surfaces. 

5.4 Discussion 

5.4.1 Comparisons with Other Studies: Terrestrial and Marine 

As expected, results confirm that higher DBMs error increases the error in derived 

terrain attributes (Oksanen & Sarjakoski, 2005), although the relationship was not as clear 

for heave artefacts when analyzing smaller spatial extents. As commonly performed in 

error propagation analyses (Wise, 2011b), the study design implemented in the current 

paper assumed that the error had the same characteristics across the entire study area, i.e. 

it was systematically introduced. However, it is much likely that in a real context, 

seafloor characteristics (e.g. complexity, orientation of natural features), which vary 

spatially, have an influence on how the error is revealed. This was also suggested by the 

observed differences between the shallower and deeper sub-areas. Wise (2011a, b) 
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discussed cases where the consideration of the nature of the terrain yielded better error 

model. However, these results may not be directly applicable in the marine environment, 

as errors are different in nature and distribution, e.g. in terms of artefacts having a greater 

influence than random noise (Hughes-Clarke, 2003a). These differences are partly due by 

the different technologies used to collect terrestrial and marine DTMs, for instance in 

terms of surveying geometry, dependency to ancillary data, and characteristics of sound 

propagation in water.  

In terrestrial settings, it is well known that DTM errors, including artefacts and 

random noise, are spatially autocorrelated (Holmes et al., 2000; Temme et al., 2009; Leon 

et al., 2014). Our results confirm that pitch and roll errors were autocorrelated in the 

bathymetry and that the error from all four artefacts was autocorrelated in the topographic 

mean, which is a generalization of bathymetry (cf. Chapter 3). Errors in terrain attributes 

were however not spatially autocorrelated, except for some exceptions. In general, error 

values were becoming more autocorrelated and closer to a normal distribution as the level 

of artefact was increasing. While looking at a different type of artefacts, namely those 

caused by interpolation, Wise (2011a) found that when data density was low, DTM error 

was more spatially autocorrelated than when data density was higher. This was confirmed 

by our study, for which spatial autocorrelation values were in average higher among 

errors in the deeper sub-area than in the shallower sub-area for the four types of artefacts, 

except for topographic position. Wise (2011a) also mentioned that the distribution of 

errors in lower density data was closer to a normal distribution than for higher density 

data that had more of a leptokurtic distribution. Our results agreed with these conclusions 
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only for heave errors, and to a much lesser extent for roll errors. Pitch errors did not show 

a significant pattern, and time errors in bathymetry were much more leptokurtic in the 

deeper sub-area (low density) than in the shallower one (high density). This could be 

explained by the fact that time affects the boundary of different survey lines, and 

consequently the area that overlaps. In shallower waters, there was more overlap between 

survey lines than in the deeper waters, which could indicate that it is more likely that the 

shallower sub-area get higher error values that would result in an error distribution less 

centered on the mean than in the deeper sub-area. Wise (2011a) results also showed that 

error distribution in DTMs was centered on zero. Our results confirm those of Wise 

(2011a), except for time errors that were highly right-skewed, likely because of the use of 

the absolute value of the differences. Results are however in line with other studies that 

gave DTM error distribution longer tails (e.g. Kyriakidis et al., 1999; Bonin & 

Rousseaux, 2005; Oksanen & Sarjakoski, 2006). Wise (2011a) discussed the 

disagreements within the literature regarding the statistical distribution of DTM errors, 

and concluded that the situation may be more complex than what is discussed in that body 

of literature. The author also found that the distribution of errors for slope, aspect, and 

curvature followed a leptokurtic distribution, which was true for our results for all types 

of artefacts but roll, for which easterness and northerness in the deeper sub-area and the 

full extent had a kurtosis similar to that of a normal distribution. Slope in the shallower 

sub-area also had such distribution. Topographic position, that is related to curvature (cf. 

Chapter 3), had indeed a leptokurtic distribution. Roll also impacted measures of aspect 

and topographic position more in shallower waters. 
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Regarding specific terrain attributes, previous research has mainly focused on slope 

and curvature. Csillik et al. (2015) argued that the statistical distribution of slope and 

curvature are often long-tailed; our results confirmed it for slope, and showed that it was 

also the case for rugosity. However, the values of other terrain attributes tested in our 

study were normally distributed. Curvature was previously found to be very sensitive to 

interpolation artefacts (Wise, 2007), and results from the current study confirmed that 

topographic position (related to curvature), was often the most impacted of terrain 

attributes. Interesting parallels can be made between the current study and results from 

Sofia et al. (2013), who studied the presence of outliers and striping artefacts in LiDAR 

DTM and their propagation to minimum curvature. First, they showed that the 

distribution of curvature changed with scale in their reference surfaces. Our results also 

showed that change in scale affect the distribution of terrain attributes (Figure 5.4), 

although it does not affect bathymetry as much. Among other similarities with our study, 

Sofia et al. (2013) concluded that the modelling of errors in relation to spatial scale was 

crucial in obtaining reliable curvature measurements. They also showed that errors had a 

greater effect on curvature at finer scales. Finally, they showed that “when DTMs include 

errors, curvature distributions become controlled by these errors, whose propagation 

depends on error distribution, error spatial correlation, and the scale of analysis” (Sofia et 

al., 2013, p. 1116). 

5.4.2 Implications for Marine Geomorphometry 

Artefacts in DBMs are problematic in marine geomorphometry studies for several 

reasons. First, results suggest in many ways that artefacts will potentially impact 
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subsequent analyses using the bathymetry and terrain attributes. For instance, spatial 

autocorrelation is known to affect predictive models and observed relationships between 

marine species and their environment (Foody, 2004; Hotorn et al., 2011), and our results 

showed that spatial autocorrelation levels vary with the presence of artefacts. Second, 

while future developments in MBES technology and processing software may help 

improve data quality, the potential for error in any survey will never be fully eliminated. 

Artefacts are usually within error specifications (Hughes-Clarke, 2003a) and appear even 

when appropriate calibrations were completed and motions compensated for (Erikstad et 

al., 2013). Similarly to some errors in terrestrial DTMs (Wilson, 2012), artefacts in 

marine DTMs cannot always be removed. Our results also showed that the errors induced 

by different levels of artefacts are not correlated, indicating that the distribution of error 

changes depending on the amplitude of the artefact. This prevents proper predictions of 

the spatial distribution of errors that could have helped correcting or accounting for them. 

Third, underwater artefacts may be more challenging to identify and correct than their 

terrestrial counterparts: they are more likely to resemble natural features such as sand 

waves than the strips, terraces or bands typically found in terrestrial DTM (Fisher & Tate, 

2006). When visual validation (e.g. from video data) is not available to confirm if such 

pattern in the data are natural, it may be erroneous to apply filters or other techniques to 

remove these features, especially as some of these techniques may themselves alter the 

initial surface and consequently its derived terrain attributes (Franklin et al., 2000). 

Fourth, the options available to analyse error propagation are more limited in marine 

DTMs than in terrestrial DTMs. Analysis in terrestrial settings are often performed by 
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comparing the DTM to reference data (e.g. GPS ground data) that are considered true or 

more accurate than the DTM (Shortridge, 2001), which is logistically very complicated 

underwater and thus rarely, if not ever implemented (Roman & Singh, 2006). Podobnikar 

(2009) argued that visual methods of evaluation of spatial data are underused in terrestrial 

environments, but they are often the only available methods in the marine environments 

(Erikstad et al., 2013). Finally, marine geomorphometry studies often strongly rely on 

expensive, remotely sensed MBES bathymetric data. In waters too deep for bathymetric 

LiDAR or optical remote sensing, MBES are among the only systems available that can 

provide high enough resolution data for many applications (Brown et al., 2011; Lecours 

et al., 2016). There is often no alternative to these datasets because most places in the 

marine environment are difficult to access, observe, and sample (Solan et al., 2003; 

Robinson et al., 2011).  

These arguments highlight that despite the presence of artefacts, most research and 

applications are dependent on such DBMs. For this reason it is critical to understand the 

impacts of artefacts on the derivation of terrain attributes to enable their proper 

consideration in the interpretation of results. It is becoming crucial to integrate error 

modelling to the marine geomorphometry workflow, at least as an informative tool to 

make cognizant decisions regarding fitness for use (Fisher & Tate, 2006). Fitness for use 

is the concept of determining whether or not a dataset is of sufficient quality for a 

particular purpose (Devillers & Jeansoulin, 2006). Agumya & Hunter (2002) estimated 

that for a long time end-users would consider the assessment of fitness for use 

unnecessary when they would not have any alternative data available like it is often the 
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case for MBES data. However, since artefacts are likely to propagate into analyses past 

the generation of terrain attributes, it is fundamental to assess the quality of the DTM and 

its derived terrain attributes before they are included in further analyses (Wechsler & 

Kroll, 2006; Van Niel & Austin, 2007). Such assessment will help evaluate fitness for use 

and situate analyses and interpretation of results on a sound inferential basis. This is 

particularly important when there is a decision-making process involved at the end of the 

workflow, for instance when terrain attributes are used to build habitat maps to assist in 

conservation, or to make geomorphological maps used for navigation or dredging. In the 

end, the assessment of fitness for use requires an intended purpose and specific 

application goals or questions (Devillers et al., 2002; Rocchini et al., 2011; Wilson, 2012; 

Passalacqua et al., 2015). In the context of using terrain attributes impacted by artefacts in 

marine habitat mapping exercises, Vierod et al. (2014, p. 14) stated that “a missing 

predictor may be less detrimental to a models prediction than a distorted predictor 

containing false information”. Erikstad et al. (2013) demonstrated that poor quality 

terrain attributes were not fit for their use as they prevented the proper identification of 

terrain types associated with the geology and marine habitats of their study area. 

An important characteristic of the assessment of fitness for use is the consideration of 

spatial scale. While Grohmann (2015) recommended using DTMs with the highest 

resolution available to derive terrain attributes, many others claim that in practice, the 

highest resolution DTM may not be the most suitable based on the successful 

identification, or not, of the features of interest in a particular area and for a particular 

purpose (Cavazzi et al., 2013; Lecours et al., 2015b). Our results confirm the latter 



189 

 

 

opinion: the spatial similarity analysis clearly demonstrated that many terrain attribute 

surfaces were not highly correlated with their corresponding surfaces computed at 

different scales, thus capturing and describing different seafloor features and 

characteristics. Our results also demonstrate that in marine geomorphometry, attempting 

to match the observational scale with the geomorphological scale of the features of 

interest should not be the only factor when deciding at which resolution a DTM should be 

generated. Since the influence of DTM error was stronger on higher resolution 

bathymetric surfaces and terrain attributes, there is a trade-off between higher-resolution 

information that has for instance the  potential to improve models prediction, and spatial 

data quality that could potentially worsen predictions. Such trade-off should be part of 

defining fitness for use. Podobnikar (2009) mentioned that the higher the spatial 

resolution of a DTM, the more difficult is the evaluation of its quality. We also note that 

another characteristic of spatial scale that was not considered in this study is the analytical 

scale, which in this case refer to the size of the window of analysis used to derive terrain 

attributes. Albani et al. (2004) showed that using a greater window of analysis diminished 

the influence of errors in terrestrial DTMs, which was also shown in the current study by 

the lower impact of artefacts on topographic mean compared to bathymetry. This element 

should also be considered in the evaluation of the trade-off between scale and quality 

(Wilson et al., 2007). Finally, results showed that errors caused by artefacts in bathymetry 

are sometimes amplified in the terrain attributes, which highlights the idea that if a DBM 

is deemed fit for use, it does not mean that the terrain attributes derived from it will also 

be fit for use. 



190 

 

 

5.5 Conclusions 

Florinsky (1998) listed several factors on which depends the quality of terrain 

attributes: the roughness of the terrain, sampling density, spatial resolution, interpolator, 

vertical resolution and the type of geomorphometric analysis performed (i.e. the types of 

terrain attributes extracted and the algorithms used). Our study looked at the impact of 

artefacts on terrain attributes by considering three of the factors listed by Florinsky 

(1998): sampling density, spatial resolution, and the types of terrain attributes. The 

interpolator was kept consistent across the study design, and the assessment of data 

quality as a function of variations in seafloor characteristic – like roughness – is identified 

as a future area of research later in this section. Results showed that artefacts do impact 

bathymetry and terrain attributes, and that the level of impact depends on the three 

studied factors. Time and pitch artefacts had a greater impact on surfaces having a lower 

sampling density, while roll artefacts had a greater impact on surfaces created with a 

higher sampling density. In terms of spatial resolution, finer-scale data were generally 

more impacted by artefacts than broader-scale data. For terrain attributes, topographic 

mean was most often the least impacted terrain attributes while topographic position was 

often the most impacted. Results confirmed that errors in bathymetry do not only 

propagate to terrain attributes but are amplified in DBMs derivatives.  

Based on the results, it is difficult to make clear recommendations on which terrain 

attributes users should select when they are aware of the presence of artefacts in their 

data. However, as topographic mean was less impacted by artefacts than bathymetry, we 

recommend using the former over the latter when artefacts are prevalent, which confirms 
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a hypothesis made in Chapter 3 that topographic mean may be more reliable than 

bathymetry if the DTM is noisy or of poor quality. The selection of terrain attributes can 

be better informed if the cause of the artefacts can be identified. For instance, measures of 

aspect (i.e. easterness and northerness) were most sensitive to pitch artefacts, slope and 

rugosity to roll and pitch artefacts, and topographic position to time artefacts. In all cases, 

users need to carefully evaluate the impacts of artefacts in their DBM on the derivation of 

terrain attributes in order to make more informed decisions on whether or not terrain 

attributes are suitable for their application.  

Future work should carry forward the analysis performed in this paper by (1) 

studying the impact of other types of artefacts on bathymetry and terrain attributes, (2) 

looking at inducing artefacts of random amplitude across the study area, (3) evaluate if 

the combined effect of different artefacts is additive, multiplicative, or if they cancel or 

attenuate each other’s influence, and (4) expand the analysis of sub-areas to quantify the 

effects of artefact with varying terrain characteristics (e.g. roughness, depth). With more 

knowledge on the impacts of artefacts in DTMs on terrain attributes, we can then move 

further into improving our understanding of artefact propagation into the workflow of 

specific applications of marine geomorphometry, like habitat mapping or hydrodynamics 

modelling. This would enable a better quantification of uncertainty and error associated 

with models produced using bathymetric data with artefacts. Only from that point onward 

will we be able to establish application-related practices, protocols and standards for 

fitness for use evaluation. In the meantime, better practices should be implemented, 

including the assessment and acknowledgement of artefacts and other types of errors in 
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both the bathymetry and its derived terrain attributes, and the potential implications of 

these errors for the analysis (Rocchini et al., 2011; Lecours et al., 2016).  

In conclusion, understanding data limitations is crucial when integrating them into a 

workflow (Brown et al., 2005) like in geomorphometry. Since MBES bathymetric data 

are often among the only available data for studying seafloor environments and are 

frequently impacted by artefacts, there is a need to find ways to efficiently report spatially 

explicit error and uncertainty assessments for both DBMs and derived terrain attributes. 

Such assessments will become important informative tools to make cognizant decisions 

regarding fitness for use and enable a better understanding of potential implications for 

analyses. This will ultimately encourage responsible use of data in research and 

applications. 
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6. Influence of Artefacts in Digital Terrain Models on Habitat Maps and 

Species Distribution Models: A Multiscale Assessment 

6.1 Introduction 

In the last decades, remote sensing has become the main method used for collecting 

elevation data used in the production of Digital Terrain Models (DTM); methods used to 

collect elevation data include both passive, optical techniques (e.g. photogrammetry, 

stereoscopy) and active techniques (e.g. interferometric synthetic aperture Radar, 

LiDAR). All DTMs carry a certain level of error (Gessler et al., 2009) caused by random 

noise, systematic errors and artefacts (Wise, 2000). Artefacts were characterized by 

Reuter et al. (2009, p. 91) as “distinct erratic features” that are made of improbable and 

incorrect values. Artefacts can be found in DTMs collected from any remote sensing 

systems (Fisher & Tate, 2006; Sofia et al., 2013) and at all scales. While it is often 

assumed that higher resolution data (e.g. collected with airborne LiDAR) result in higher 

quality DTMs (Nelson et al., 2009), high resolution DTMs are more sensitive to survey 

conditions (Su & Bork, 2006) and more prone to errors like artefacts (Podobnikar, 2009; 

Zandbergen, 2011). Artefacts can be induced by the interpolation method used to create 

the DTM (Sofia et al., 2013), the motion and location of the acquisition platform 

(Harrison et al., 2009), timing or log frequency issue in the surveying system (Lecours & 

Devillers, 2015) or a lack of or an inappropriate correction of ionospheric and 

atmospheric conditions (Li & Goldstein, 1990). Overall, artefacts can be problematic as 

they influence data quality more than other types of errors (Rousseaux, 2003) and can be 
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very subtle in the DTM (Filin, 2003), making them “the most significant errors in a 

spatial or statistical analysis because they are not easily detected yet introduce significant 

bias” (Brown & Bara, 1994, p.189). 

DTMs are now commonly used in Geographic Information Systems (GIS) to derive 

terrain attributes (e.g. slope, orientation, rugosity) that can be used as surrogates for other 

phenomena in fields such as ecology (Bolstad et al., 1998), biogeography (Franklin, 

2013), digital soil mapping (Behrens et al., 2010), hydrology (Nikolakopoulos et al., 

2015), and biology (Kozak et al., 2008). Artefacts in DTMs were shown to sometimes 

propagate to the derived terrain attributes (e.g. Sofia et al., 2013; Chapter 5) and are 

likely to impact subsequent analyses (Arbia et al., 1998; Heuvelink, 1998). Mapping and 

quantifying error propagation throughout analysis have received significant attention in 

the geospatial literature (e.g. Fisher & Tate, 2006; Wilson, 2012) but are rarely performed 

by DTM users from other disciplines (e.g. ecology, biogeography) (van Niel & Austin, 

2007). In recent years, repeated calls for the appropriate consideration of error 

propagation in environmental modelling and mapping have been made (e.g. Guisan et al., 

2006; Rocchini et al., 2011; Lecours et al., 2015), with a strong focus on uncertainty 

propagation (e.g. van Horssen et al., 2002; Jager & King, 2004; Beale & Lennon, 2012; 

Lechner et al., 2012a).  

Quantifying error propagation from DTM is especially relevant for the production of 

species distribution models (SDM) and habitat maps (van Niel et al., 2004; Peters et al., 

2009) that often combine terrain attributes with other environmental data (Franklin, 1995; 

Guisan & Zimmermann, 2000; Williams et al., 2012; Leempoel et al., 2015). These maps 
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and models are often used to support decision-making in conservation and management 

(Miller, 2010; Guisan et al., 2013). However, a lack of understanding of errors, their 

propagation and spatial distribution in maps may result in inaccurate maps and models 

that could lead to inappropriate decisions (Beale & Lennon, 2012), and negative impacts 

on biodiversity or stakeholders (Beven, 2000; Regan et al., 2005; Etnoyer & Morgan, 

2007). The awareness of data quality in SDM and habitat mapping is increasing (Barry & 

Elith, 2006; Lek, 2007), with studies that for instance investigated the influence of species 

distribution data accuracy (Moudrý & Šímová, 2012), the choice of algorithm or model 

(Pearson et al., 2006), the choice of predictor variables (Synes & Osborne, 2011), and 

issues associated with collinearity (Watling et al., 2015). With some exceptions (e.g. van 

Niel et al., 2004; Livne & Svoray 2011), issues related to spatial data error are often 

overlooked. To our knowledge, the influence of data acquisition artefact errors in a DTM 

has never been assessed on maps resulting from SDM or habitat mapping exercises. 

The objective of this study was to describe the impact of some common remotely 

sensed data acquisition artefacts on habitat maps and SDMs. Our specific objectives were 

to 1) quantify the impact of artefacts on habitat maps accuracy and SDMs performance, to 

2) assess if impacts are dependent on spatial scale, and to (3) assess if impacts can be 

attenuated when combining the affected data with other environmental data of better 

quality. Our hypotheses were that artefacts do negatively impact habitat maps and SDMs, 

that the impacts are greater at finer scales, and that the addition of better quality data 

reduces the impacts of artefacts on maps and models. 
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6.2 Material and Methods 

6.2.1 Case Study and Data 

This paper explored the impact of DTM artefacts on habitat maps using a case study 

from the marine environment. The marine realm provides an ideal case as it has been 

suggested that underwater DTMs, or Digital Bathymetric Models (DBM), may be more 

prone to errors and artefacts than terrestrial DTMs (Hughes-Clarke et al., 1996; 

Passalacqua et al., 2015; Lecours et al., 2016). Except for shallow waters that can be 

mapped using LiDAR (Brock & Purkis, 2009) or optical data (e.g. Eugenio et al., 2015), 

acoustic remote sensing remains the main technology to collect reliable continuous terrain 

data in deeper waters (Brown et al., 2011). DBMs are often the only available datasets 

used to characterize deep-water environments due to difficulties to observe and sample 

other environmental characteristics (Solan et al., 2003; Robinson et al., 2011). If 

multibeam echosounders are currently the best technology allowing the collection of large 

DBMs (Kenny et al., 2003), most bathymetric surfaces generated from these systems still 

contain some artefacts (Hughes-Clarke, 2003a; Roman & Singh, 2006). Since these 

artefacts are often within hydrographic error standards (Hughes-Clarke, 2003a) and 

appear even when appropriate calibration and corrections are made (Erikstad et al., 2013), 

they are often considered inherent to the data and tend to be overlooked by DBM end-

users. No mention of DBM and multibeam echosounders were found in recent texts 

reviewing spatial data quality in DTM (e.g. Hunsaker et al., 2001; Wu et al., 2006; Shi, 

2010), making them considerably less explored and understood than digital elevation 

models (DEM) generated from LiDAR, Radar or optical remote sensing. 
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This paper used bathymetric data for German Bank, off Nova Scotia (Canada), in the 

eastern Gulf of Maine (Figure 6.1). The surveyed area covers 3,650 km
2
 of the Scotian 

Shelf and has been extensively studied in previous works (e.g. DFO, 2006; Todd et al., 

2012; Brown et al., 2012). Bathymetric data were collected by the Canadian 

Hydrographic Service (CHS) and were corrected in post-processing for tide, motion, and 

sound velocity. The corrected soundings were used to generate reference DBMs at five 

different spatial resolutions: 10 m, 25 m, 50 m, 75 m and 100 m, using the interpolation 

algorithm “swath angle” implemented in the bathymetric processing software CARIS 

HIPS and SIPS v.9.0. These five reference DBMs were assumed to be free of artefacts, 

and following methods described in Chapter 5, ten different amplitudes of heave, pitch, 

roll and time artefacts were artificially introduced in them (Table 6.1) using CARIS HIPS 

and SIPS. As described in Chapter 5, these common artefacts were selected based on their 

different theoretical impact on bathymetric data; pitch impacts bathymetric data in a 

horizontal plane, heave impacts them in a vertical plane, roll affects soundings that are 

further away from the nadir in a vertical plane – consequently affecting areas that overlap 

between different survey lines – and time causes a relative shift of adjacent lines in the 

horizontal plane (see Hughes-Clarke, 1996, 1997, 2002, 2003a, 2003b and Lurton, 2010). 

Similar artefacts can also be found in other types of remote sensing like LiDAR (Brown 

& Bara, 1994; Filin, 2003; Lichti & Skaloud, 2010). The artefacts were systematically 

introduced to provide controlled conditions that enable comparisons of results, as often 

performed in evaluations of the impact of error on analyses (Reuter et al., 2009). 
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Figure 6.1: Digital Bathymetric Model of the German Bank study area. 

Table 6.1: Levels of artefacts introduced in the five reference DBMs. Standard deviations (σ) were 

derived from the recorded motion at time of survey. A positive pitch indicates that the bow is up and 

a positive roll means that the port side is up. 

 

-5σ -4σ -3σ -2σ -σ σ 2σ 3σ 4σ 5σ

Heave (m) -1.65 -1.32 -0.99 -0.66 -0.33 0.33 0.66 0.99 1.32 1.65

Pitch (°) -8.25 -6.60 -4.95 -3.30 -1.65 1.65 3.30 4.95 6.60 8.25

Roll (°) -5.05 -4.04 -3.03 -2.02 -1.01 1.01 2.02 3.03 4.04 5.05

Time (s) -1.25 -1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 1.25

Level of Induced Artefact
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Six terrain attributes that together summarize topographic variability of an area (cf. 

Chapter 3) were derived from each of the five reference and 200 altered DBMs using the 

TASSE toolbox for ArcGIS (Lecours, 2015). The attributes are slope, two measures of 

aspect (easterness and northerness), topographic mean, rugosity and topographic position. 

Backscatter data (i.e. acoustic reflectance) were simultaneously recorded with the 

bathymetric data. The backscatter data were processed and transformed by Brown et al. 

(2012) into three derivative layers that inform on seafloor properties (e.g. surficial 

geology, porosity): Q1, Q2 and Q3. Since the raw backscatter data could not be accessed, 

the original 50 m resolution backscatter derivatives were resampled using ArcGIS at the 

four other studied scales to match the resolutions of the bathymetric and terrain attributes 

surfaces. Resampling is a common practice in ecological studies that combine remote 

sensing data with other environmental data of different spatial resolutions (Costa et al., 

2009; Chust et al., 2010; Davies & Guinotte, 2011; Erikstad et al., 2013). Finally, two 

sets of ground-truth data from Brown et al. (2012) were used: (1) 3,190 geo-referenced 

photographs of the seafloor classified into five habitat types (reef, glacial till, silt and 

mud, silt with sediment bed forms, sand with sediment bed forms and highly abundant 

sand dollars (Echinarachnius parma)), and (2) 4,816 geo-referenced sea scallop 

observations (Placopecten magellanicus) (cf. Figure 4.1). 

6.2.2 Habitat Maps and SDMs 

Using the 205 sets of bathymetric and terrain attribute surfaces (i.e. five reference 

and 50 altered sets per artefact type), habitat maps and SDMs were produced for three 

scenarios. First, maps and models were generated using only the bathymetry and the six 
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terrain attribute surfaces, thus accounting only for terrain morphology (i.e. hereafter 

referred to as “7 layers” scenario). Then, maps and models were produced using all the 

available data, i.e. bathymetry, six terrain attributes and three backscatter derivatives (i.e. 

“10 layers” scenario). Finally, maps and models were built using only non-correlated 

variables (i.e. “8 layers” scenario). On German Bank, the steepest areas are also the ones 

with the highest rugosity, resulting in a high correlation between the slope and rugosity 

data layers. Also, bathymetry is highly correlated with topographic mean as they are 

closely related (see Chapter 3). Rugosity and topographic mean were therefore not used 

for the last sets of maps and models. The data for the 8 layers scenario were thus 

bathymetry, slope, easterness, northerness, topographic position, Q1, Q2, and Q3. 

Overall, 615 habitat maps and 615 SDMs were produced and analyzed.  

The method used to generate habitat maps is based on the concept of benthoscape 

(Zajac, 2008), which is a representation of the biophysical characteristics of an area. 

Benthoscape maps are generated by adopting a landscape style approach similar to when 

maps of landscape features are generated from terrestrial datasets. Such approach was 

used by Brown et al. (2012) to map features on the seafloor that could be resolved within 

the acoustic remotely sensed data, thus not attempting to delineate seafloor attributes 

beyond what the remote sensing techniques were capable of resolving. This top-down, 

unsupervised approach to habitat mapping segments the different data layers into a 

statistically optimum number of classes. These classes are then spatially compared to the 

geo-referenced photographs and recombined based on best match with the different 

habitat types (see Brown et al., 2012; Chapter 4). The Modified k-Means unsupervised 
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classification tool of Whitebox GAT v.3.2 was used to produce these maps, and confusion 

matrices were built to calculate the overall accuracy and kappa coefficient of agreement 

of each map (e.g. Boyce et al., 2002). 

SDMs were generated using a bottom-up, supervised approach to habitat mapping in 

which the sea scallop observations were used to segment the environmental data based on 

maximum entropy (MaxEnt), a common and effective method used to build SDMs 

(Phillips et al., 2006; Monk et al., 2010). The MaxEnt software v.3.3.3k was used to 

compute the models with the same settings as used in Brown et al. (2012) and in Chapter 

4: most default settings were used except for that the number of background points was 

increased to 50,000. A set of 3,813 scallop observations were used to train the model 

while 1,003 were kept for validation. The MaxEnt software was also used to calculate the 

area under the curve (AUC) derived from threshold independent receiver operating 

(ROC) curves to quantify the performance of the models and enable comparisons 

(Phillips et al., 2006). Two types of AUC values were calculated: AUCTrain that measures 

the goodness-of-fit of models to the training data, and AUCTest that evaluates the ability of 

models to perform well on an independent dataset – in this case the validation samples 

(Fitzpatrick et al., 2013). Combining these two measures enabled comparisons between 

models’ performance, robustness, and generalizability (i.e. transportability, 

transferability) (Vaughan & Ormerod, 2005; Warren & Seifert, 2011). Generalizability is 

quantified using AUCDiff, which is the difference between AUCTrain and AUCTest. A high 

value of AUCDiff is an indication that a model over-fitted the training data and does not 
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replicate well to a different dataset. Finally, correlations between model outputs were 

calculated to evaluate spatial similarity of predictions. 

6.3 Results 

6.3.1 Habitat Maps 

6.3.1.1 Reference Habitat Maps 

Kappa coefficients of agreement and overall accuracies of the reference habitat maps 

show that maps with no correlated input data (8 layers) performed better than the two 

other types of maps at finer scales (10 and 25 m) (Figure 6.2). At coarser scales (50 m to 

100 m), the maps using all available data (10 layers) performed best. At all spatial scales, 

the maps accounting only for terrain morphology and depth (7 layers) had the lowest 

coefficients of agreement and overall accuracies. In general, coarser-scale data produced 

more accurate maps than finer-scale data, except for maps built from uncorrelated data 

that were more consistent across scales. 

 

Figure 6.2: Kappa coefficients of agreement and overall accuracies of the 15 reference habitat maps. 
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6.3.1.2 Habitat Maps from Altered Data 

The average kappa coefficients of agreement of all ten maps made from altered data 

for each scenario and their standard deviation are presented in Table 6.2, while each 

individual kappa of the 615 habitat maps is presented in Figure 6.3. Since overall 

accuracy has previously been found to be a poor indicator of classification performance 

(Felix & Binney, 1989; Fielding & Bell, 1997; Chapter 4), the associated results are not 

discussed here. Results are however provided in Appendix F for comparison with 

previous habitat mapping studies from German Bank that reported overall accuracies (e.g. 

Brown et al., 2012). In general, habitat maps produced using 10 layers provided the best 

classifications, followed by those using 8 layers and those built from only 7 layers. For all 

artefact types, the average ranges of measured kappa coefficients across the ten levels of 

introduced artefacts were lower for the scenario with 8 layers. The second lowest average 

ranges belonged to the scenario with 7 layers when maps were impacted by pitch and 

heave, and to the scenario with 10 layers for roll and time. The lowest average range was 

2.7% (heave, 8 layers) and the highest one was 11.4% (roll, 7 layers). In average (Table 

6.2), only three sets of maps showed a scale-dependent pattern for which maps produced 

from finer-scale data were more impacted by artefacts than maps made from broader-

scale data. These sets all belong to the scenario with 10 layers and were maps impacted 

by pitch, roll and time. A deeper exploration of the results showed that the presence of 

artefacts in data used to produce habitat maps has a noticeable influence on the spatial 

distribution of the habitats (cf. Figure 6.4 and Figure 6.5). When matching the total area 

misclassified because of artefacts – i.e. when comparing the classifications made from 
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altered data to one made from reference data – to the difference in kappa coefficient 

between maps made from altered data and reference maps, results show that a little 

difference in kappa coefficient can translate into large differences in spatial output (cf. 

Figure 6.5). 

Table 6.2: Mean and standard deviation of kappa coefficients of agreement of the ten maps made 

from altered data for each type of artefact, each scenario and each scale. 

Resolution Mean St. Dev. Mean St. Dev. Mean St. Dev.

10 m 60.6 0.6 61.6 0.6 63.9 0.8

25 m 58.0 0.9 62.1 1.5 60.2 0.7

50 m 59.3 0.9 60.3 0.9 61.0 1.0

75 m 59.8 0.5 60.5 0.9 62.5 1.3

100 m 62.2 1.1 63.1 0.6 65.7 1.1

10 m 57.0 0.9 61.9 0.9 60.5 1.3

25 m 58.3 0.9 60.3 1.1 60.7 1.2

50 m 58.1 0.6 60.1 0.8 60.9 0.7

75 m 60.1 1.3 61.8 0.6 62.0 1.3

100 m 61.6 1.6 62.6 1.2 64.3 1.1

10 m 49.7 3.5 55.4 3.6 52.9 3.4

25 m 49.0 4.2 54.8 3.7 53.4 3.7

50 m 50.8 3.4 55.5 2.6 55.4 3.1

75 m 53.1 3.0 56.1 2.8 56.6 3.9

100 m 55.2 3.0 57.0 3.4 58.8 3.7

10 m 57.9 1.2 62.3 1.2 60.1 1.3

25 m 57.6 1.0 60.6 1.2 60.4 0.7

50 m 58.2 1.5 60.4 1.3 61.3 1.0

75 m 60.0 1.0 61.1 0.8 62.4 1.0

100 m 61.8 1.3 62.8 0.9 64.4 1.0

Roll

Time

7 Layers 8 Layers 10 Layers

Heave

Pitch
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Figure 6.3: Kappa coefficients of agreement of the 615 habitat maps. 
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Figure 6.4: Examples of habitat maps produced with 8 layers at 50 m resolution, overlaid by the 

ground-truth data. The level of error represented in the lower maps is the highest one (5σ, Table 6.1). 

The colour of the ground-truth data should spatially match the classification’s colour when 

appropriately classified. 
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Figure 6.5: Spatial distribution of the change in habitat map classification between the maps 

presented in the bottom of Figure 6.4 and the reference map shown on top of Figure 6.4. Red pixels 

indicate change while grey pixels mean that these pixels were classified as the same habitat type in the 

two compared classifications. 

Except for maps affected by roll artefacts, the reference maps did not always produce 

the best outcome in terms of accuracy: while all habitat maps impacted by any level of 

roll artefact performed worse than the reference maps, Figure 6.6 shows that an important 

number of maps made from altered data had a higher kappa coefficient than their 

corresponding reference maps. This was observed regardless of scale and scenario. 

Overall, 47% of the habitat maps altered by pitch had a higher kappa coefficient than their 
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corresponding reference map, and that percentage was higher for time (50%) and heave 

(55%). No particular scale-dependent patterns were observed, except for habitat maps 

made from seven layers and impacted by pitch, for which a greater amount of maps 

performed better than the reference maps at broader scales. The absence of maps that 

performed better than the reference map at 75 m resolution for the 10 layers scenario is 

noteworthy. 

 

Figure 6.6: Number of habitat maps made from altered bathymetric and terrain attribute data that 

had a higher kappa coefficient of agreement than the reference habitat maps. No habitat maps 

impacted by roll performed better than the reference maps. 

6.3.2 Species Distribution Models 

6.3.2.1 Reference SDMs 

Figure 6.7 shows the performance, robustness and generalizability of the MaxEnt 

models generated from the reference data. In general, models with 7 layers performed 

poorly compared to others. Models with10 layers performed better and were more robust 

than models using 8 layers at 10 m and 100 m scales, while models from 8 layers were 

the best at 25 m, 50 m and 75 m resolution. In these two scenarios (8 and 10 layers), 
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models at 50 m resolution showed the best trade-off between performance and robustness, 

followed by those at 25 m, 10 m, 100 m and 75 m. 

 

Figure 6.7: Performance and robustness (left) and generalizability (right) of the 15 reference MaxEnt 

models. Models are colour-coded following Figure 6.3: dark blue (10 m resolution), red (25 m), green 

(50 m), purple (75 m) and light blue (100 m). High AUCTest values indicate that models performed 

well on validation data and low standard deviations indicate robust models. High AUCTrain values 

indicate that models performed well on training data and low AUCDiff indicate that they replicated 

well on validation data. In both graph, the best models are thus located in the top left quadrant. 

Models accounting only for topography (7 layers) were not highly generalizable as 

they showed low AUCTrain combined with high AUCDiff relative to other models. Models 

with 10 layers usually had a higher AUCTrain than models with 8 layers, but the former 

also had a higher AUCDiff than the latter. Better models were thus less replicable. The 

model presenting the highest index of generalizability (the ratio of AUCTrain on AUCDiff) 
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was the one built from uncorrelated data at 50 m (cf. green square in Figure 6.7). It was 

followed by the model at 100 m (8 layers), and those at 50 and 100 m (10 layers), 75 and 

25 m (8 layers and then 10 layers), and models at 10 m resolution (10 layers followed by 

8 layers). All models generated from 7 layers (cf. diamonds in Figure 6.7) were among 

the least generalizable. Regarding scale, a similar relationship to that of robustness was 

observed between AUCTrain and AUCDiff: higher performance on training data also 

involved lower replicability on test data. 

In terms of spatial outputs, Figure 6.8A shows the quantification of how predictions 

generated by the MaxEnt models at scales ranging from 25 m to 100 m vary in space 

compared to the same model generated from 10 m resolution data. In all scenarios, the 

correlation between predictions decreased as spatial scale coarsened. Models with 8 and 

10 layers followed a very similar trend (cf. red and green lines), and Figure 6.8B shows 

that their outputs are highly correlated at all scales (cf. orange line). Models from 

different scenarios were generally more similar at finer scales, except for the reference 

models with 7 and 10 layers that became more similar at coarser scales (cf. light blue line 

in Figure 6.8B). 
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Figure 6.8: A) Spatial correlation between the reference MaxEnt models for the three scenarios and 

their corresponding reference models at other scales (e.g. the models computed with 7 layers at 50 m 

and 10 m have a r value of 0.85). B) Spatial correlation between the reference models of different 

scenarios at each scale (e.g. models computed at 50 m resolution with 7 and 8 layers have a r value 

slightly above 0.70). 

6.3.2.2 SDMs from Altered Data 

Figure 6.9 shows changes in MaxEnt SDM performance and robustness as artefacts 

are introduced in the input DBMs, and Figure 6.10 shows examples of discrepancies in 

probability distribution that were introduced by artefacts. For all types of artefacts, no 

pattern could be observed regarding whether some scales were more impacted than 

others, or whether a greater level of artefact resulted in higher or lower performance or 

robustness. 

In general, results show that introducing heave artefacts decreased models’ 

performance and tend to also decrease models’ robustness (i.e. higher standard deviation). 
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For instance, the 8 layers models at 50 and 75 m resolution were as robust as their 

respective reference model, although the reference models performed better (i.e. higher 

AUCTest). One major exception was observed to these patterns: at 75 m resolution, 7 and 

10 layers models performed better than the reference models. The two reference models 

in these cases had a higher standard deviation and a lower AUCTest. Models with pitch 

artefacts sometimes performed better than the reference models: 39% of the models built 

from data showing this type of artefacts had a higher AUCTest than their respective 

reference model, and 36% of them were more robust than the reference models. The 

reference models were the best in terms of AUCTest only at 10 m with 7 layers, and 50 m 

with 8 and 10 layers. Only the reference model at 100 m built from uncorrelated data (8 

layers) was the most robust compared to its respective models made from altered data. 

Roll artefacts also increased model performance, as 87% of models built from altered data 

had higher AUCTest measures than the reference models. In terms of robustness, 26% of 

models from altered data had a lower standard deviation than the reference models. In 

terms of time artefacts, 29% of the models that were built from altered data performed 

better than the reference models and 11% were more robust.  
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Figure 6.9: Change in performance and robustness as the level of artefacts in the data changes. The 

blue symbols are the reference models. The darker a symbol, the greater the level of artefact is. 



222 

 

 

Green indicates positive artefact alterations (e.g. positive pitch) while red indicate negative 

alterations (Table 6.1). High AUCTest indicate that models performed well and low standard 

deviations indicate robust models. Good and robust models are located in the top left quadrant. 

 

Figure 6.10: Differences in probability distribution between models affected by artefacts and a 

reference model (top). The scenario represented is the one with 8 layers at 50 m resolution. The level 

of error represented is the highest one (5σ, Table 6.1). 
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Heave artefacts decreased the generalizability of all models at 10, 50 and 100 m 

resolution, regardless of the number of input layers. At 25 m resolution however, heave 

decreased the generalizability of models built from 8 and 10 layers but increased the 

generalizability of models with 7 layers. At 75 m resolution, generalizability was also 

increased by the presence of heave artefacts in models built with 7 and 10 layers, but 

decreased when using uncorrelated dataset. Pitch artefacts however did not demonstrate 

such a specific pattern. At 10, 75 and 100 m, some models made from altered data were 

more generalizable than the reference models, while others were not. This was also true 

of models with 7 layers at 50 m, and models with 8 or 10 layers at 25 m resolution. 

Models from altered data accounting only for topography at 25 m were however all more 

generalizable than the reference model, and the two reference models at 50 m built from 

uncorrelated data and all available data were the most generalizable. In terms of roll 

artefacts, most models built from altered data became more generalizable than the 

reference models. Finally, similarly to what was seen for pitch, time artefacts did not 

affect generalizability in any particular patterns at 10, 75 and 100 m resolution, with some 

models being more and some being less generalizable than the reference models. At 25 

and 50 m however, most models affected by time artefacts were less generalizable than 

the reference models when 8 or 10 layers were used. At 25 m, models made from altered 

data and accounting only for topography were all more generalizable than the reference 

models, while no particular pattern was found at 50 m resolution. 
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Figure 6.11: Generalizability of all SDMs as the level of artefacts in the data changes. High AUCTrain 

indicate that models performed well on training data and low AUCDiff indicate that they replicated 
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well on validation data. More generalizable models are thus located in the top left quadrant. See 

Figure 6.9 for legend. 

In terms of spatial outputs, models impacted by heave artefacts were different from 

the reference models. However, that alteration was not very variable depending on the 

level of artefact introduced. Models built from uncorrelated data (8 layers) were the least 

impacted at scales ranging from 25 m to 75 m. Models accounting only for topography 

and depth (7 layers) were consistently the most different to the reference models. Models 

affected by pitch artefacts also produced different outputs compared to the reference 

models. Models with 7 layers were the most variable and also the least similar to 

reference models. For the two other scenarios, the ranges of correlation coefficients were 

similar but the one with uncorrelated data seemed to be slightly less impacted by 

artefacts. Roll produced similar results to pitch, although the recorded correlation values 

were much lower. Finally, time artefacts also produced similar results to pitch. Overall, 

roll seemed to have the most impact on the spatial distribution of predictions of sea 

scallop probabilities of occurrence. Models built from only 7 layers were the most 

impacted, followed by those with 8 layers and those made from 10 layers. No clear 

pattern was observed in terms of scale, although roll artefacts seemed to produce models 

that were more similar to the reference ones at coarser scales, and the extreme scales (10 

and 100 m) seemed to be a bit more impacted by heave, time and pitch than the 

intermediate scales (25 to 75 m). 
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Figure 6.12: Spatial variation in predictions of sea scallops distribution as quantified by the range in 

correlation coefficients between models built from altered data and the reference models. 

6.4 Discussion 

6.4.1 Reference Habitat Maps and SDMs 

In general, results expanded on those from Chapter 4 that focused on a single scale of 

50 m resolution. Results clearly indicate that adding backscatter data to the terrain 
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variables (i.e. 8 and 10 layers scenario) improved classification accuracy of habitat maps 

and SDMs performance, robustness, and generalizability. This result is consistent with the 

results of Chapter 4, and confirms the importance of carefully selecting the variables used 

to capture the phenomenon of interest. Since many of the benthoscape classes were based 

on sediment characteristics (e.g. silt and mud), it is expected that backscatter data, which 

capture this information, improved the classifications. Results also show that the use of 

either correlated data or a greater amount of data layers (cf. 10 layers scenario), or both, 

can increase accuracy measurements of habitat maps, particularly at coarser spatial scales, 

and SDMs performance and robustness (cf. models at 10 and 100 m). Correlated data are 

known to impact SDMs and statistical models (Hijmans, 2012; Dormann et al., 2013), 

and the use of too many variables has been shown to result in model over-fitting 

(Peterson & Nakazawa, 2008). The latter is confirmed by the lower generalizability of 

reference models made from 10 layers compared to those built from 8 layers (cf. Figure 

6.7). Results gained from maps and models built from uncorrelated data may thus be 

more reliable than those from maps and models built from all available data; even if maps 

are less accurate or models have a lower performance, they could be more replicable and 

more reliable. 

In terms of spatial scale, results indicate that physical habitat types on German Bank 

are best captured at coarser spatial scales. These results are logical considering that 

benthoscape maps are used to delineate broader-scale biophysical features (Zajac, 2008; 

Brown et al., 2012). This also confirms claims that finer-scale data may not always be the 

most appropriate to capture the relevant environmental characteristics for a particular 
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habitat or purpose (e.g. Cavazzi et al., 2013; Lecours et al., 2015). However, these 

conclusions need to be approached with care as they could partly be caused by coarse-

graining, a phenomenon well documented in the geospatial literature and in terrestrial 

(e.g. Chow & Hodgson, 2009) and marine studies (e.g. Wilson et al., 2007; Rengstorf et 

al., 2012). When the action of coarsening data resolution reduces the range of occurring 

values and transforms their statistical distribution by centering them on the mean, it 

removes fine-scale heterogeneity in habitat spatial distribution and possibly artificially 

increases measures of classification accuracy. In Chapter 5, we demonstrated that the 

terrain attributes used in the current study were showing the effects of coarse-graining. It 

is thus likely that these effects translated into coarse-grained habitat maps. We note 

however that the habitat maps generated from uncorrelated data were less sensitive to 

changes in scale, which could be an indication that what was observed was not a result of 

coarse-graining, but simply the appropriate matching of the observational scale with the 

environmental scale at which the habitats were occurring (Lecours et al., 2015).  

Results from the MaxEnt analysis showed that models using 50 m resolution usually 

performed better, were more robust and more generalizable, an indication that the 

environmental preferences of sea scallops in terms of seafloor characteristics may be best 

captured at this scale, confirming once again that finer-scale data may not always be the 

most appropriate. Another factor to consider regarding the higher performance of the 50 

m resolution data is the relative importance of backscatter data in this context. Since these 

data were initially provided at 50 m resolution, their performance at that particular scale 

may have been enhanced. Results might have been different if the raw backscatter data 
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could have been accessed and used in this study; if the raw backscatter data had been 

processed at 10 m resolution, it would likely have added fine-scale heterogeneity in 

sediment characteristics. It is however impossible to know for sure if a higher level of 

spatial heterogeneity would improve or decrease finer-scale models’ performance. If 

access to the raw backscatter data had been possible, it would have been better to generate 

the backscatter derivatives at the five different scales directly from the raw data, as done 

with the bathymetric data. 

Finally, the examination of spatial similarity across scales and scenarios highlight the 

importance of decisions regarding which variables should be included in analyses and at 

which scale, in line with previous calls made in the literature (e.g. Araujo & Guisan, 

2006; Synes & Osborne, 2011; Williams et al., 2012; Mateo Sánchez et al., 2014; 

Lecours et al., 2015). While the measured correlations between model outputs may seem 

high (>0.70), Figure 6.10 show that two model outputs with a correlation coefficient of 

0.963 between prediction probabilities can be different (i.e. differences greater than 5%) 

for 23% of the area. A coefficient of 0.832 translated into differences for 58% of the 

study area. These results are in line with those from Chapter 4. The differences in 

correlation coefficients among scales and the three scenarios that were calculated in the 

current study (cf. Figure 6.8) are thus indications of the likelihood of finding very 

different model outputs when different variables and scales are used. The assessment of 

spatial differences in probability predictions is thus a more adequate measure than the 

correlation coefficient to evaluate differences in model outputs.  
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6.4.2 Impacts of Artefacts on Habitat Maps and SDMs 

Our first hypothesis was that artefacts in bathymetry that propagate to terrain 

attributes would impact habitat maps and SDMs in a negative way. Results show that this 

is not always the case. While we were expecting map accuracy to decrease as a function 

of level of artefacts, only maps impacted by roll demonstrated such relationship. Results 

show that the other types of artefacts sometimes artificially increased map accuracy, 

although not in a predictable way. A higher level of artefact did not necessarily result in a 

better or worse map or model than a lower level of artefact. About half of the habitat 

maps produced with data altered by heave, pitch and time artefacts performed better than 

the reference maps. These results may however have been influenced by the approach 

used to quantify map accuracy. Since the habitats are represented on maps as clusters of 

pixels showing similar characteristics, they share some characteristics with areal data. 

Artefacts might thus influence the boundaries of these “zones” more than the area inside 

them. Because the ground-truth data are points that are more likely to fall within the 

middle of a zone than at its boundary, the kappa coefficients of agreement and overall 

accuracies may not capture the change in boundary. A spatial assessment of the 

differences between the different habitat maps, as performed in Chapter 4 and in Figure 

6.5, could help better capture the influence of artefacts on the delineation of the different 

habitat zones. Considering the amount of maps produced in this study, this would be 

computationally intensive but such an approach should be considered in future work. 

These results however yield an important conclusion regarding the methods commonly 

used in the literature to quantify classification and habitat map accuracy: measures using 
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punctual data to validate classifications of zones may be biased by not capturing the 

variability of the classifications along zone boundaries.  

The analysis of SDMs yielded similar conclusions to the analysis of habitat maps but 

from different types of artefacts. Heave artefacts had generally a negative impact on the 

performance of models, with some exceptions (e.g. 75 m resolution models). Many 

models impacted by pitch and time performed better than the reference models. Models 

impacted by roll artefacts clearly contradicted our hypothesis: the performance of most of 

these models was artificially increased by the presence of roll artefacts. This could be 

explained by the fact that sea scallops distribution is driven by rugosity (Brown et al., 

2012; Chapter 4), and artefacts like roll and pitch artificially increase the rugosity of an 

area. Models produced with data altered by these artefacts would thus artificially 

increased the distribution probability of sea scallops across the entire area, resulting in a 

higher prediction success when validated against the test data. The increase in distribution 

probability was confirmed by visual comparison (cf. Figure 6.10) but also by the high 

differences in spatial correlation recorded for pitch and particularly for roll (cf. Figure 

6.12). 

Our second hypothesis stated that the impacts of artefacts in bathymetry and terrain 

attributes should be greater at finer scales. This hypothesis was based on the fact that the 

propagation of artefacts from DTM to terrain attributes was previously found to be scale-

dependent (cf. Chapter 5). Results from both unsupervised and supervised classifications 

did not confirm, neither did they refute, this hypothesis as no particular scale-dependent 

patterns could be identified. The difference between the scale-dependent propagation of 
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DTM artefacts in terrain attributes and the scale-independent propagation of these 

artefacts in habitat maps and SDMs may be explained by the integration of a 

biological/ecological context. The presence of artefacts in finer-scale data may not result 

in a poor habitat classification if these data and the scales at which they were collected 

and analyzed do not have an ecological meaning or do not match the ecological scale of 

the phenomenon being studied, thus being unsuitable regardless of their quality.  

Finally, our third hypothesis was that the addition of better quality data would reduce 

the impacts of artefacts on maps and models. Results suggest that this hypothesis is true 

for the habitat maps, as maps built with the relatively good quality backscatter data were 

generally more accurate. It however remains unclear whether this improvement was 

caused by the quality of the data or their nature (i.e. backscatter), which in this particular 

case was known to be ecologically relevant. The latter option is the most likely, 

considering results from Chapter 4 that showed that maps produced only with backscatter 

data and depth performed very well. Further work is thus required to validate or 

invalidate this hypothesis with more certainty. In addition, results showed that the range 

in measures of accuracy was more stable when uncorrelated data were used, which could 

be an indication that a better choice in input variable has the potential to stabilize and 

attenuate the impacts of artefacts. Results also showed that SDMs with artefacts behave 

differently depending on how many or which variables were included. It was however 

challenging to find a predictable pattern in this behaviour. 
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6.4.3 Consideration of Spatial Errors in Ecology 

In the general literature, much focus has been given to uncertainty and random error 

or noise (Li et al., 2012). In the ecological literature, research has also been oriented 

towards measurement uncertainty and the work performed on errors has largely focused 

on the positional accuracy of species observations (e.g. Moudrý & Šímová, 2012). The 

impact of DTM artefacts has been studied before in a geomorphology and 

geomorphometry context (e.g. Bonin & Rousseaux, 2005) but rarely in ecology. Of note 

is the work by Van Niel et al. (2004) that studied the effect of error in DTM on terrain 

attributes and other geomorphometric variables. Despite being set in a context of 

predictive vegetation modelling, the authors did not study the impact of these errors on 

the actual predictive models. This issue was however addressed in a related study (Van 

Niel & Austin, 2007), where sets of random errors were distributed across DTMs and 

predictive vegetation models were built using generalized additive and generalized linear 

models. Despite different approaches and types of error studied, this study and the current 

one yielded similar conclusions regarding the fact that errors do propagate throughout 

analyses, and impact distribution models although not in an easily predictable way. In 

another ecological study that looked at uncertainty and error propagation, Livne & Svoray 

(2011) identified the need to focus on assessing the behaviour of ecological models to 

spatial errors at different spatial resolutions. While this was addressed in the current 

study, results did not indicate any scale-dependent pattern.  

In the marine environment, researchers are aware of artefacts as they are often, 

although not always (e.g. Lucieer et al., 2012), acknowledged (e.g. Blondel & Gómez 
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Sichi, 2009). When acknowledged, their implications for the ecological analysis being 

performed are often not discussed (e.g. Kostylev et al., 2001). The presence of artefacts in 

MBES data sometimes prevents their use or the use of their derived terrain attributes in 

ecological applications (e.g. Clements et al., 2010). When such data are still used, 

artefacts have been linked to habitat misclassifications (e.g. Costa & Battista, 2013; 

Micallef et al., 2012), to noise in results from unsupervised classifications (e.g. 

Galparsoro et al., 2015), and to difficulties associated with identification of seabed 

features (e.g., Dolan & Lucieer, 2014), among other consequences. In the context of the 

MAREANO program, the Norwegian Hydrographic Service indicated that “seabed 

features shall not be camouflaged by artefacts and artefacts must not appear as seabed 

features” (NHS, 2013, p. 5), and that artefacts in the processed bathymetry “shall be kept 

at an insignificant level not disturbing the seabed image” (NHS, 2013, p. 14). However, 

no procedures are indicated to deal with artefacts when they cannot be removed. This 

overview of the literature reflects the lack of understanding of how artefacts, particularly 

in MBES bathymetry, impact ecological analyses and interpretations, and the lack of 

knowledge on how to respond to the presence of artefacts. The work by Zieger et al. 

(2009) is however noteworthy as they used terrain attributes and seafloor classification to 

identify artefacts in flat areas before correcting for the misclassifications caused by 

artefacts. Such methods could become a suitable option to deal with artefacts in habitat 

mapping and SDMs, although they would need to be tested on areas that are not flat and 

may still require expert knowledge to distinguish which bathymetric patterns are artefacts 

and which are actual natural features. 
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While this study has focused on artefacts in multibeam bathymetric data, backscatter 

data are also often impacted by artefacts (e.g. Collier & Brown, 2005; Che Hasan et al., 

2012). Like for bathymetric data, some of these artefacts can be removed in post-

processing (e.g. De Falco et al., 2010; Lamarche et al., 2011) but a complete removal is 

not always achieved. Backscatter data with artefacts have been widely used (e.g. Rattray 

et al., 2009; Roberts et al., 2009) as they may still yield useful observations. Other times 

however, they are judged unusable for the mapping or modelling exercise (e.g. Holmes et 

al., 2008). It has been recognized that there is a broad misunderstanding of backscatter 

within the end user community (Lurton & Lamarche, 2015). In this study, backscatter 

data were used to evaluate the impact of adding good quality data to poor quality data 

within the same analysis. As done with bathymetry in this study, future work should 

evaluate the impacts of artefacts in backscatter data on habitat maps and SDMs. It is to be 

expected that like for bathymetry and terrain attributes, artefacts in backscatter data will 

have a greater impact if sediment properties are ecologically relevant to the species, area 

or problem studied. For instance, Copeland et al. (2013) noted that artefacts in the 

backscatter data resulted in an apparent striping pattern in their habitat classifications. 

6.4.4 Implications for Ecological Applications 

The results of this study have critical implications for ecological studies that use 

DTMs and their derived terrain attributes in their applications, which is a very common 

practice (Bouchet et al., 2015; Lecours et al., 2016). The use of environmental variables 

such as terrain attributes has been shown to improve predictions accuracy in SDMs 

(Dobrowski et al., 2008). However, this study showed that when systematic artefact 
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errors are present in DTMs, there is a trade-off between the improved prediction that 

would be gained from including the DTM and its derived terrain attributes and the risk to 

produce inaccurate predictions. Results showed that such predictions are not necessarily 

revealed as lower or absence of predictions, but can be important inflation in predictions. 

For instance, artefacts may alter the quantification of species-environment relationships 

by artificially increasing the importance of rugosity in habitat characterization. When 

rugosity is known to be a surrogate of a particular species distribution, this leads to an 

overestimation of the suitable habitat for that species.  

Conservation and management, especially in the marine environment, often rely on 

habitat maps and SDMs to inform decisions (Le Pape et al., 2014). Those maps and 

SDMs are often produced with arbitrarily chosen observational and analytical scales and a 

limited number of data based on availability (Levin, 1992; Wheatley & Johnson, 2009; 

Lechner et al., 2012b). The situation in regards to spatial scale is complex. While the 

observational and analytical scales should match the ecological scale to capture what is 

relevant (Lecours et al., 2015), the observational scale is defined by the survey 

methodology (Lecours et al., 2016). In addition to this limitation, the scales that are found 

to best capture the ecological patterns and processes may not be deemed appropriate by 

the end users. For instance, Brown et al. (2012) selected a 50 m resolution observational 

scale because (1) a finer resolution was not considered particularly useful in the 

management process by the end users (e.g. fisheries managers, scientists) and a 50 m 

resolution coincided well with the needs of the managers, (2) such resolution was in line 

with the footprint of the sea scallops fishery, and (3) it corresponded well with the scale 
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of the features on German Bank for broad-scale characterization. The relationships among 

observational and analytical scales, ecological scale, and the end use of the maps and 

models make decisions regarding scales very difficult when habitat mapping is 

implemented in the process of conservation and management planning. 

In addition, studies that include any assessment of data quality are rare (Van Niel & 

Austin, 2007). The current study highlighted the sensitivity and volatility of maps and 

models to the choice of variables, the observational scale, and spatial errors like artefacts. 

Many calls have been made in the literature for the quantification of uncertainty and error 

propagation throughout ecological analyses (e.g. Guisan et al., 2006; Lecours et al., 

2015), and tools have been proposed to deal with uncertainty (e.g. the Data Uncertainty 

Engine by Brown & Heuvelink, 2007) but not with errors. The ecological community that 

makes use of GIS tools and remote sensing techniques is usually aware of this need but 

such protocol are not yet implemented in any workflow. As stated by Li et al. (2012, p. 

2277): “there are user communities who may be aware of spatial data quality issues but 

may not have at their disposal techniques and tools for data quality assurance.” Such 

tools, associated with proper standards, protocols and metadata, are becoming crucial to 

enable a proper incorporation of error modelling in the different applications workflow. 

This will eventually lead to results and interpretation that are grounded on solid 

foundations, and more informed decisions. While it is impossible to avoid error and 

uncertainty in ecological analyses, it is also important that practitioners stop avoiding it. 

An acknowledgement of errors like artefacts and a discussion on their potential impact on 
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analyses will increase the chances to make more informed decisions when these data and 

analyses are used in contexts like conservation planning. 

6.5 Conclusions 

DTM and terrain attributes are now commonly used in ecological studies. Despite an 

awareness of the presence of errors like artefacts in these spatial data, their quality is 

rarely assessed, acknowledged or discussed. The goal of this study was to develop 

evidence linking the presence of artefacts in DTM with the accuracy of analyses 

performed in ecological applications. In a context of marine habitat mapping and species 

distribution modelling, results demonstrated that artefacts do impact habitat maps and 

SDMs, although not in a predictable way. Roll artefacts showed the most predictable 

influence, decreasing the accuracy of habitat maps and artificially increasing the 

performance and generalizability of SDMs. Other types of artefacts sometimes increased 

map accuracy and model performance and generalizability or decreased them. Results 

showed that the importance of the impacts of artefacts on ecological applications strongly 

depend on whether or not the methods are grounded in ecological relevance, particularly 

in terms of the choice of variables and the spatial scale of the data. While the influence of 

errors on an analysis depends on the type and requirements of the analysis (Friedl et al., 

2001), results gained in this study are transposable to other applications that use remotely 

sensed data like LiDAR-derived DTMs and encounter similar artefacts. This study also 

highlighted requirements for error quantification tools to become widely available to 

scientists and practitioners with a wide range of background and expertise. This will 
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improve standards and protocols and lead to more quality-aware decisions in contexts 

such as conservation and management. 
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7. Conclusion 

Mapping marine benthic habitats has become an important practice supporting 

marine conservation and resources management. The different approaches to map benthic 

habitats typically involve the integration of various types of data into a same geographic 

framework. In the context of an increasing availability and user-friendliness of GIS tools, 

the producers of those maps are not always aware of theoretical foundations of these 

tools, which have roots in geography and geomatics. The issue is amplified when 

techniques from marine geomorphometry, another field with strong connections in 

geography and geomatics, are integrated within the habitat mapping workflow. Since 

marine habitat mapping is strongly data-driven, and that these data are most often of 

spatial nature, marine habitat mapping practices are directly affected by these theoretical 

foundations, or spatial concepts (e.g. spatial scale, spatial autocorrelation). A lack of 

understanding of how these spatial concepts impact our representation of benthic 

ecosystems and ultimately our understanding of these environments and their dynamics 

can potentially lead to misinformed and inappropriate conservation and management 

decisions. This dissertation reviewed how marine habitat mapping practices lack the 

proper consideration of some core spatial concepts and proposed best practices to 

(re)integrate these concepts in the marine habitat mapping workflow. A particular focus 

was given to issues of spatial scale, spatial covariation and spatial data quality when 

marine geomorphometry is integrated in the habitat mapping workflow. 
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7.1 Summary of Findings 

7.1.1 Findings 

This dissertation aimed at answering four research questions. The first question was: 

“Which particular spatial concepts are poorly integrated in the marine benthic habitat 

mapping workflow, and is it possible to identify specific ways to improve the integration 

of spatial concepts in marine benthic habitat mapping?” To answer this question, a review 

of the marine benthic habitat mapping literature was presented in Chapter 2. In this 

review, the importance of incorporating ecological scaling and geographic theories to this 

field was highlighted. It was found that spatial scale is one of the core spatial concepts in 

both ecology and geography, and that its role in benthic habitats is not well understood 

from an ecological perspective and a geospatial representation perspective. This review 

also showed that despite repeated calls for an improved consideration of spatial scale in 

ecology and the adoption of multiscale approaches in habitat characterization, these two 

elements have yet to be fully implemented and adopted by the community. Other spatial 

concepts that were found to be poorly implemented into the benthic habitat mapping 

workflow include spatial covariation, spatial data quality, spatial autocorrelation, and 

spatial heterogeneity. Chapter 2 also demonstrated the intrinsic link between these spatial 

concepts and spatial scale.  

The second question of this dissertation was linked to the use of marine 

geomorphometry in marine benthic habitat mapping. The question was: “Which 

combinations of terrain attributes best capture seafloor characteristics while minimizing 

spatial covariation, and can these terrain attributes form a standard protocol for using 
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marine geomorphometry in different approaches to habitat mapping?” The first part of 

this question was answered in Chapter 3. Independent groups of correlated terrain 

attributes were identified, and an optimal combination of terrain attributes was extracted 

from these groups. This chapter also enabled the description of different algorithms and 

tools available to derive terrain attributes, and it was found that different algorithms 

computing a same terrain attribute could produce different outcomes. It was also shown 

that terrain attributes show a high level of spatial covariation and are sometimes 

ambiguously defined within software documentation, thus confirming that tools are often 

“black-box”.  

The second part of this second question was answered in Chapter 4, in which the 

appropriateness of the optimal combination of terrain attributes was confirmed when it 

performed better than other combinations in both top-down and bottom-up approaches to 

habitat mapping. Chapter 4 also highlighted the extent of the sensitivity of habitat maps 

and species distribution models to the choice of input variables, and how measures of 

map accuracy may not be representative of the magnitude of these variations in terms of 

the spatial extent and distribution of habitats. The analysis performed in this chapter also 

provided insights on the biophysical characteristics of German Bank and the distribution 

of sea scallops. On German Bank, the benthoscape habitats were not mostly driven by 

terrain morphology but were strongly delineated by sediment characteristics. Sea scallop 

distribution was found to be driven by depth, sediment properties and seafloor rugosity. 

Finally, a methodological finding of this chapter was the demonstration of the 
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inappropriateness of overall accuracy compared to kappa coefficient of agreement when 

quantifying classification performance. 

The third question asked in this dissertation was: “How sensitive are terrain attributes 

to different types of data acquisition artefacts, and does that sensitivity vary with spatial 

scale?” Results showed that artefacts affected terrain attributes significantly, and finer-

scale data were generally more impacted by artefacts than broader-scale data. The 

findings show that roll and pitch artefacts have a more significant negative impact on 

bathymetry and terrain attributes than time and heave artefacts. Additional findings 

demonstrated that the same terrain attributes of the same areas are not capturing the same 

information when they are computed at different spatial scales. Analyses also showed that 

data affected by artefacts can be significantly different than data without artefacts, thus 

providing different – and false – information on terrain characteristics. This observation 

was more acute at finer scales. An unexpected result was when the representation of 

terrain complexity, quantified using fractal dimension, was greater at broader scales than 

at finer scales (i.e. the terrain was represented as being more complex at broader scales). 

The last question asked was “Do data acquisition artefacts propagate to habitat maps 

and species distribution models, and if yes, are the impacts scale-dependent?” This 

question related to artefact propagation from the marine geomorphometry workflow (cf. 

previous question and Chapter 5) to the marine benthic habitat mapping workflow. 

Results showed that artefacts do impact habitat maps and species distribution models, 

although not in predictable ways – with the exception of roll artefacts. Maps impacted by 

roll followed the expected pattern that the higher the level of artefact, the lower is habitat 
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map accuracy. Maps impacted by other types of artefacts did show alterations but not in a 

predictable way: the classification accuracy of some maps impacted by artefacts was 

higher than that of the reference maps, while the accuracy of other maps was lower than 

that of the reference maps. Similar conclusions were made from results from the species 

distribution models analysis. However, in this case roll artefacts were artificially 

increasing model performance, likely because roll artificially increases the rugosity of an 

area and sea scallop distribution has been shown to be driven by rugosity. While the 

benthoscape classes of German Bank were better delineated at coarser scales, sea scallop 

distribution was best predicted at 50 m resolution. Findings also confirmed some of those 

from Chapter 4, including that the choice of input variables must be carefully made as it 

changes significantly the map and model outputs. Results also show that sediment 

properties are important delineators of benthoscape classes on German Bank. 

7.1.2 Research Hypotheses 

The literature review outlined in Chapter 2 confirmed that my first hypothesis, which 

was that there is a poor understanding of the role of different spatial concepts in marine 

benthic habitat mapping, was true. The concepts of spatial heterogeneity, spatial 

dependency, spatial covariation, spatial scale, spatial data quality, spatial representation 

and spatial data selection were all identified as being poorly integrated in the benthic 

habitat mapping workflow. 

The study presented in Chapter 3 showed that my second hypothesis, which was that 

different optimal combinations of terrain attributes would be found and vary based on 

seafloor characteristics, was wrong. While optimal combinations of terrain attributes were 
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found, results show that they do not vary with seafloor characteristics like roughness. The 

importance of individual terrain attributes do vary with terrain complexity, but their 

combination is valid for all types of terrain.  

The third research hypothesis was that the different optimal combinations of terrain 

attributes would be generalizable, i.e. they could be integrated in the marine habitat 

mapping workflow regardless of the approach used to map habitats. This hypothesis was 

validated by results from Chapter 4, which showed that the optimal combination of terrain 

attributes defined in Chapter 3 is applicable to real benthic habitat mapping exercises. The 

proposed combination was found to work best compared to other combinations in both 

top-down and bottom-up approaches.  

Part of the fourth hypothesis was tested in Chapter 5 while another part was tested in 

Chapter 6. My hypothesis was that terrain attributes, and habitat maps and species 

distribution models produced from these terrain attributes, would be sensitive to data 

acquisition artefacts. That hypothesis was validated: results from Chapter 5 demonstrated 

that artefacts affect terrain attributes in a predictable negative way, and results from 

Chapter 6 showed that artefacts also affect habitat maps and species distribution models 

but in an often unpredictable way (except for roll artefacts).  

Finally, the last hypothesis was about the scale-dependence of the sensitivity of 

terrain attributes, habitat maps and species distribution models to data acquisition 

artefacts. Finer-scale data and maps/models built from these data were expected to be 

more sensitive to data acquisition artefacts than broader-scale data and maps/models 

produced with these data. Results from Chapter 5 showed that the impact of artefacts on 
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terrain attributes is scale-dependent, with finer-scale data being more impacted than 

broader-scale data. However, results from Chapter 6 showed that while habitat maps and 

species distribution models are affected by artefacts, this effect is not scale-dependent. 

7.2 Research Contributions and Highlights 

This dissertation has contributed to the growing body of literature (e.g. Rengstorf et 

al., 2012; Rattray et al., 2014) that looked at improving our understanding of the 

influence of spatial concepts like spatial scale on the way benthic habitats are represented 

and understood. Consequently, it raised awareness on the importance of these spatial 

concepts in marine benthic habitat mapping, and should improve geographic literacy 

within the community of practitioners. It also provided new standards to define benthic 

habitats that are explicit about scale, and consider the spatial nature of data and the 

chemical environment as a potential delineator of habitats. 

Spatial scale in marine habitat mapping was addressed in many chapters. Its study 

enabled finding how representations of environmental phenomena can be altered by the 

spatial scale at which they are observed. It also showed how important it is to identify the 

scale(s) that will capture the relevant phenomena, which confirms the need to move 

towards continuum-based multiscale approaches.  

This dissertation also contributed to the definition of standards for using 

geomorphometry in marine habitat mapping. By statistically finding an optimal 

combination of terrain attributes to describe all terrains in any contexts, this dissertation 

provided an operational framework for best using geomorphometry in applications like 

marine benthic habitat mapping. This will hopefully lead to a standardization of practices, 
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which will then enable proper and valid comparisons among studies making use of 

geomorphometry. To facilitate the implementation of these new standards, a free toolbox 

for ArcGIS was provided to end-users, associated with appropriate metadata.  

Chapters 4, 5 and 6 yielded one of the most important contributions of this 

dissertation: while habitat maps are an invaluable tool in contexts such as conservation 

and management of marine resources to inform and support decision-making, they should 

always be produced, and their results should always be interpreted, critically and 

carefully. This research showed that habitat maps are highly sensitive to the variables 

selected as input, the spatial scale at which these variables are defined, and the quality of 

these data. That sensitivity was shown both in evaluation measures (i.e. overall accuracy, 

kappa coefficient of agreement, AUCs), but also and most importantly in the spatial 

distribution of habitats or distribution probabilities.  

While this dissertation was focused on marine benthic habitat mapping practices, it 

also contributed knowledge to the relatively recent field of marine geomorphometry 

(reviewed in Lecours et al., 2016). The combination of terrain attributes that was 

proposed in Chapter 3 is applicable to any geomorphometry applications, whether it is 

archeology, geomorphology, or hydrodynamics modelling. Chapter 5 also assessed the 

impact of common data acquisition artefacts in bathymetric data that are often used in 

marine geomorphometry. This was the first study of this kind in the marine 

geomorphometry literature. 
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7.3 Future Directions 

7.3.1 Limitations and Future Opportunities 

The methods used in this dissertation all have some kinds of limitations. In many 

chapters, geomorphometric analyses were performed using a single analytical 

scale/window of analysis of 3x3 pixels, which is the default setting in many GIS software. 

Keeping the analytical scale constant enabled performing multiscale analyses (rather than 

multi-design) as only the observation scale (i.e. the spatial resolution of the data) was 

changed. However, future work should try to assess if the different observations made in 

this dissertation vary with different analytical scales. This could be further explored by 

looking at the five different methods to generate terrain attributes at multiple scales, as 

presented in Dolan (2012). The five methods include (1) resampling the bathymetry 

before deriving terrain attributes, (2) averaging the bathymetry over different analytical 

windows and then deriving terrain attributes, (3) deriving terrain attributes from 

bathymetry before averaging results over different analytical windows, (4) deriving 

terrain attributes using different analytical windows, and (5) using the multiscale method 

developed by Wood (1996) that calculates terrain attributes across a series of analytical 

windows and reports the mean value and standard deviation of terrain attributes values 

across analytical scales. Future work should try to evaluate differences in map outputs 

when the different methods for multiscale geomorphometric analysis are used in a habitat 

mapping context. 

Another limitation of this research is the lack of consideration of data other than 

topographic and sediment variables. Such data (e.g. oceanographic data) were not 
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available at the same spatial scale as the multibeam data, but could have improved maps 

and models and yielded additional information on the role of terrain morphology in the 

studied habitats and in determining sea scallop distribution. Depth has been shown to be a 

good driver of sea scallop distribution, but it may be an indirect surrogate that is actually 

acting as a proxy of some other environmental gradient, e.g. in the chemical 

characteristics of the environment. 

In terms of the impacts of artefacts on terrain attributes and habitat maps, the 

conclusions reached in this dissertation are limited to the four types of artefacts that were 

studied. Future work should look at different types of artefacts and study the impact of 

artefacts of random amplitude, which would be more characteristic of bathymetric 

surveys. In addition, future studies should asses how the impacts from the combination of 

different types of artefacts differ from those of individual artefacts. The impacts on 

habitat maps of errors like artefacts in other types of data, for instance in backscatter data, 

should also be described as they are also likely to significantly impact maps and models.  

Finally, while this dissertation demonstrated the impact of spatial scale and spatial 

data quality on habitat maps, raising awareness on these issues, it did not provide concrete 

solutions for end-users (apart from the proposed selection of terrain attributes and the 

TASSE toolbox for ArcGIS). Future work will need to focus on providing tools, 

standards and protocols for instance for error modelling or fitness for use assessment. 

Now that the problems and some solutions/best practices have been identified, research 

should focus on carrying them forward in a way that they can be easily implemented and 
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widely adopted by the marine geomorphometry and marine habitat mapping 

communities. 

7.3.2 Emerging Questions 

The conclusions from this dissertation yielded new questions that could drive future 

research. These questions include: 

1. Do the five methods to implement multiscale analyses in geomorphometry, 

suggested by Dolan (2012), produce different outputs when applied to the same 

DTM? If they do, how does it impact habitat maps and species distribution models, 

and can we define best practices or standards based on that assessment?  

2. While this dissertation addressed methods from general geomorphometry (i.e. that 

deals with continuous surfaces and provide terrain attributes like slope), can we 

define standards for the use of specific geomorphometry (i.e. that deals with the 

extraction of specific landforms like moraines) to ensure that geomorphometry is 

used and developed to its full potential in the marine benthic habitat mapping 

workflow? 

3. Can we use methods from both types of geomorphometry (i.e. general and 

specific) to automatically identify artefacts in bathymetry and extract them based 

on a set of predefined rules? Which methods would be adequate to interpolate the 

areas left out by the removal of the artefacts? 

4. Do data acquisition artefacts in backscatter data propagate to habitat maps and 

species distribution models? If yes, what are the combined impacts of data 
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acquisition artefacts in both bathymetric and backscatter data on habitat maps and 

species distribution models?  

5. Related to the increase in data uncertainty with depth when surveying with 

submersible platforms demonstrated in Lecours & Devillers (2015), can we define 

survey protocols by evaluating the different trade-offs (e.g. in spatial scale, spatial 

data quality, equipment, financial resources) involved in data acquisition so that 

efforts are not spent collecting uncertain and poor quality data in the deep sea? 

6. Can we provide a tool to enable proper quantification of uncertainty (e.g. the Data 

Uncertainty Engine by Brown & Heuvelink, 2007) and spatial error at the end of 

an analysis workflow? If it is based on a predefined set of rules, would it be able to 

inform the end-user of the finest spatial scale at which the data should be used in 

order to minimize the impact of uncertainty and errors on the results and 

interpretation? 

7. Which geovisualization tools could be implemented to enable a clear spatial 

representation of uncertainty and errors associated with habitat maps and models, 

which would be suitable for decision-makers and would not be associated with 

negative perceptions of uncertainty and errors from the end-users? 

7.3.3 Recommendations for Marine Habitat Mapping Practices 

The findings in this dissertation enabled making many recommendations to improve 

the integration of spatial concepts in the marine benthic habitat mapping workflow.  

In Chapter 2, recommendations were made to improve the marine benthic habitat 

mapping workflow, based on a review of past and current trends in this discipline 
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regarding the integration of spatial concepts. First, I recommended prioritizing ecosystem 

engineers or umbrella species’ habitats for mapping and prediction, and sampling the 

environment in a way that covers an extensive range of scales and environmental 

characteristics. Then, I suggested moving away from single scale habitat characterization 

and adopting continuum-based habitat characterization approaches. This was followed by 

a recommendation to use statistical methods and analytical approaches that consider the 

spatial nature of data. From a technical point of view, I recommended quantifying spatial 

errors and uncertainty at every step of the habitat mapping workflow, automating existing 

tools, and developing new tools (e.g. GIS, statistical, ecological) for processing data and 

defining surrogates of species distribution and habitat at multiple scales. A key element 

related to these suggestions is related to the recommendation to make data, metadata, and 

tools available with appropriate documentation to maximize research and applications 

potential. Finally, I recommended explicitly reporting the spatial extent and resolution at 

which the research was intended to be conducted, the data were collected, and at which 

the goals of the habitat mapping exercise were directed. I also proposed new standards for 

defining benthic habitats, which are “areas of seabed that are (geo)statistically 

significantly different from their surroundings in terms of physical, chemical and 

biological characteristics, when observed at particular spatial and temporal scales”. This 

definition is different from previous ones because of the addition of chemical 

characteristics as components of the environment, the explicit consideration of different 

types of scales, and the consideration of the spatial nature of data. 
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In Chapter 3, the study of available terrain attributes yielded recommendations 

regarding an optimal combination of terrain attributes to use in ecological studies like 

habitat mapping. This combination includes slope, easterness and northerness (i.e. two 

measures of orientation, or aspect), local standard deviation (i.e. a measure of local 

rugosity), local mean, and relative difference to mean value (i.e. a measure of relative 

position). I recommended using that combination because it reduces redundancy, 

covariation, and ambiguity, while improving generality and replicability. Based on results 

from this analysis that demonstrate a high level of covariation among terrain attributes, I 

also recommended explicitly reporting the software, algorithms, and parameters used to 

generate terrain attributes in any studies to enable transparency and comparisons among 

studies. Finally, I encouraged software and tools developers to be explicit in their 

documentation and metadata about the methods or algorithms used by their products.  

Based on insights gained in Chapter 4, I recommend selecting input variables with an 

ecological meaning and that are not covarying when mapping habitats. Because of the 

sensitivity of habitat maps to variable selection, I recommended that stakeholders prepare 

more than a single map using different combinations of environmental variables, and that 

they select the best outcome based on a combination of expert knowledge of the area and 

species or habitat, and map accuracy or model performance quantification. When using 

measures of accuracy like kappa coefficients of agreement and overall accuracies, I also 

recommended using the former over the latter as it was more consistent and more 

representative of the overall classification accuracy. 
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In Chapters 5 and 6, I recommended using local mean over the original bathymetry 

when important artefacts are present in the bathymetry. I also recommended that users 

always acknowledge the presence of artefacts in their work and discuss their potential 

implications for their particular analyses. Similarly to recommendations made in other 

chapters, I encourage users to make use of data with an ecological meaning and at scales 

that are relevant to the species or habitat being studied. One of the most important 

recommendations from these chapters concerns the integration of error modelling in 

marine geomorphometry and marine habitat mapping to enable proper decisions 

regarding fitness for use of data for particular applications. 

7.4 Conclusions 

In conclusion, the field of marine benthic habitat mapping will keep evolving as new 

tools and methods are developed. Since habitat maps are often used in decision-making 

processes, it is crucial to make sure that we provide the best possible information to 

decision-makers. Such information will come from the adoption of multiscale approaches 

and methods that consider the spatial nature of data, and a better understanding and 

quantification of error and uncertainty in our data and analyses. Tools that enable an easy 

but transparent implementation of these concepts will be necessary to assist habitat 

mapping practitioners in making habitat maps that are grounded on a sound, spatially-

explicit basis. By improving standards and protocols and implementing practices like the 

assessment of fitness for use in the habitat mapping workflow, the efficiency of habitat 

maps to represent benthic habitats and provide the relevant information to decision-
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makers will increase, together with the trust that is put in these maps. That way, these 

maps will become an even more powerful communication tools than they currently are. 
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Appendix A: Detailed Material and Methods (Chapter 3) 

A.1 Surfaces and Terrain Attributes 

A.1.1 Artificial Surfaces 

Despite not being perfectly fractal (Halley et al., 2004), real terrains often 

demonstrate fractal-like properties (Milne, 1992; With & King, 1997) and several authors 

indicate that such fractal-based surfaces are appropriate to develop “null hypotheses” 

(Evans & McClean, 1995; Tate, 1998; Halley et al., 2004). Because of the scale-

dependency of terrain attributes and topography (Tate & Wood, 2001), a scale-invariant 

measure was essential to characterize the complexity of the representation of the surface 

(i.e. the Digital Terrain Model (DTM)), rather than the complexity of the terrain itself. 

For instance, if a rough terrain is represented using a broad-resolution DTM, it may 

appear smooth: since terrain attributes are dependent on the DTM and not the real terrain, 

a suitable subset of terrain attributes to characterize this particular DTM would be one 

that is appropriate for smooth surfaces. This information would be captured by the fractal 

dimension of the DTM. If the DTM had a higher spatial resolution, it would represent 

better the roughness of the terrain, the fractal dimension would be higher, and the 

appropriate subset of terrain attributes would be chosen accordingly. A surface’s fractal 

dimension can theoretically range from 2.0 (very smooth) to 2.9 (very complex) 

(Peterson, 1984). 
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A.2 Principal Component Analysis  

A.2.1 Identifying the Optimal Number of Components  

Minimum Average Partial Correlation (MAP) (Velicer, 1976) and Parallel Analysis 

(PA) (Horn, 1965) are commonly used and recommended by statisticians as they tend to 

give better results than other methods (Zwick & Velicer, 1986; Henson & Roberts, 2006). 

MAP is however recognized to sometimes extract too few components (O’Connor, 2000) 

while PA is recognized to sometimes extract too many components (Buja & Eyuboglu, 

1992). The revised MAP (Velicer et al., 2000) raises the partial correlations used in the 

calculation to the fourth power rather than squared. The modified PA (O’Connor, 2015) 

uses the raw dataset (i.e. the actual values of terrain attributes) rather than theoretical 

values to determine the number of components. This method is considered very accurate 

and relevant for datasets that are not normally distributed, which is often the case in 

environmental datasets (Austin, 1987; O’Connor, 2015). 

A.2.2 Complexity of Variables  

The complex variables that loaded significantly more on one component than the 

others were kept in the analysis as they may help exploring the behaviour of variables 

during interpretation. 

A.2.3 Validation 

A component was found unreliable when its Cronbach’s α index (Cronbach, 1951) 

was lower than 0.6 (Nunnally, 1978). Although, during the computation of α, SPSS also 
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computes the potential values of α if each individual variable is removed from the 

component. This allowed checking if only one specific variable was making the 

component unreliable. When this was the case, this specific variable was removed from 

the component (step 4B, Figure 3.1) and the PCA was re-run (step 4C, Figure 3.1). 

A.3 Covariation Assessment: Variable Inflation Factor and Mutual 

Information 

These covariation measurements lack meaningful thresholds to separate the variables 

that demonstrate covariation to those that do not (Belsey et al., 2004), but allow ranking 

the attributes from least covarying to most covarying. Such ranking is often performed in 

machine-learning as a pre-processing step (Kohavi & John, 1997), and has proven to be 

computationally efficient and statistically robust (Guyon & Elisseeff, 2003).  

Stepwise calculations of VIF and MI were necessary because of the changing levels 

of co-association with variables being removed from the datasets. The two stepwise 

algorithms were computed in the statistical software R v. 3.1.1 and work the same way: 

they (1) rank terrain attributes based on the calculation of the VIF or MI measure of each 

of them, (2) remove the most redundant or least informative terrain attribute, (3) save it in 

a separate list, and (4) repeat the process until all the attributes are ranked in the list. 

A.4 Adequacy of Methods: Replicability, Reliability and Gen eralization 

The Global Moran’s I values of the artificial surfaces (Figure A.1) show high spatial 

autocorrelation of the elevation values, which is expected in environmental data 

(Legendre, 1993). We thus believe that the artificial surfaces are good surrogates of 
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natural terrain. In addition, the fractal dimension tested cover most of what can be find in 

natural environment (Hofierka et al., 2009; Zawada & Brock, 2009). 

 

Figure A.1: Fractal dimensions and Moran’s I values of the nine artificial surfaces. 

The comparability of the study design applied on each surface (Figure 3.1) allowed 

us to compare PCA solutions and draw conclusions from the comparisons (Rummel, 

1970). The 10,000 pixels included in the statistical analyses are considered enough to 

obtain generalizable and replicable results and produce more accurate solutions (Barrett 

& Kline, 1981; Costello & Osborne, 2005); Comrey & Lee (1992) advise that more than 

1,000 samples is excellent, but that 10 observations per variables is also good. 10,000 

samples is thus significantly more than the 1,740 samples that would have been necessary 

(230 variables – 8 low cardinality variables – 48 duplicates = 174 variables in the PCA). 
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According to Gorsuch (1983), communality is important for replicability as it 

assesses the appropriateness of the PCA model and consequently serves to validate the 

method. In the current study, the high average communalities of each solution are an 

indication that the iterative PCA were appropriate, stable, and replicable (Cliff & Pennell, 

1967). 

The relatively constant variance of the first component across the solutions is an 

indication of the invariance property of Group 1 of terrain attributes (Kaiser, 1958). An 

invariant component is highly reliable and replicable as is indicates that the importance of 

the variables loading on it do not exclusively belong to these solutions, but are inherent to 

any similar datasets (Gorsuch, 1983).  

The results of VIF and MI were compared to make sure that one of the two methods 

was not consistently ranking variables higher or lower than the other method. For each 

surface, about half of the variables were ranked higher by one of the two methods, thus 

indicating that none of them influenced the average more than the other. Since they both 

measure covariation from different factors, we believe that their average is a good 

indication of the overall covariation behaviour of the variables. 

Finally, the high loadings on each component (Appendix C), high correlations 

between variables loading on the components (Appendix C), and the meaningfulness of 

each component (Figure 3.3) are indications of the appropriateness of the method (Wood 

et al., 1996). These are characteristics of a simple structure solution that allows for 

generalization of results (Kaiser, 1958): the same clusters of variables are consistently 

found (Figure 3.3 and Figure 3.4). 
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Appendix B: Artificial Surfaces and List of Derived Terrain 

Attributes, with Software, Algorithms, References, and Duplicates 

(Chapter 3) 
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Table B.1: List of terrain attributes derived from each surface with references and duplicates. 

 

ID Attributes Names' in Software Software Algorithms/Methods/References Identical to…

1 Bathymetric Position Index
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Wright et al. (2012)

2
Center versus Neighbors 

Variability
Idrisi Selva 17.0 Not Specified

3 Coefficient of variation Diva-GIS 7.5.0 Not Specified

4 Convergence Index SAGA GIS 2.0.8 Using Aspect

5 Convergence Index SAGA GIS 2.0.8 Using Gradient

6 Cross-sectional Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

7 Cross-sectional Curvature Landserf 2.3 Not Specified

8 Curvature
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 9

9 Curvature ArcGis 10.2.2 and Python 2.7.8 Zevenbergen and Thorne (1987) 8

10 Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985)

11 Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)

12 Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982)

13 Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)

14 Curvature SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

16, 123, 125, 

143, 145

15 Curvature SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)

16 Curvature SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)
14, 123, 125, 

143, 145

17 Deviation from Mean Elevation Whitebox GAT 3.2.1 Iguazu Not Specified

18 Deviation from Mean Value SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 21

19 Deviation from Mean Value SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

20 Deviation from Mean Value SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000)

21 Deviation from Mean Value SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 18

22 Difference from Mean Elevation Whitebox GAT 3.2.1 Iguazu Not Specified

23 Difference from Mean Value SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 26, 214, 217

24 Difference from Mean Value SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

25 Difference from Mean Value SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 216
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ID Attributes Names' in Software Software Algorithms/Methods/References Identical to…

26 Difference from Mean Value SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 23, 214, 217

27 Easterness
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified

28 Easterness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
4-Cell Method (Fleming and Hoffer, 1979)

29 Easterness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Horn (1981) 51

30 Easterness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Sharpnack and Akin (1969)

31 Easterness ArcGis 10.2.2 and Python 2.7.8 Zevenbergen and Thorne (1987)

32 Easterness Idrisi Selva 17.0 Not Specified

33 Easterness Landserf 2.3 Not Specified

34 Easterness Quantum GIS 2.4.0 Chugiak Horn (1981)

35 Easterness Quantum GIS 2.4.0 Chugiak Zevenbergen and Thorne (1987)

36 Easterness Quantum GIS 2.4.0 Chugiak Not Specified

37 Easterness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985) 39

38 Easterness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)

39 Easterness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982) 37

40 Easterness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)

41 Easterness SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

42 Easterness SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)

43 Easterness SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)

44 Easterness SAGA GIS 2.0.8 Not Specified

45 Easterness TNTmips Free 2014 (MicroImages) Exact fit to 4 nearest neighbors and center cell

46 Easterness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit 47

47 Easterness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, match central cell 46

48 Easterness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, weighted by 1/distance

49 Easterness TNTmips Free 2014 (MicroImages)
Quadratic surface, least-squares fit, weighted by 

1/distance
2

50 Easterness uDig 1.4.0b with Spatial Toolbox Not Specified
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51 Easterness Whitebox GAT 3.2.1 Iguazu Not Specified 29

52 Fractal Dimension Idrisi Selva 17.0 Not Specified

53 General Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

54 Gradient uDig 1.4.0b with Spatial Toolbox Evans (1979)

55 Gradient uDig 1.4.0b with Spatial Toolbox Finite Differences

56 Gradient uDig 1.4.0b with Spatial Toolbox Horn (1981)

57 Longitudinal Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

58 Longitudinal Curvature Landserf 2.3 Not Specified

59 Maximum ArcGis 10.2.2 and Python 2.7.8 Not Specified 60*

60 Maximum Diva-GIS 7.5.0 Not Specified 59*

61 Maximum Curvature Idrisi Selva 17.0 Not Specified

62 Maximum Curvature Landserf 2.3 Not Specified

63 Maximum Value SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 64, 65, 66

64 Maximum Value SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000) 63, 65, 66

65 Maximum Value SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 63, 64, 66

66 Maximum Value SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 63, 64, 65

67 Mean ArcGis 10.2.2 and Python 2.7.8 Not Specified 68*

68 Mean Diva-GIS 7.5.0 Not Specified 67*

69 Mean Curvature Landserf 2.3 Not Specified

70 Mean of Residuals Landserf 2.3 Not Specified

71 Mean Value SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 74

72 Mean Value SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

73 Mean Value SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000)

74 Mean Value SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 71

75 Median Diva-GIS 7.5.0 Not Specified
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76 Minimum ArcGis 10.2.2 and Python 2.7.8 Not Specified 77

77 Minimum Diva-GIS 7.5.0 Not Specified 76

78 Minimum Curvature Idrisi Selva 17.0 Not Specified

79 Minimum Curvature Landserf 2.3 Not Specified

80 Minimum Value SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 81, 82, 83

81 Minimum Value SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000) 80, 82, 83

82 Minimum Value SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 80, 81, 83

83 Minimum Value SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 80, 81, 82

84
Modified/local Melton Ruggedness 

Index
ArcGis 10.2.2 and Python 2.7.8 Melton (1965)

85 Morphometric Protection Index SAGA GIS 2.0.8 Not Specified

86 Northerness
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified

87 Northerness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
4-Cell Method (Fleming and Hoffer, 1979)

88 Northerness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Horn (1981) 110

89 Northerness
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Sharpnack and Akin (1969)

90 Northerness ArcGis 10.2.2 and Python 2.7.8 Zevenbergen and Thorne (1987)

91 Northerness Idrisi Selva 17.0 Not Specified

92 Northerness Landserf 2.3 Not Specified

93 Northerness Quantum GIS 2.4.0 Chugiak Horn (1981)

94 Northerness Quantum GIS 2.4.0 Chugiak Zevenbergen and Thorne (1987)

95 Northerness Quantum GIS 2.4.0 Chugiak Not Specified

96 Northerness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985) 98

97 Northerness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)

98 Northerness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982) 96

99 Northerness SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)
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100 Northerness SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

101 Northerness SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)

102 Northerness SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)

103 Northerness SAGA GIS 2.0.8 Not Specified

104 Northerness TNTmips Free 2014 (MicroImages) Exact fit to 4 nearest neighbors and center cell

105 Northerness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit 106

106 Northerness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, match central cell 105

107 Northerness TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, weighted by 1/distance

108 Northerness TNTmips Free 2014 (MicroImages)
Quadratic surface, least-squares fit, weighted by 

1/distance
2

109 Northerness uDig 1.4.0b with Spatial Toolbox Not Specified

110 Northerness Whitebox GAT 3.2.1 Iguazu Not Specified 88

111 Percentile SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 112, 113, 114

112 Percentile SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000) 111, 113, 114

113 Percentile SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 111, 112, 114

114 Percentile SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 111, 112, 113

115 Plan Curvature
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 117

116 Plan Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

117 Plan Curvature ArcGis 10.2.2 and Python 2.7.8 Zevenbergen and Thorne (1987) 115

118 Plan Curvature Landserf 2.3 Not Specified

119 Plan Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985)

120 Plan Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)

121 Plan Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982)

122 Plan Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)

123 Plan Curvature SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

14, 16, 125, 

143, 145

124 Plan Curvature SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)
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125 Plan Curvature SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)
14, 16, 123, 

143, 145

126 Plan Curvature SAGA GIS 2.0.8 Not Specified

127 Plan Curvature TNTmips Free 2014 (MicroImages) Exact fit to 4 nearest neighbors and center cell

128 Plan Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit

129 Plan Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, match central cell

130 Plan Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, weighted by 1/distance

131 Plan Curvature TNTmips Free 2014 (MicroImages)
Quadratic surface, least-squares fit, weighted by 

1/distance
2

132 Plan Curvature Whitebox GAT 3.2.1 Iguazu Not Specified

133 Planar Curvature uDig 1.4.0b with Spatial Toolbox Not Specified

134 Planimetric-to-surface ratio ArcGis 10.2.2 and Python 2.7.8 Cooley (2014), Rashid (2010), Berry (2007)

135 Profile Curvature
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 137

136 Profile Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

137 Profile Curvature ArcGis 10.2.2 and Python 2.7.8 Zevenbergen and Thorne (1987) 135

138 Profile Curvature Landserf 2.3 Not Specified

139 Profile Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985)

140 Profile Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)

141 Profile Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982)

142 Profile Curvature SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)

143 Profile Curvature SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

14, 16, 123, 

125, 145

144 Profile Curvature SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)

145 Profile Curvature SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)
14, 16, 123, 

125, 143

146 Profile Curvature SAGA GIS 2.0.8 Not Specified

147 Profile Curvature TNTmips Free 2014 (MicroImages) Exact fit to 4 nearest neighbors and center cell

148 Profile Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit

149 Profile Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, match central cell
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150 Profile Curvature TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, weighted by 1/distance

151 Profile Curvature TNTmips Free 2014 (MicroImages)
Quadratic surface, least-squares fit, weighted by 

1/distance
2

152 Profile Curvature uDig 1.4.0b with Spatial Toolbox Not Specified

153 Profile Curvature Whitebox GAT 3.2.1 Iguazu Not Specified

154 Range ArcGis 10.2.2 and Python 2.7.8 Not Specified 155*

155 Range Diva-GIS 7.5.0 Not Specified 154*

156 Real Area SAGA GIS 2.0.8 Not Specified

157 Relative deviation from mean ArcGis 10.2.2 and Python 2.7.8 Not Specified

158 Representativeness SAGA GIS 2.0.8 Boehner et al. (1997)

159 Residual at centre Landserf 2.3 Not Specified

160 Roughness Quantum GIS 2.4.0 Chugiak Not Specified

161 Ruggedness Index Quantum GIS 2.4.0 Chugiak Not Specified

162 Slope
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 164*, 166, 187*

163 Slope
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
4-Cell Method (Fleming and Hoffer, 1979)

164 Slope
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Horn (1981) 162*, 166*, 187

165 Slope
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Sharpnack and Akin (1969)

166 Slope ArcGis 10.2.2 and Python 2.7.8 Horn (1981) 162, 164*, 187*

167 Slope Diva-GIS 7.5.0 Not Specified

168 Slope Idrisi Selva 17.0 Not Specified

169 Slope Landserf 2.3 Not Specified

170 Slope Quantum GIS 2.4.0 Chugiak Horn (1981)

171 Slope Quantum GIS 2.4.0 Chugiak Zevenbergen and Thorne (1987)

172 Slope Quantum GIS 2.4.0 Chugiak Not Specified

173 Slope SAGA GIS 2.0.8 Fit 2 Degree Polynom (Bauer et al., 1985) 175

174 Slope SAGA GIS 2.0.8 Fit 2 Degree Polynom (Haralick, 1983)
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175 Slope SAGA GIS 2.0.8 Fit 2 Degree Polynom (Heerdegen and Beran, 1982) 173

176 Slope SAGA GIS 2.0.8 Fit 2 Degree Polynom (Zevenbergen and Thorne, 1987)

177 Slope SAGA GIS 2.0.8
Least Squares Fitted Plane (Horn, 1981, Costa-Cabral and 

Burgess, 1996)

178 Slope SAGA GIS 2.0.8 Maximum Slope (Travis et al., 1975)

179 Slope SAGA GIS 2.0.8 Maximum Triangle Slope (Tarboton, 1997)

180 Slope SAGA GIS 2.0.8 Not Specified

181 Slope TNTmips Free 2014 (MicroImages) Exact fit to 4 nearest neighbors and center cell

182 Slope TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit 183

183 Slope TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, match central cell 182

184 Slope TNTmips Free 2014 (MicroImages) Quadratic surface, least-squares fit, weighted by 1/distance

185 Slope TNTmips Free 2014 (MicroImages)
Quadratic surface, least-squares fit, weighted by 

1/distance
2

186 Slope uDig 1.4.0b with Spatial Toolbox Not Specified

187 Slope Whitebox GAT 3.2.1 Iguazu Not Specified 162*, 164, 166*

188 Slope Variability ArcGis 10.2.2 and Python 2.7.8 Ruszkiczay-Rudiger et al. (2009)

189 Standard Deviation
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 190

190 Standard Deviation ArcGis 10.2.2 and Python 2.7.8 Ascione et al. (2008) 189

191 Standard Deviation SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 194

192 Standard Deviation SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

193 Standard Deviation SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000)

194 Standard Deviation SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 191

195 Standard Deviation of Slope ArcGis 10.2.2 and Python 2.7.8 Naruse and Oguchi (2013)

196 Surface Area
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 198

197 Surface Area ArcGis 10.2.2 and Python 2.7.8 Cooley (2014), Rashid (2010), Berry (2007) 200

198 Surface Area to Planar Surface
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Not Specified 196

199 Surface Ratio
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Jenness (2013)
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200 Surface Ratio ArcGis 10.2.2 and Python 2.7.8 Cooley (2014), Rashid (2010), Berry (2007) 197

201 Surface Roughness Index ArcGis 10.2.2 and Python 2.7.8 Hobson (1972)

202 Tangential Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

203 Tangential Curvature uDig 1.4.0b with Spatial Toolbox Not Specified

204 Tangential Curvature Whitebox GAT 3.2.1 Iguazu Not Specified

205 Terrain Ruggedness (VRM)
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Wright et al. (2012)

206 Terrain Ruggedness Index ArcGis 10.2.2 and Python 2.7.8 Riley et al. (1999)

207 Terrain Ruggedness Index Quantum GIS 2.4.0 Chugiak Not Specified

208 Terrain Ruggedness Index SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 211

209 Terrain Ruggedness Index SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

210 Terrain Ruggedness Index SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000)

211 Terrain Ruggedness Index SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 208

212 Topographic Position Index ArcGis 10.2.2 and Python 2.7.8 Cooley (2014)

213 Topographic Position Index Quantum GIS 2.4.0 Chugiak Not Specified

214 Topographic Position Index SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 23, 26, 217

215 Topographic Position Index SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

216 Topographic Position Index SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 25

217 Topographic Position Index SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 23, 26, 214

218 Topographic Ruggedness Index Whitebox GAT 3.2.1 Iguazu Not Specified

219 Total Curvature
ArcGis 10.2.2 and DEM Surface Tools for ArcGIS 10 

(v.2.1.399)
Evans (1979)

220 Total Curvature Whitebox GAT 3.2.1 Iguazu Not Specified

221 Value Range SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 222, 223, 224

222 Value Range SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000) 221, 223, 224

223 Value Range SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000) 221, 222, 224

224 Value Range SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 221, 222, 223

225 Variance
ArcGIS 10.2.2 and Benthic Terrain Modeler 3.0 Release 

Candidate 3
Wright et al. (2012)

226 Vector Ruggedness Measure ArcGis 10.2.2 and Python 2.7.8 Sappington et al. (2007); Hobson (1972)

227 Vector Ruggedness Measure SAGA GIS 2.0.8 Exponential (Wilson and Gallant, 2000) 230

228 Vector Ruggedness Measure SAGA GIS 2.0.8 Gaussian weighting (Wilson and Gallant, 2000)

229 Vector Ruggedness Measure SAGA GIS 2.0.8 Inverse distance to a power (Wilson and Gallant, 2000)

230 Vector Ruggedness Measure SAGA GIS 2.0.8 No distance weighting (Wilson and Gallant, 2000) 227

*Except for surface A8
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Table B.2: Algorithms used to measure slope by each studied software packages. The definition of the 

groups can be found in Figure 3.3. 

 

References of algorithms/methods 

Ascione, A., Cinque, A., Miccadei, E., Villani, F., & Berti, C. (2008) The Plio-Quaternary 

uplift of the Apennine chain: new data from the analysis of topography and river valleys in 

Central Italy. Geomorphology, 102:105-118. 

Bauer, J., Rohdenburg, H., & Bork, H.R. (1985) Ein digitales reliefmodell als Vorraussetzung 

fuer ein deterministisches Modell der Wasser – und Stoff-Fluesse. In: Bork, H.R. & 

Rohdenburg, H. (Eds) Landschaftsgenese und Landschaftsoekologie, 

Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, 

Grundlagenarbeiten zu Analyse von Agrar-Oekosystemen, 1-15. 

Berry, J.K. (2007) Beyond Mapping III – Map analysis: understanding spatial patterns and 

relationships. GeoTec Media Publisher.  

Boehner, J., Koethe, R., & Trachinow, C. (1997) Weiterentwicklung der automatischen 

Reliefanalyse auf der Basis von Digitalen Gelandemodellen. Gottinger Geographische 

Abhandlungen, 100:3-21. 

Cooley, S., 2014. GIS 4 Geomorphology: Terrain Roughness – 13 ways. 

http://gis4geomorphology.com/roughness-topographic-position/ 

Group 5A Group 5B Group 5C Group 5D Group 5E

ArcGIS 10.2.2 with Python 2.7.8 √

ArcGIS 10.2.2 with DEM Surface Tools (v.2.1.399) √ √ √

ArcGIS 10.2.2 with Benthic Terrain Modeler 3.0 rc3 √

Diva-GIS 7.5.0 √

Idrisi Selva 17.0 √

Landserf 2.3 √

Quantum GIS 2.4.0 Chugiak √ √

SAGA GIS 2.0.8 √ √ √ √

TNTmips Free 2014 (MicroImages) √

uDig 1.4.0b √ √ √

Whitebox GAT 3.2.1 Iguazu √
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Costa-Cabral, M., & Burgess, S.J. (1996) Digital Elevation Model Networks (DEMON): a 

model of flow over hillslopes for computation of contributing and dispersal areas. Water 

Resources Research, 30:1681-1692. 

Evans, I.S. (1979) An integrated system of terrain analysis and slope mapping. Final report 

on grant DA-ERO-591-73-G0040, University of Durham, England. 

Fleming, M.D., & Hoffer, R.M. (1979) Machine processing of Landsat MSS data and DMA 

topographic data for forest cover type mapping. Laboratory for Applications of Remote 

Sensing, Purdue University, West Lafayette, Indiana, LARS Technical Report 062879. 

Haralick, R.M. (1983) Ridge and valley detection on digital images. Computer Vision, 

Graphics and Image Processing, 22:28-38. 

Heerdegen, R.G., & Beran, M.A. (1982) Quantifying source areas through land surface 

curvature. Journal of Hydrology, 57:359-373. 

Hobson, R.D. (1972) Surface roughness in topography: quantitative approach. In: Chorley, 

R.J. (Ed.) Spatial Analysis in Geomorphology, Harper and Row, New York, United States. 

Horn, B.K.P. (1981) Hill shading and the reflectance map. Proceedings of the IEEE, 69:14-

47. 

Jenness. J.S. (2013) DEM Surface Tools. Jenness Enterprises, Flagstaff, Arizona, United 

States, 98p. 

Melton, M.A. (1965) The geomorphic and paleoclimatic significance of alluvial deposits in 

southern Arizona. Journal of Geology, 73:1-38. 

Naruse, K., & Oguchi, T. (2013) Classification and formation environment of glacial valleys 

based on morphometric analyses. Conference Proceedings of Geomorphometry 2013, 

Nanjing, China, p.41-44. 

Rashid, H. (2010) 3-D surface-area computation of the state of Jammu & Kashmir using 

Shuttle Radar Topographic Mission (SRTM) data in Geographical Information System 

(GIS). Journal of Geomatics, 4:77-82. 

Riley, S.J., DeGloria, S.D., & Elliot, R. (1999) A terrain ruggedness index that quantifies 

topographic heterogeneity. Intermountain Journal of Sciences, 5:23-27. 

Ruszkiczay-Rüdiger, Z., Fodor, L., & Horváth, E. (2009) Discrimination of fluvial, eolian 

and neotectonic features in a low hilly landscape: a DEM-based morphotectonic analysis 

in the Central Pannonian Basin, Hungary. Geomorphology, 104:203-217. 
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Sappington, J.M., Longshore, K.M., & Thompson, D.B. (2007) Quantifying landscape 

ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave 

desert. Journal of Wildlife management, 71:1419-1426. 

Sharpnack, D.A., & Akin, G. (1969) An algorithm for computing slope and aspect from 

elevations. Photogrammetric Engineering, 35:247-248. 

Tarboton, D.G., (1997) A new method for the determination of flow directions and upslope 

areas in grid digital elevation models. Water Resources Research, 33:309-319. 

Travis, M.R., Elsner, G.H., Iverson, W.D., & Johnson, C.G. (1975) VIEWIT: computation of 

seen areas, slope, and aspect for land-use planning. USDA F.S. General Technical Report 

PSW-11/1975, 70p. 

Wilson, J.P., & Gallant, J.C. (2000) Terrain analysis: principles and applications. Wiley 

520p. 

Wright, D.J., Pendleton, M., Boulware, J., Walbridge, S., Gerlt, B., Eslinger, D., Sampson, 

D., & Huntley, E. (2012) ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental 

Systems Research Institute, NOAA Coastal Services Center, Massachusetts Office of 

Coastal Zone Management. Available online at http://esriurl.com/5754. 

Zevenbergen, L.W., & Thorne, C.R. (1987) Quantitative analysis of land surface topography. 

Earth Surface Processes and Landforms, 12:47-56. 
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Appendix C: Extended Results of the Iterative Principal 

Component Analysis (PCA), Variable Inflation Factor (VIF), and 

Mutual Information (MI), for all Surfaces and Derived Terrain 

Attributes (Chapter 3) 
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Table C.1: Summary of PCA solutions. Legend: Car = Removed for low cardinality. Mx = Marker 

variable on component x. Coy = Complex variable removed at iteration y. NL = No loadings. CFa.b.c 

= Complex variable that reached the final solution as it does not load relatively equal on more than 

one component, but does load on more than one. a is the component on which it loads the most, 

followed by b and c, when applicable. Negative loadings are indicated with the minus sign. The 

categories are based on Comrey & Lee (1992) scale of measurement for loadings cutoff (Comrey, AL., 

and H.B. Lee, 1992, A first course in factor analysis, Hillsdale, New Jersey: Erlbaum). Regular 

characters: excellent loadings (>0.71). Characters in italic: very good loadings ([0.63-0.71[). 

Underlined characters: good loadings ([0.55-0.63[). Underlined characters in italic: fair loadings 

([0.45-0.55[). Bold characters: poor loadings ([0.32-0.45[). 
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Table C.2: Percentage of explained variance and total variance explained by each component for each surface. Legend: The numbers in italic 

represent the unreliable components as assessed by Cronbach’s α, and underlined numbers correspond to components with less than three 

variables. 

 

 



294 

 

 

Table C.3 Communalities from PCA 
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Table C.4: Average covariation ranking from VIF and MI. Legend: Values in italic correspond to low 

cardinality variables, complex variables, or variables with low communality. Attributes with lower 

values are least multicollinear. 
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Table C.5: Final PCA solution (rotated component matrix) for surface A0. 
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Table C.6: Final PCA solution (rotated component matrix) for surface A1. 
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Table C.7: Final PCA solution (rotated component matrix) for surface A2.                                                                                                                       v
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Table C.8: Final PCA solution (rotated component matrix) for surface A3. 
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Table C.9: Final PCA solution (rotated component matrix) for surface A4. 

 



325 

 

 



326 

 

 



327 

 

 



328 

 

 



329 

 

 

Table C.10: Final PCA solution (rotated component matrix) for surface A5. 
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Table C.11: Final PCA solution (rotated component matrix) for surface A6. 
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Table C.12: Final PCA solution (rotated component matrix) for surface A7. 
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Table C.13: Final PCA solution (rotated component matrix) for surface A8. 
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Appendix D: Additional Information on Maps and Models 

Performance (Chapter 4) 

 

 

Figure D.1: Comparison of the discrimination ability of the computed classifications with that of the 

classification computed using only bathymetry and the backscatter derivatives, based on the number 

of bottom types (maximum possible of 5) that were better discriminated. 
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Figure D.2: Percentage of variable contribution for the 29 MaxEnt models. Only contributions greater than 5% are labeled.
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Appendix E: Detailed Results (Chapter 5) 

E.1 Spatial Similarity 

E.1.1 Full Extent 

When looking at average correlations between the bathymetric and terrain attributes 

surfaces altered by heave and their respective reference surfaces, average correlation 

coefficients indicated that finer-scale altered surfaces are more dissimilar to their 

reference surfaces than coarser-scale altered surfaces. Topographic position had the 

lowest correlation coefficients, followed by easterness, northerness, rugosity, slope, 

bathymetry and topographic mean. A summary of the modelling results for spatial 

similarity is shown in Table E.1, and proportions of the variance explained by the 

significant models are presented in Table E.2. The modelling of the change in correlation 

as a function of level of induced heave artefact yielded significant models only for the 

five scales of easterness and topographic position, for the four finest scales of northerness 

and slope, and for the two finest scales of rugosity (Table E.1). The equations modelled 

adequately the measured relationships (average r
2
 of 0.866, Table E.2), and all described 

a loss in spatial similarity with increasing heave amplitude. 
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Table E.1: Summary of the modelling results for spatial similarity. Grey cells indicate that the models 

were not significant based on the F statistic. Grey cells with a symbol (*) indicate that the equations 

were significant based on the F statistic, but that the rate of change was not significant based on the t 

test. White cells indicate significant model, and the sign within it indicate whether the equations had a 

positive or negative rate of change. 

 

Table E.2: Range and average of r
2
 values for all significant relationships that were modelled for the 

full extent. 

 

For pitch artefacts, the correlation coefficients were on average lower for finer scales 

than for coarser scales, and lowest for topographic position, followed by northerness, 

easterness, slope, rugosity, bathymetry and topographic mean. Models that were all 

significant, explained well the relationships (average r
2
 of 0.953) and all indicated a loss 

in spatial similarity with increasing artefact amplitude. The rates of change followed the 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Heave - - - - - - - - - - - - - * - - * * - - - - -

Pitch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Roll - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Time - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Topo. PositionBathymetry Topo. Mean Easterness Northerness Slope Rugosity

Range Average Range Average Range Average Range Average

Spatial Similarity Surfaces 0.644-0.959 0.866 0.699-0.997 0.953 0.747-0.999 0.868 0.737-0.957 0.846

Surfaces 0.605-0.989 0.842 0.629-0.976 0.918 0.733-0.947 0.843

Error 0.621-1.000 0.896 0.593-0.943 0.798 0.697-0.989 0.925 0.657-0.748 0.703

Surfaces 0.635-0.998 0.958 0.570-1.000 0.886 0.651-0.987 0.882

Error 0.866-0.994 0.957 0.721-0.992 0.962 0.694-0.981 0.882 0.701-0.890 0.791

Surfaces 0.843 0.843 0.848-0.998 0.970 0.652-1.000 0.912 0.585-0.993 0.830

Error 0.578-0.993 0.959 0.590-0.990 0.951 0.610-0.968 0.838 0.674-0.912 0.768

Surfaces 0.869 0.869 0.541-0.987 0.879 0.586-0.999 0.863 0.662-0.927 0.793

Error 0.848-0.999 0.947 0.596-0.918 0.833 0.675-0.995 0.761

Surfaces 0.746-0.999 0.933 0.555-1.000 0.851 0.529-0.888 0.651

Error 0.904-0.995 0.962 0.641-0.871 0.799 0.581-0.996 0.723

Surfaces 0.661-0.679 0.670 0.767-0.995 0.952 0.646-0.999 0.851 0.699-0.983 0.878

Error 0.585-0.971 0.880 0.660-0.907 0.803 0.608-0.959 0.725 0.598-0.894 0.805

Fractal Dimension Surfaces 0.776-0.978 0.912 0.891-0.922 0.902 0.576 0.576

Spatial 

Autocorrelation

Heave Pitch Roll Time

Range

Mean

Standard Deviation

Skewness

Kurtosis
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same ranking as for the average correlations, meaning that topographic position had the 

quickest loss in association with the reference surfaces per degree of pitch, and 

topographic mean had the slowest. In all cases, finer scales changed more rapidly than 

coarser scales.  

When looking at average correlations between the bathymetric and terrain attribute 

surfaces altered by roll and their respective reference surfaces, northerness generally 

showed the lowest correlations, followed by topographic position, easterness, slope, 

rugosity, bathymetry and topographic mean. Finer scales also showed lower correlations 

than coarser scales. Like pitch, models were all significant, explained adequately the 

relationships (average r
2
 of 0.868, Table E.2) and confirmed a decrease in correlation with 

increasing roll. The rates of change showed that slope was the most impacted group of 

surfaces, i.e. becoming least similar to the reference surfaces as roll increases, followed 

by rugosity, topographic position, northerness, easterness, bathymetry and topographic 

mean. In general, finest scales had greatest rates of change than coarser scales. 

Finally, the patterns of average correlation coefficients for time artefacts were the 

same as for pitch artefacts: correlations were weaker at finer scales, and lowest for 

topographic position followed by northerness, easterness, slope, rugosity, bathymetry and 

topographic mean. Models for topographic mean and the model for bathymetry at 10 m 

resolution were not significant. The remaining models all had a negative rate of change 

and an average r
2
 of 0.846. 
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E.1.2 Sub-Areas 

Average correlation coefficients for heave for the shallower sub-area followed the 

same patterns in term of scale and rankings than the full extent. For the deeper sub-area, 

correlation coefficients of topographic position were lowest, followed by northerness, 

easterness, slope, rugosity, bathymetry and topographic mean. In general, coefficients for 

finer scales were lower than those for coarser scales, except for easterness that did not 

have such a clear pattern. When looking at the shallower sub-area in terms of pitch 

artefacts, correlation coefficients followed in average the same patterns than for the full 

extent both for scales and ranking of surfaces, except for the inversion of slope and 

rugosity in the ranking. For the deeper sub-area, correlation coefficients for the analysis 

of pitch were always lower for finer scales, and were lowest for topographic position, 

followed by slope, northerness, rugosity, easterness, bathymetry and topographic mean. 

For the shallower sub-area and roll, average correlation coefficients followed the same 

pattern as for the full extent, except for the inversion of easterness and rugosity in the 

ranking. The deeper sub-area showed a different pattern. First, bathymetry and 

topographic mean behaved the same way as seen before with scale, i.e. finer scales had 

lower correlation coefficients than coarser spatial resolutions. However, the opposite 

pattern was observed with easterness, northerness, slope and rugosity, where coarser 

scales had generally lower correlation coefficients in average than finer scales. 

Topographic position did not show any particular pattern. Average correlation 

coefficients for time showed the same scale and ranking patterns than the full extent, 

except for the inversion of slope and rugosity in the ranking for the shallower sub-area. In 



351 

 

 

general, when looking at the effect of roll and pitch on the correlations between altered 

and reference surfaces, correlation coefficients of the shallower sub-area were much 

higher than those of the deeper sub-area. The opposite pattern was observed for heave 

artefacts, and no clear relationship was found for time artefacts, likely due to the high 

correlation coefficients measured. 

In terms of modelling of spatial similarity with artefact for the sub-areas, a summary 

of models significance is presented in Table E.3 below. Only two models were significant 

for heave: easterness at 25 and 50 m resolutions in the deeper sub-area. These two models 

showed that altered surfaces become more similar to the reference surfaces as heave level 

increases. 

Table E.3: Summary of the modelling results for spatial similarity of the two sub-areas. See Table E.1 

for legend. 

 

For pitch, a few models were not significant for the shallower sub-area, and only one 

was not for the deeper sub-area (Table E.3). All significant models were negative, 

indicating decreasing similarity with increasing artefacts level (average r
2
 of 0.919 for the 

shallower sub-area and 0.968 for the deeper one). The only generalizable observations 

regarding rates of change that could be made based on pitch models of the shallower sub-

area were that bathymetry and topographic mean were the least impacted by pitch, and 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Heave * * * * * * * * * * * * * * * * * * * * * * * *

Pitch - - - - - - - - - - - - * - - - - - - - - - - - - * * - *

Roll - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Time - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Heave * * * * * * * * * + + * * * * * * * * *

Pitch - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Roll - - - - - - - - - - * * - - - - - - - - - - - - - - - -

Time - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - -

Topo. Position

Shallower, 

High-Density 

Sub-Area

Deeper,       

Low-Density 

Sub-Area

Bathymetry Topo. Mean Easterness Northerness Slope Rugosity
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that correlations for bathymetry, slope and rugosity changed faster at finer scales. For the 

deeper sub-area, the greatest rate of change was observed in equations of topographic 

position, followed by slope, northerness, rugosity, easterness, bathymetry and topographic 

mean. The rates of change were also more important at finer scales than at coarser scales, 

except for easterness from which no distinct pattern could be identified.  

Models for roll were all significant and negative for the shallower sub-area (average 

r
2
 of 0.927). Unlike the full extent, it was not possible to generalize which terrain attribute 

was most impacted for that area since it changed with scales. For instance, at 10 and 25 m 

resolution, slope had the steepest rate of change with roll while at 50 m it was rugosity, at 

75 m it was topographic position, and at 100 m it was northerness. Only bathymetry and 

easterness had a pattern with scale where finer resolutions were more impacted than 

coarser resolutions. In the deeper sub-area, fewer models were significant (Table E.3): 

easterness equations and some of rugosity were not significant. Significant models had an 

average r
2
 value of 0.718 and negative rates of change. These models enabled identifying 

that topographic mean had the greatest rate of change, followed by bathymetry, 

topographic position, northerness, slope and rugosity. Finer scales changed more rapidly 

than coarser scales for northerness, easterness, rugosity and slope, but coarser scales 

changed more rapidly for topographic mean.  

Finally, most models were significant in both areas for time artefacts with average r
2
 

values of 0.902 (shallower) and 0.893 (deeper) and indicated a loss in spatial similarity 

with increasing level of artefact induced. Finer scales always had a greater rate of change 

than coarser scales. The pattern for the deeper sub-area in terms of which surface was 
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more impacted based on the rate of change followed that of the full extent. However, the 

shallower sub-area presented a slightly different pattern with topographic position as the 

most impacted, followed by easterness, northerness, rugosity, slope, bathymetry and 

topographic mean. 

E.2 Error Modelling 

E.2.1 Full Extent 

Skewness, kurtosis and spatial autocorrelation of errors were not measured at 10 m 

resolution for the full extent analysis due to limitations in computer power. 

When looking at their statistical distribution, errors induced by heave generally had a 

right-skewed, leptokurtic distribution, except for topographic mean (50 and 75 m 

resolution) for which errors followed a normal distribution, and topographic mean (25 

and 100 m resolution) and bathymetry (75 m) that had a symmetrical leptokurtic 

distribution. The distribution of errors induced by pitch also had right-skewed, leptokurtic 

distributions, except for topographic mean (25 to 75 m resolutions) with symmetrical 

leptokurtic distributions. For roll, the error was in average normally distributed, except 

for rugosity, slope and topographic position at 25 m resolution that were leptokurtic right-

skewed, and for rugosity (50 m and 75 m), topographic position (50 to 100 m), slope (50 

m) and topographic mean (100 m) that were symmetrical leptokurtic. Finally, the 

distributions of errors caused by time were all leptokurtic right-skewed. Under the 

influence of certain artefacts, the distribution of errors for some terrain attributes became 

more symmetrical with finer scales: topographic mean (roll), easterness (heave, pitch and 

time), northerness (all four artefacts), and topographic position (heave, pitch and roll). In 
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other cases, errors at coarser scales became more symmetrical (less skewed), namely 

topographic mean (pitch), rugosity (roll) and topographic position (roll). 

Assuming that a Moran’s I value of 0.5 and higher indicates positive autocorrelation, 

the errors induced by heave artefacts were autocorrelated for topographic mean and 

rugosity at 10 m resolution. Autocorrelation of errors for other surfaces were in average 

positive but low. The same pattern was observed for errors induced by pitch, although the 

bathymetric surfaces that had positive values of pitch induced also had spatially 

autocorrelated errors. More terrain attributes altered by roll showed autocorrelated errors. 

These included bathymetry, topographic mean, easterness and rugosity. For time, only the 

error of topographic mean was spatially autocorrelated. In general, errors from finer-scale 

surfaces were more autocorrelated than those of broader-scale surfaces. 

A summary of results from the modelling of the error as a function of amplitude of 

artefact are presented in Table E.4 and a summary of the proportion of the total variance 

they explained is provided in Table E.2. As for the models previously introduced, r
2
 

values showed that the relationships were adequately modelled. The mean error 

introduced by each of the four types of artefact significantly increased with the amplitude 

of artefact for all of the bathymetric and terrain attributes surfaces at all scales, except for 

topographic position at 10 m resolution for time artefacts, for which the rate of change 

was not deemed significant by the t test. Other than the mean error, heave artefacts did 

not have any other generalizable impact on bathymetry. However, it increased the range 

of error values for topographic mean, and increased the standard deviation of error for the 

five other terrain attributes. For these five – easterness, northerness, slope, rugosity and 
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topographic position – heave also modified the distribution of error (i.e. skewness and 

kurtosis) as it increased: the more important the artefact, the more the statistical 

distribution of error tend towards a normal distribution. In general, the error also became 

more autocorrelated with greater heave artefacts, except for topographic position where it 

decreased. Pitch artefacts had a very similar impact on the errors than heave. In this case 

however, like for the other terrain attributes, the standard deviation of error for 

bathymetry and topographic mean also increased. Also, patterns of spatial autocorrelation 

for errors in easterness and northerness were not significant. Roll artefacts had a clear 

impact on errors of all surfaces. The range of all of them but easterness, northerness and 

topographic position increased with the level of roll induced. Mean error and standard 

deviation of errors increased with roll for all the seven types of surfaces and the statistical 

distribution of errors became more symmetrical for all but bathymetry and topographic 

mean, for which no significant changes were recorded. The spatial autocorrelation of 

errors increased for bathymetry and rugosity but decreased for easterness and topographic 

position. Finally, errors caused by time artefacts only changed with amplitude in terms of 

mean error, standard deviation of error, and spatial autocorrelation. Generally, the two 

first statistics increased with greater time delays, except the standard deviations of 

topographic position that were not significant. Spatial autocorrelation of errors increased 

for bathymetry and topographic mean and decreased for northerness. 
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Table E.4: Summary of the modelling results for the descriptive statistics of artefact-induced errors. See Table E.1 for legend. 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Range * - * * - * - + + + * * * - - * +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + +

Skewness - - - - - - - - - - - - - - - - - - -

Kurtosis - - - - - - - - - - - - - - - - - - - -

Spatial Autocorrelation + + + + + + + + + + + * + + + - - -

Range * + + + + + + + + + +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Skewness * * * * * * * * - - - - - - - - - - - - - - - - - - - -

Kurtosis - - - - - - - - - - - - - - - - -

Spatial Autocorrelation * * * * * * * * * * + * * * * + + + + * + * * * *

Range + + + + + + + + + + + + + + + + + + + + *

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Skewness * * * * * * - - - - - - - - - - - - - + - - - - - -

Kurtosis - * - * - * - - - - - - - - - * - - - - - - - -

Spatial Autocorrelation + + + + + * * - - - + * * * * * + + + - - - *

Range + -

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + * + + + +

Standard Deviation + + + + + + + + + + * + + + + * * + + + + + + + + * * + + * * * *

Skewness * * *

Kurtosis *

Spatial Autocorrelation + + + + + + + * - * * * - - - - * - * *

Topo. Position

Heave

Pitch

Roll

Time

Bathymetry Topo. Mean Easterness Northerness Slope Rugosity
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Once again, finer scales were generally more impacted than coarser scales according 

to the measured rates of change. This was the case of the mean error for bathymetry (roll 

and time), topographic mean (pitch and time), easterness (pitch and time), northerness 

(pitch and time), slope (all four artefacts), and topographic position (pitch, roll and time). 

The standard deviations of error for bathymetry (heave, roll and time), topographic mean 

(heave, roll and time), easterness (pitch and time), northerness (pitch and time), slope 

(pitch, roll and time), rugosity (time) and topographic position (pitch and time) were also 

more impacted at finer scales. Some terrain attributes showed the opposite pattern, where 

coarser scales were more impacted than finer scales, for instance the mean error of 

bathymetry (heave), rugosity (roll) and topographic position (heave) and the standard 

deviation of error of easterness (heave), northerness (heave and roll), rugosity (roll) and 

topographic position (roll). 

Table E.5 shows the spatial correlations among error surfaces of different levels of 

artefacts for each bathymetric and terrain attributes groups. On average, heave error 

surfaces were the most correlated with each other, followed by those of roll, time and 

pitch. The errors caused by roll on bathymetry and topographic mean were highly 

correlated, and so were the errors caused by heave on the five other types of surfaces. The 

correlation of errors caused by roll on easterness and northerness were particularly low. 
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Table E.5: Range and average of correlation coefficients recorded between error surfaces for the full 

extent area. 

 

E.2.2 Sub-Areas 

When looking at the statistical distribution of errors for the sub-areas, a lower 

number of terrain attributes had right-skewed error distributions compared to the full 

Range Average Range Average Range Average Range Average

10 -0.766-0.998 0.103 0.041-0.947 0.379 0.946-0.980 0.958 0.214-0.893 0.516

25 -0.836-0.998 0.050 0.029-0.959 0.383 0.962-0.986 0.971 0.223-0.903 0.551

50 -0.896-0.998 0.004 0.004-0.963 0.375 0.967-0.988 0.975 0.219-0.877 0.537

75 -0.916-0.998 -0.012 0.000-0.963 0.372 0.970-0.989 0.977 0.226-0.890 0.552

100 -0.862-0.998 0.020 -0.002-0.963 0.369 0.971-0.989 0.978 0.230-0.872 0.529

10 -0.940-0.999 -0.053 -0.066-0.985 0.386 0.979-0.997 0.990 0.183-0.963 0.605

25 -0.954-0.999 -0.069 -0.098-0.988 0.376 0.984-0.998 0.993 0.144-0.959 0.597

50 -0.975-0.999 -0.082 -0.124-0.989 0.360 0.986-0.998 0.994 0.143-0.935 0.548

75 -0.983-0.999 -0.086 -0.135-0.989 0.349 0.987-0.998 0.994 0.164-0.923 0.528

100 -0.973-0.999 -0.082 -0.147-0.989 0.341 0.986-0.998 0.993 0.179-0.898 0.495

10 0.997-1.000 0.999 0.200-0.797 0.428 -0.372-0.905 0.189 0.201-0.833 0.439

25 0.997-1.000 0.999 0.234-0.866 0.498 -0.419-0.946 0.198 0.280-0.870 0.525

50 0.995-1.000 0.998 0.286-0.879 0.534 -0.422-0.962 0.213 0.328-0.871 0.567

75 0.993-1.000 0.997 0.315-0.889 0.551 -0.402-0.967 0.233 0.350-0.866 0.581

100 0.189-1.000 0.712 0.333-0.896 0.559 -0.373-0.968 0.252 0.362-0.859 0.589

10 0.997-1.000 0.999 0.232-0.794 0.417 -0.430-0.908 0.151 0.182-0.836 0.427

25 0.998-1.000 0.999 0.251-0.866 0.478 -0.486-0.947 0.155 0.247-0.861 0.501

50 0.997-1.000 0.999 0.276-0.887 0.514 -0.468-0.961 0.181 0.285-0.859 0.532

75 0.997-1.000 0.999 0.302-0.893 0.536 -0.418-0.964 0.216 0.300-0.857 0.544

100 0.997-1.000 0.998 0.322-0.894 0.549 -0.381-0.963 0.242 0.316-0.855 0.554

10 0.998-1.000 0.999 0.288-0.850 0.484 0.399-0.819 0.551 0.226-0.887 0.517

25 0.997-1.000 0.999 0.284-0.895 0.521 0.288-0.907 0.543 0.203-0.908 0.541

50 0.991-1.000 0.997 0.247-0.895 0.517 0.299-0.963 0.603 0.188-0.878 0.508

75 0.987-1.000 0.996 0.235-0.888 0.508 0.424-0.980 0.694 0.195-0.889 0.505

100 0.985-1.000 0.995 0.259-0.885 0.514 0.493-0.987 0.748 0.203-0.866 0.487

10 0.997-1.000 0.999 0.355-0.829 0.527 0.480-0.837 0.640 0.249-0.838 0.526

25 0.997-1.000 0.999 0.375-0.880 0.565 0.314-0.886 0.590 0.237-0.869 0.550

50 0.992-1.000 0.997 0.286-0.873 0.510 0.178-0.940 0.537 0.194-0.817 0.479

75 0.987-1.000 0.996 0.270-0.870 0.498 0.242-0.968 0.597 0.207-0.869 0.502

100 0.989-1.000 0.997 0.346-0.872 0.538 0.306-0.980 0.659 0.198-0.830 0.494

10 0.998-1.000 0.999 0.186-0.709 0.360 0.304-0.792 0.468 0.136-0.805 0.375

25 0.998-1.000 0.999 0.228-0.783 0.429 0.334-0.860 0.517 0.214-0.827 0.458

50 0.998-1.000 0.999 0.234-0.833 0.461 0.316-0.925 0.546 0.250-0.818 0.490

75 0.998-1.000 0.999 0.260-0.841 0.475 0.271-0.949 0.549 0.262-0.811 0.498

100 0.997-1.000 0.999 0.281-0.842 0.483 0.236-0.958 0.546 0.277-0.803 0.505

Topographic 

Position

Heave Pitch Roll Time

Bathymetry

Topographic 

Mean

Easterness

Northerness

Slope

Rugosity
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extent area. In the shallower sub-area, the errors for five scales of topographic mean, 

three scales of bathymetry (10 m, 25 m and 100 m) and slope (100 m) were normally 

distributed. The two remaining scale of bathymetry, rugosity at 25 m, 50 m and 100 m, 

slope at 25 m, 50 m, and 75 m, and topographic position (10 m) had symmetrical 

leptokurtic distributions. Topographic mean was tending towards being more heavy-tailed 

and right-skewed with finer scales, while topographic position tended to become more 

skewed with coarser scales. A similar pattern was observed in the deeper sub-area, where 

all five scales of bathymetry and topographic mean errors were normally distributed, in 

addition to rugosity and slope at 100 m resolution. The errors of other terrain attributes 

were right-skewed, except for rugosity (75 m) and slope (50 and 75 m) that were 

symmetrical leptokurtic. Errors of finer scales easterness were usually more 

symmetrically distributed as opposed to errors in slope that were more symmetrical at 

coarser scales. The distributions of errors caused by roll also differed from the full extent. 

In the shallower sub-area, errors in topographic mean at each of the five scales were 

normally distributed, and most scales of bathymetry, rugosity and slope were symmetrical 

leptokurtic. Errors in northerness were more symmetrical at finer scales, and like for 

heave, errors in slope were more symmetrically distributed at coarser scales. In the deeper 

sub-area, errors in bathymetry (75 and 100 m resolution) and topographic mean were 

normally distributed, and errors in bathymetry (10 to 50 m), rugosity (100 m), northerness 

(10 m) and topographic position (10-25 m) were symmetrically distributed and heavy-

tailed. Easterness, northerness and topographic position errors were more symmetrical at 

finer scales, and those of topographic mean and rugosity were more symmetrical at 
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coarser scales. Patterns in statistical distribution of roll errors were very similar to the full 

extent for the two sub-areas. In the shallower sub-area, errors in bathymetry and 

northerness were more symmetrical at finer scales, but in the deeper sub-area, errors in 

topographic mean and northerness were more symmetrical at coarser scales. Time errors 

also had similar distribution than in the full extent analysis. 

In general, errors caused by pitch values were more symmetrically distributed in the 

shallower sub-area for bathymetry (pitch and time), topographic mean (pitch and time), 

northerness (time), slope (pitch and time) and rugosity (pitch, roll and time), while 

bathymetry (roll), topographic mean (roll), easterness (pitch and roll), northerness (pitch 

and roll) and topographic position (pitch and time) errors were more symmetrically 

distributed in the deeper sub-area. Errors in slope caused by roll were more symmetrical 

in the deeper sub-area at coarser scales, and more symmetrical in the shallower sub-area 

at finer scales. A similar thing happened with errors in easterness caused by time 

artefacts, where at finer scales they were more symmetrical in the shallower sub-area and 

at coarser scales in the deeper sub-area. Patterns in spatial autocorrelation of errors with 

scale were generally not as clear as for the full extent.  

In terms of spatial autocorrelation, heave and pitch errors in the shallower sub-area 

showed similar pattern than for the full extent. In the deeper sub-area however, errors in 

bathymetry were also autocorrelated, in addition to those of topographic mean. Errors in 

roll also did not demonstrate any major difference in spatial autocorrelation in the two 

sub-areas than for the full extent. Finally, time errors were in general less autocorrelated 

in the two sub-areas than in the full study area. Compared to the shallower sub-area, 
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errors were more autocorrelated in the deeper sub-area for bathymetry (all four artefacts), 

topographic mean (all four artefacts), easterness (pitch and roll), northerness (pitch and roll), 

slope (roll and time) and rugosity (pitch, roll and time). The opposite was true of easterness 

(heave), rugosity (heave) and topographic position (pitch, roll and time). Time errors of 

easterness and northerness were more autocorrelated in the deeper sub-area at coarser scales 

but more autocorrelated in the shallower sub-area at finer scales. 

Summaries of the proportion of the variance explained by the error models for the sub-

areas and their significance are presented in Table E.6 and Table E.7. Average r2 values were 

high. For heave, the patterns that were observed for the full extent were not seen in the sub-

areas, except for the increase in mean error. Two additional patterns were however observed 

for the shallower sub-area: the range of error values increased and the skewness of error 

values decreased with more heave artefacts. For pitch, not as many trends were deciphered 

for the shallower sub-areas than for the full extent but those that were found were consistent 

with what was described for the full extent. For the deeper sub-area, the same trends were 

found but also the ranges of error values for bathymetry, topographic mean, slope and 

rugosity increased with greater pitch artefacts. The only difference in terms of modelling of 

roll error for the shallower sub-area compared to the full extent was that the spatial 

autocorrelation of easterness error increased with more artefacts instead of decreasing. The 

only difference for the deeper sub-area was that the skewness and kurtosis values increased 

for rugosity instead of decreasing. Little difference was observed in terms of error modelling 

of time artefact, although the range of error values increased for bathymetry in the shallower 

sub-areas and for topographic mean in both sub-areas. 
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Table E.6: Range and average of r
2
 values for all significant relationships that were modelled for the two sub-areas. 

 

Range Average Range Average Range Average Range Average

Spatial Similarity Surfaces 0.771-0.998 0.919 0.735-1.000 0.927 0.712-0.993 0.902

Fractal Dimension Surfaces 0.715-0.796 0.748 0.846-0.997 0.937 0.770-0.938 0.854

Surfaces 0.738-0.934 0.806 0.589-0.988 0.902 0.652-0.835 0.758

Error 0.634-0.939 0.805 0.718-0.918 0.836 0.616-0.986 0.910 0.587-0.940 0.828

Surfaces 0.505-0.996 0.877 0.688-1.000 0.946 0.547-0.901 0.733

Error 0.629-0.967 0.878 0.682-0.987 0.907 0.787-0.994 0.924 0.675-0.877 0.775

Surfaces 0.552-0.968 0.825 0.700-1.000 0.940 0.581-0.960 0.804

Error 0.611-0.823 0.691 0.762-0.988 0.889 0.636-0.984 0.889 0.658-0.925 0.798

Surfaces 0.761-0.800 0.781 0.662-0.969 0.848 0.550-0.944 0.739

Error 0.613-0.876 0.734 0.744-0.956 0.888 0.581-0.929 0.748 0.623 0.623

Surfaces 0.660-0.758 0.709 0.675-0.992 0.875 0.736-0.959 0.856

Error 0.621-0.850 0.690 0.612-0.932 0.842 0.589-0.910 0.687 0.630 0.630

Surfaces 0.589-0.955 0.851 0.573-0.998 0.865 0.744-0.935 0.835

Error 0.586-0.854 0.718 0.699-0.974 0.887 0.598-0.941 0.749

Spatial Similarity Surfaces 0.721-0.721 0.721 0.868-0.994 0.968 0.582-0.800 0.718 0.752-0.992 0.893

Fractal Dimension Surfaces 0.851-0.992 0.945 0.688-0.916 0.822

Surfaces 0.580-0.805 0.693 0.814-0.993 0.937 0.608-0.977 0.914 0.669-0.973 0.797

Error 0.628-0.892 0.778 0.577-0.987 0.875 0.735-0.966 0.940 0.700-0.933 0.806

Surfaces 0.560-1.000 0.955 0.528-1.000 0.903 0.587-0.946 0.857

Error 0.641-0.940 0.858 0.815-0.993 0.940 0.583-0.973 0.878 0.719-0.881 0.785

Surfaces 0.779-1.000 0.959 0.601-0.971 0.922 0.540-0.967 0.807

Error 0.638-0.867 0.739 0.710-0.973 0.922 0.634-0.966 0.889 0.709-0.913 0.787

Surfaces 0.620-0.994 0.897 0.585-0.965 0.752 0.621-0.912 0.809

Error 0.583-0.907 0.757 0.611-0.897 0.764 0.601-0.945 0.723

Surfaces 0.675-0.999 0.912 0.530-0.834 0.683 0.580-0.961 0.790

Error 0.689-0.945 0.791 0.576-0.775 0.636 0.591-0.924 0.735 0.661 0.661

Surfaces 0.583-1.000 0.913 0.538-0.869 0.606 0.564-0.960 0.810

Error 0.617-0.679 0.657 0.592-0.742 0.679 0.591-0.929 0.712 0.952-0.972 0.959

Kurtosis

Spatial Autocorrelation

Shallower, 

High-Density 

Sub-Area

Deeper,     

Low-Density 

Sub-Area

Spatial Autocorrelation

Range

Mean

Standard Deviation

Skewness

Range

Mean

Standard Deviation

Skewness

Kurtosis

Heave Pitch Roll Time
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Table E.7: Summary of the modelling results for the descriptive statistics of artefact-induced errors for the sub-areas. See Table E.1 for legend. 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Range + + + + * - * * * * + - *

Mean + + + + + + + + + + * * - - * - -

Standard Deviation - + * + * + * * -

Skewness - - - - * * * * * * * * + * * * - * + - - *

Kurtosis + * * + * - - * * - -

Spatial Autocorrelation + * + - * - + - - + -

Range + + - - * + - - + - + * - + - +

Mean + + + + + + + + + + + * + + * - + * -

Standard Deviation + - - + - * * * + * - +

Skewness * * * * - + * * - + - + + *

Kurtosis - + * - * + - * * *

Spatial Autocorrelation + + - * *

Range + * + + + + + * + + + *

Mean + + + + + + + + + + + + + + * + + + + * + + + + + + + + + * * + + + +

Standard Deviation + + + + + + + + + + + + * + + * + + + + * + + + + * * * *

Skewness - - - - - * * * * - -

Kurtosis - - - * - * * * * * * -

Spatial Autocorrelation + * + + + * * * * * * * * * * * * - * * * * * *

Range + + + + + + + + + + + + + + + + + + + + + + + +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Skewness - - - - - - - * * * - - - - - - - - - - * - * - - -

Kurtosis - - - - - - - - - - - - - - -

Spatial Autocorrelation + * + + * * * * - * *

Range + + + + + + + + + + + + + + + + + + + + + +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Skewness - * * - - - - - - - - - - - - * - * - - - - - - -

Kurtosis - - - - - - - - - * + - - - - -

Spatial Autocorrelation + + * * * * + + + + * * + - * + * + + - - - - *

Range + + + + + + + + + + * + + + + + + + + + + *

Mean + + + + + + + + + + + * * + + + + + + + + + + + + + + + + + + +

Standard Deviation + + + + + + + + + + + + + + + + + + + + + + + + + + + + *

Skewness - * * * * * * * * * - - - - * - - + + + - - -

Kurtosis - - * * * * - - - * - - + + + -

Spatial Autocorrelation + * * * * + * + * * + * * * + + * - - - - - - - *

Range + * + + + + + + + * + + + + + +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + * + + + + * + + + +

Standard Deviation + + + + + + + + + + + + * + + * + + + + + + + + + + + * + *

Skewness * * -

Kurtosis * * -

Spatial Autocorrelation * *

Range * * * + + + + + + * * + + * + * * * + * * * +

Mean + + + + + + + + + + + + + + + + + + + + + + + + * * + + + * * + + + +

Standard Deviation + + + + * + + + + + * + + * * * + + * * + + + + * + + + + * * + + + *

Skewness * *

Kurtosis - * *

Spatial Autocorrelation + + * + * * * * *

Topo. PositionBathymetry Topo. Mean Easterness Northerness Slope Rugosity

Heave

Pitch

Shallower, 

High-Density 

Sub-Area

Deeper,        

Low-Density 

Sub-Area

Shallower, 

High-Density 

Sub-Area

Deeper,        

Low-Density 

Sub-Area

Roll

Shallower, 

High-Density 

Sub-Area

Deeper,        

Low-Density 

Sub-Area

Time

Shallower, 

High-Density 

Sub-Area

Deeper,        

Low-Density 

Sub-Area
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Patterns for scale were similar to those observed for the full extent. Additional 

patterns included the mean error caused by pitch and time that was impacting finer scales 

easterness and topographic position more than coarser scales in the shallower sub-area, 

and the standard deviation of errors caused by pitch that was also greater for finer scales 

bathymetry. In the deeper sub-area, the mean errors of topographic mean (roll), rugosity 

(time) and topographic position (roll, pitch and time) were more impacted at finer scales, 

like the standard deviation of errors caused by pitch on bathymetry and topographic 

mean. Coarser scales topographic mean were more impacted by heave than finer scales in 

terms of mean error in the shallower sub-area. Pitch had a stronger impact in the deeper 

sub-area, where mean errors of bathymetry, topographic mean and rugosity, in addition to 

standard deviations of error of easterness and rugosity were all more impacted at coarser 

scales.  

In general, based on the rates of change extracted from the modelling equations, 

heave had a greater impact in the shallower sub-area for bathymetry, topographic mean, 

easterness and northerness. Pitch, however, had more influence on errors of all seven 

types of surfaces in the deeper sub-area, while time had more influence on errors of all 

seven types of surfaces in the shallower sub-area. Roll had greater rates of change in the 

shallower sub-area for easterness, northerness and topographic position, and greater rates 

in the deeper sub-area for bathymetry, topographic mean, slope, and rugosity.  

Finally, spatial correlation of errors, presented in Table E.8, behaved similarly to the 

full extent. Heave errors were slightly more correlated for the sub-areas than for the full 

extent, except for bathymetry and topographic mean. For pitch, correlations were higher 
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for the full extent, except for easterness, northerness and topographic position in the 

shallower sub-area. Correlations in the shallower sub-area were consistently higher than 

in the deeper sub-area, except for broader scales slope and rugosity errors (50 to 100 m 

resolution). The correlations of errors caused by roll were generally higher in the deeper 

sub-area, except for easterness and broader-scale northerness (50 to 100 m resolution). 

Correlations in the deeper sub-areas were generally higher than for the full extent, and 

those for the shallower sub-area were generally lower than for the full extent. Finally, 

correlations of time errors were higher for the full extent, followed by the deeper sub-

area. The only exception to this pattern was for northerness, where correlations in errors 

were higher in the shallower sub-area. 
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Table E.8: Range and average of correlation coefficients recorded among error surfaces for the sub-areas. 

Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average

10 -1.000-1.000 -0.097 -1.000-1.000 -0.094 -0.524-0.866 0.117 -0.716-0.962 0.058 0.825-0.952 0.871 0.962-0.988 0.972 0.060-0.780 0.338 0.100-0.923 0.414

25 -1.000-1.000 -0.099 -1.000-1.000 -0.096 -0.552-0.870 0.107 -0.743-0.970 0.054 0.841-0.952 0.879 0.974-0.993 0.982 0.074-0.787 0.368 0.092-0.933 0.453

50 -1.000-1.000 -0.100 -1.000-1.000 -0.095 -0.565-0.876 0.100 -0.766-0.974 0.051 0.819-0.954 0.873 0.979-0.996 0.987 0.072-0.773 0.375 0.127-0.942 0.449

75 -1.000-1.000 -0.097 -1.000-1.000 -0.098 -0.605-0.865 0.073 -0.824-0.972 0.019 0.770-0.960 0.848 0.979-0.996 0.988 0.145-0.727 0.391 0.189-0.924 0.492

100 -1.000-1.000 -0.105 -1.000-1.000 -0.100 -0.553-0.857 0.086 -0.844-0.971 0.015 0.749-0.941 0.839 0.985-0.998 0.991 0.123-0.775 0.416 0.185-0.922 0.495

10 -1.000-1.000 -0.110 -1.000-1.000 -0.102 -0.734-0.970 0.122 -0.842-0.993 0.029 0.913-0.991 0.958 0.984-0.999 0.994 -0.047-0.912 0.393 0.032-0.976 0.546

25 -1.000-1.000 -0.111 -1.000-1.000 -0.104 -0.769-0.963 0.093 -0.921-0.996 -0.009 0.888-0.982 0.938 0.987-0.999 0.996 -0.054-0.849 0.315 -0.022-0.963 0.469

50 -1.000-1.000 -0.111 -1.000-1.000 -0.106 -0.726-0.961 0.102 -0.956-0.996 -0.033 0.803-0.965 0.879 0.985-0.999 0.995 -0.010-0.815 0.298 -0.059-0.934 0.351

75 -1.000-1.000 -0.111 -1.000-1.000 -0.107 -0.695-0.954 0.068 -0.969-0.997 -0.050 0.772-0.978 0.886 0.984-0.999 0.995 -0.020-0.754 0.262 -0.003-0.923 0.355

100 -1.000-1.000 -0.111 -1.000-1.000 -0.107 -0.720-0.950 0.096 -0.978-0.997 -0.052 0.829-0.979 0.905 0.987-1.000 0.996 0.001-0.717 0.255 0.073-0.914 0.346

10 1.000-1.000 1.000 1.000-1.000 1.000 0.314-0.836 0.582 0.085-0.747 0.304 0.070-0.793 0.338 -0.837-0.942 -0.039 0.116-0.797 0.381 0.144-0.888 0.410

25 1.000-1.000 1.000 1.000-1.000 1.000 0.393-0.878 0.652 0.084-0.805 0.375 0.171-0.840 0.408 -0.939-0.982 -0.071 0.218-0.829 0.469 0.212-0.930 0.489

50 1.000-1.000 1.000 1.000-1.000 1.000 0.499-0.881 0.699 0.086-0.849 0.388 0.137-0.885 0.417 -0.957-0.990 -0.079 0.317-0.873 0.558 0.175-0.934 0.472

75 1.000-1.000 1.000 1.000-1.000 1.000 0.417-0.872 0.616 0.138-0.887 0.447 0.089-0.873 0.403 -0.956-0.993 -0.073 0.320-0.868 0.566 0.173-0.929 0.490

100 1.000-1.000 1.000 1.000-1.000 1.000 0.420-0.847 0.633 0.226-0.887 0.477 0.107-0.862 0.451 -0.959-0.997 -0.063 0.138-0.853 0.489 0.248-0.940 0.541

10 1.000-1.000 1.000 1.000-1.000 1.000 0.338-0.779 0.551 0.030-0.740 0.253 -0.661-0.937 0.091 -0.280-0.841 0.152 0.201-0.705 0.432 0.085-0.908 0.374

25 1.000-1.000 1.000 1.000-1.000 1.000 0.411-0.853 0.647 0.053-0.862 0.348 -0.609-0.955 0.156 -0.355-0.925 0.168 0.271-0.814 0.505 0.160-0.936 0.447

50 1.000-1.000 1.000 1.000-1.000 1.000 0.389-0.863 0.653 0.051-0.876 0.376 -0.320-0.951 0.308 -0.411-0.965 0.201 0.272-0.792 0.487 0.112-0.935 0.461

75 1.000-1.000 1.000 1.000-1.000 1.000 0.428-0.903 0.643 0.105-0.891 0.424 -0.222-0.944 0.355 -0.397-0.975 0.224 0.231-0.841 0.549 0.179-0.939 0.533

100 1.000-1.000 1.000 1.000-1.000 1.000 0.590-0.944 0.780 0.167-0.902 0.476 -0.175-0.932 0.393 -0.381-0.986 0.230 0.268-0.897 0.666 0.374-0.954 0.589

10 1.000-1.000 1.000 1.000-1.000 1.000 0.108-0.784 0.420 0.103-0.763 0.314 0.355-0.950 0.608 0.320-0.800 0.525 0.028-0.764 0.296 0.086-0.916 0.388

25 1.000-1.000 1.000 1.000-1.000 1.000 0.102-0.781 0.432 0.171-0.877 0.415 0.353-0.971 0.617 0.449-0.944 0.734 0.018-0.768 0.289 0.057-0.943 0.442

50 1.000-1.000 1.000 1.000-1.000 1.000 0.049-0.759 0.394 0.139-0.909 0.472 0.325-0.945 0.603 0.337-0.984 0.791 0.014-0.734 0.266 0.066-0.934 0.395

75 1.000-1.000 1.000 1.000-1.000 1.000 0.018-0.759 0.392 0.073-0.905 0.491 0.295-0.932 0.632 0.251-0.990 0.810 0.005-0.668 0.250 0.140-0.902 0.368

100 1.000-1.000 1.000 1.000-1.000 1.000 0.147-0.750 0.431 0.069-0.932 0.542 0.396-0.947 0.662 0.414-0.997 0.863 0.109-0.702 0.312 0.148-0.890 0.372

10 1.000-1.000 1.000 1.000-1.000 1.000 0.124-0.723 0.405 0.086-0.734 0.294 0.352-0.931 0.607 0.299-0.760 0.525 0.073-0.701 0.298 0.096-0.871 0.374

25 1.000-1.000 1.000 1.000-1.000 1.000 0.110-0.743 0.423 0.120-0.865 0.379 0.096-0.956 0.512 0.532-0.930 0.760 0.031-0.726 0.295 0.084-0.915 0.396

50 1.000-1.000 1.000 1.000-1.000 1.000 0.037-0.752 0.384 0.124-0.914 0.437 0.095-0.958 0.478 0.351-0.978 0.799 -0.010-0.692 0.249 0.081-0.926 0.362

75 1.000-1.000 1.000 1.000-1.000 1.000 -0.001-0.757 0.342 0.069-0.917 0.444 0.108-0.932 0.457 0.250-0.987 0.808 -0.071-0.646 0.227 0.148-0.896 0.377

100 1.000-1.000 1.000 1.000-1.000 1.000 0.174-0.773 0.429 0.161-0.901 0.478 0.058-0.928 0.460 0.333-0.995 0.844 0.061-0.651 0.263 0.190-0.907 0.415

10 1.000-1.000 1.000 1.000-1.000 1.000 0.218-0.764 0.443 0.110-0.582 0.263 0.181-0.847 0.406 0.231-0.778 0.460 0.096-0.667 0.317 0.082-0.877 0.338

25 1.000-1.000 1.000 1.000-1.000 1.000 0.245-0.759 0.497 0.092-0.739 0.289 0.070-0.924 0.434 0.351-0.874 0.565 0.127-0.741 0.380 0.134-0.912 0.413

50 1.000-1.000 1.000 1.000-1.000 1.000 0.350-0.805 0.584 0.064-0.820 0.321 0.035-0.953 0.492 0.454-0.946 0.655 0.176-0.767 0.475 0.148-0.923 0.429

75 1.000-1.000 1.000 1.000-1.000 1.000 0.344-0.848 0.584 0.035-0.857 0.342 0.181-0.956 0.561 0.460-0.973 0.666 0.213-0.754 0.473 0.180-0.917 0.467

100 1.000-1.000 1.000 1.000-1.000 1.000 0.215-0.815 0.542 0.111-0.834 0.372 0.190-0.920 0.574 0.345-0.991 0.641 0.241-0.787 0.451 0.165-0.909 0.462

Heave Pitch Roll Time

Bathymetry

Topographic 

Position

Shallow Deep Shallow Deep

Topographic 

Mean

Easterness

Northerness

Slope

Rugosity

Shallow Deep Shallow Deep



367 

 

 

E.3 Changes in Surfaces 

E.3.1 Full Extent 

Skewness, kurtosis and spatial autocorrelation of surfaces could not be measured at 

10 m resolution because of limited computer power. A summary of results from the 

modelling of the change in descriptive statistics of the altered bathymetric and terrain 

attribute surfaces are presented in Table E.9 and a summary of the proportion of the total 

variance they explained is provided in Table E.2. As shown by the high average r
2
 values, 

significant equations explained adequately the relationships.  

Results showed that increasing heave artefact did not significantly change 

bathymetric and terrain attributes surfaces. Only four models indicated significant change, 

thus preventing any pattern generalization. The spatial autocorrelation of depth values 

decreased with increasing artefacts at 25 m resolution, and so did value of topographic 

mean at 75 m resolution. Then, the standard deviation of slope values increased with 

amplitude of heave artefact at 100 m resolution. Finally, the skewness of the distribution 

of slope values at 75 m resolution decreased with more artefacts. 
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Table E.9: Summary of the modelling results for changes in surfaces. See Table E.1 for legend. 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Range

Mean * * * * * * * * *

Standard Deviation + * *

Skewness * * * * * * -

Kurtosis * *

Spatial Autocorrelation - -

Fractal Dimension *

Range - - - - - - - - - + * -

Mean + + + + + + + + + + + + + + + + - * - + + * - - + + + + - - - - +

Standard Deviation - - - - - - - - - - - - - + + + + + - - - - - + - - - - + + + + +

Skewness - * * * - * * * - - - - + + + + * * + + + + + +

Kurtosis * + * * * + * * * * * * - - - - * + + + - - - -

Spatial Autocorrelation - - - - - - - - - - - - - - - - - - - - - - - -

Fractal Dimension + + + + +

Range + + + + + + + + + + + + + + + + + + + + -

Mean - - - - - - - - - + + + + + + + + + + + + + + + + - -

Standard Deviation + + + + + + + + + - - - - + + + + + + + + + + + + + + + - - + +

Skewness - - - - - - - - - - - - - - + - - - +

Kurtosis + + + + + + + + + + + + * + + + - - - - - + + -

Spatial Autocorrelation - - - - - - - - - - - - - - - - - - - - - + +

Fractal Dimension + + + + + + + +

Range + * + + + -

Mean - - - - - * + + - - - - * - - - - - - + *

Standard Deviation - * * * * + - - + * + - - - * + - - - -

Skewness * + + + *

Kurtosis - + + * - - - -

Spatial Autocorrelation + + + + + + + + * * * + + +

Fractal Dimension * * * * * * * +

Topo. PositionBathymetry Topo. Mean Easterness Northerness Slope Rugosity

Heave

Pitch

Roll

Time



369 

 

 

Bathymetric and topographic mean surfaces were most impacted by pitch and roll 

artefacts, although in opposite ways. While pitch artefacts produced a decrease in range 

and standard deviation values and an increase in mean values, roll artefacts produced an 

increase of range and standard deviation and a decrease in mean values. Based on the lack 

of significance of the models, pitch did not change the distribution of these two types of 

surfaces, while roll decreased skewness and increased kurtosis, making the distribution of 

depth values more leptokurtic and symmetrical. Both types of artefacts induced an 

increase in fractal dimension, and roll generated a higher rate of change in fractal 

dimension for coarser scales than for finer scales. Both pitch and roll decreased spatial 

autocorrelation values of bathymetry and topographic mean, although generalization 

could not be made regarding spatial autocorrelation of the latter caused by pitch since 

only the 75 m resolution model was significant. It was also challenging to generalize any 

impact from time artefact based on the lack of significance of many models. The only 

patterns that appeared were that time artefact increased the range of values of topographic 

mean and decreased their mean. The range of values of topographic mean was changing 

more rapidly with increasing amplitude of artefact at finer scales than at broader scales.  

No artefact changed significantly the range of easterness and northerness values, 

likely due to the fact that these terrain attributes are the only ones with a limited range of 

values (-1 to 1), which is usually fully represented within an area. For these terrain 

attributes, pitch seemed to have been the artefact with the most impact. For easterness, 

pitch generally increased the mean values and decreased the standard deviation, skewness 

and spatial autocorrelation values. For northerness, it increased standard deviation and 
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skewness and decreased kurtosis and spatial autocorrelation. It also altered the mean of 

northerness values but whether its impact was positive or negative depended on scale. In 

terms of roll, it decreased spatial autocorrelation and increased kurtosis for both 

easterness and northerness. While roll decreased standard deviation values for easterness, 

it increased those of northerness together with its mean values. Finally, the most 

noticeable impact of time artefacts on easterness and northerness was that it increased the 

spatial autocorrelation of values.  

More statistics of slope and rugosity were altered by roll artefacts than by the other 

types of artefacts. Roll increased the ranges in slope and rugosity values, the means and 

the standard deviations. Roll also decreased skewness, kurtosis and spatial autocorrelation 

of these two terrain attributes. In general, pitch lowered the standard deviation and spatial 

autocorrelation values of slope and rugosity, and increased the mean, skewness and 

kurtosis of rugosity. The impact of pitch on mean values of slope was dependent on scale. 

The rate of change of mean values of slope and rugosity was greater at finer scales than 

coarser scales. Finally, time artefacts only decreased the mean values of these two terrain 

attributes. 

Topographic position was the terrain attribute from which it was most difficult to 

generalize impacts from artefacts because a lot of the broader scales models were not 

significant. Pitch decreased kurtosis and spatial autocorrelation of this terrain attribute 

and increased its standard deviation and skewness. No generalization could be made from 

roll impacts other than spatial autocorrelation increased at finer scales and standard 
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deviation decreased at finer scales and increased at broader scales. Time artefacts increased 

spatial autocorrelation and decreased standard deviation values.  

Some patterns in relation to scale were observed based on the different rates of change 

(i.e. the first term of each quadratic equation). Usually, finer scales were more impacted than 

coarser scales. This was true of (1) the impact of pitch on the standard deviations of 

easterness, northerness and topographic position, and the means of slope and rugosity; (2) the 

impact of roll on the mean of slope and standard deviations of bathymetry and topographic 

mean, and (3) the impact of time on means of topographic mean and slope. The loss of 

autocorrelation with increasing level of artefact was also greater at finer scales when pitch 

was affecting easterness, northerness, topographic position, slope and rugosity, and when roll 

was affecting topographic position. However, in some cases, the impacts were greater for 

coarser scales. This was for instance observed for (1) the impact of pitch on the standard 

deviation of topographic mean, (2) the impact of roll on the standard deviation of topographic 

position and on the mean values of northerness and rugosity, and (3) the loss of 

autocorrelation caused by roll on bathymetry, easterness, topographic mean and northerness. 

E.3.2 Sub-Areas 

A summary of the models for the sub-areas is presented in Table E.10 and the proportion 

of the variance they explain is presented in Table E.2. Again, the significant models explained 

well the modelled relationships with high average r2 values. Results were more heterogeneous 

for the sub-areas than for the full extent, i.e. not necessarily following clear trends. To remain 

succinct, we focus here on how the observed patterns agree or disagree with those observed in 

the analysis of the full extent area. 
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Table E.10: Summary of the modelling results for changes in surfaces for the two sub-areas. See Table E.1 for legend. 

10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100 10 25 50 75 100

Range

Mean * * * * * * * * * *

Standard Deviation

Skewness

Kurtosis

Spatial Autocorrelation

Fractal Dimension

Range - +

Mean * * * * * * * * * *

Standard Deviation

Skewness

Kurtosis

Spatial Autocorrelation

Fractal Dimension

Range - - - - - - * * * * * * * *

Mean + + + + + + + + + + - - * * - - - - - * - - - - -

Standard Deviation - - - - - - - - - - * - - * - * + + * + - - - - * * - - * * * * *

Skewness * * * + * * * * * * + * * * * * * * * * *

Kurtosis * * * * + * * - * * * * *

Spatial Autocorrelation - - + - * - * * * * * - * * - * * - *

Fractal Dimension + + * + * * *

Range + + + + + + * * + * * * * * + + * * * * + * +

Mean + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + * *

Standard Deviation + + + + + + + + * + - - + + + + + + + + + + + + + + + + + + + + + + +

Skewness - - - - - - - - - - - - - - - - - - - - - - - + + - - - * + - - - * -

Kurtosis + + + + + + + + + + + - - - - - - - - - - - - + * - - - * - - - - -

Spatial Autocorrelation - - - - - * * + - + - - + * - - - - - - - - * + * + * + - - - -

Fractal Dimension + + + + + + + + + +

Range + + + + + + + + + + - - + + + + + + + + + + *

Mean + + + + + + + + + + - - * * + + + + + + + + + + + + + + + - * + *

Standard Deviation + + + + + + + + + + - - - - - + + + + + + + + + + + + + + + - + + + +

Skewness - - - + * - - + + * + + + * * - - - - - + - - - * + - - - * +

Kurtosis + + + * + + + * - + + + + + + - - - - - + - - * + + - - - + + - - - -

Spatial Autocorrelation - - - - - - - - - - - - - - - + - - - - - - - - - - - - - + + - - -

Fractal Dimension + + + + + + + + + +

Range + + + + + + + + + + + + + + + + + + + + -

Mean - - - - - - - - - - + + + + + + + + + + + + + + + *

Standard Deviation + + + + + + + + + + - + + + + + + + + + + -

Skewness - - - -

Kurtosis - - - - - - - - - - + - - + + + + +

Spatial Autocorrelation + + + + + - * - +

Fractal Dimension

Range - * - * + * * - * * * -

Mean - * - - * * * * * - - - - * - *

Standard Deviation - - - - - - - * - + + * + * * * + + * - - -

Skewness * * - * * - * + * + * + -

Kurtosis * * - * * * * * + + * + - - - * + * + * + *

Spatial Autocorrelation + + * + * * + + * * * + + + - +

Fractal Dimension * + -

Range + + + + * + * + + * * * - - - + * * * -

Mean * * * * * * * + - + + * - - - - - * - - - - - +

Standard Deviation * - - - - * - - - - + + - + + - + * - * - - * - - - - * + - * + -

Skewness * + * * + * - - * * + - * - * + - * * + * * +

Kurtosis * * + * * * + * - - + * + * * -

Spatial Autocorrelation * * * * + * - * - * * * + - - - * + * - - * - - +

Fractal Dimension * * * - * - - - * *

Topo. PositionBathymetry Topo. Mean Easterness Northerness Slope Rugosity

Heave

Pitch

Roll

Time

Shallower, High-

Density Sub-

Area

Deeper,           

Low-Density 

Sub-Area

Shallower, High-

Density Sub-

Area

Deeper,           

Low-Density 

Sub-Area

Shallower, High-

Density Sub-

Area

Deeper,           

Low-Density 

Sub-Area

Shallower, High-

Density Sub-

Area

Deeper,           

Low-Density 

Sub-Area



373 

 

 

Like for the full extent, results show that heave did not significantly change the 

characteristics of the bathymetric and terrain attributes surfaces. Only two models were 

significant: the ranges of easterness at 100 m and northerness at 50 m resolution, both for 

the deeper sub-area. 

In comparison with the results from the full study area, pitch artefacts had a very 

similar impact on bathymetry and topographic mean in the shallower sub-area. However, 

the deeper sub-area presented a different pattern: the range of depth and the standard 

deviation both increased with artefacts and the distribution of depth values became more 

leptokurtic and symmetrical. In terms of topographic mean, the mean values and standard 

deviation increased with pitch level. For roll, both sub-areas shared similarities and 

differences with the full extent in terms of bathymetry. For the shallower sub-area, the 

mean values increased with roll instead of decreasing. For the deeper sub-area, spatial 

autocorrelation increased with more roll and the distribution of values became more 

platykurtic. Finally, while no particular impact of time was found on the statistics of the 

full area, the range and standard deviation of values for the deeper sub-area respectively 

increased and decreased with greater time artefacts. 

No major differences were found for easterness and northerness compared to the full 

extent, except that in the shallower sub-area, the mean decreased with increasing pitch. 

Also, no change in easterness values distribution (i.e. skewness and kurtosis) was found 

for roll in the deeper sub-area. The different descriptive statistics for slope also behaved 

the same as the full extent for both sub-areas. One difference was observed for rugosity, 

in the shallower sub-area: the mean values decreased with pitch artefacts, which was not 



374 

 

 

the case for the full extent. Finally, topographic position behaved differently in the deeper 

sub-area, where mean values increased with pitch artefacts.  

In general, based on the rates of change from the models, the following terrain 

attributes and statistics combinations were more impacted by pitch in the deeper sub-area 

than in the shallower sub-area: bathymetry (standard deviation and spatial 

autocorrelation), topographic mean (standard deviation), easterness (spatial 

autocorrelation), northerness (standard deviation), slope (standard deviation and spatial 

autocorrelation), rugosity (standard deviation). Roll artefacts impacted the shallower sub-

area more than the deeper one for bathymetry (mean and spatial autocorrelation) and 

topographic mean (mean and spatial autocorrelation). The opposite was found for 

bathymetry (standard deviation), topographic mean (standard deviation), easterness 

(standard deviation), northerness (mean), slope (mean and standard deviation), and 

rugosity (mean, standard deviation). Finally, time artefacts impacted topographic mean 

(standard deviation and spatial autocorrelation), easterness (spatial autocorrelation), slope 

(spatial autocorrelation) and topographic position (standard deviation) more in the deeper 

sub-area, while it impacted more northerness (standard deviation) in the shallower sub-

area. 

Finally, in terms of scale, results from the shallower sub-area indicated that the 

standard deviation of bathymetry and easterness decreased faster at coarser scales and that 

the standard deviation of northerness increased faster at coarser scales. In the deeper sub-

area, easterness was also more impacted at coarser scales but topographic mean and slope 

were more impacted at finer scales. Roll had a more consistent impact on terrain 
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attributes. The standard deviation of finer-scale bathymetry, slope and rugosity surfaces 

were more impacted than coarser-scale surfaces in the shallower sub-area. The same 

pattern was observed for bathymetry and topographic mean in the deeper sub-area, but 

this time rugosity was more impacted at broader scales. In terms of skewness for the 

shallower sub-are, pitch artefacts impacted more the coarser scales of bathymetry and 

topographic position and the finer scales of easterness and northerness. Roll also 

impacted spatial autocorrelation of easterness (shallower sub-area) and bathymetry 

(deeper sub-area) more at finer scales. 



376 

 

 

Appendix F: Overall Accuracies of the Habitat Maps (Chapter 6) 
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