22,679 research outputs found

    Effective Cloud Detection and Segmentation using a Gradient-Based Algorithm for Satellite Imagery; Application to improve PERSIANN-CCS

    Full text link
    Being able to effectively identify clouds and monitor their evolution is one important step toward more accurate quantitative precipitation estimation and forecast. In this study, a new gradient-based cloud-image segmentation technique is developed using tools from image processing techniques. This method integrates morphological image gradient magnitudes to separable cloud systems and patches boundaries. A varying scale-kernel is implemented to reduce the sensitivity of image segmentation to noise and capture objects with various finenesses of the edges in remote-sensing images. The proposed method is flexible and extendable from single- to multi-spectral imagery. Case studies were carried out to validate the algorithm by applying the proposed segmentation algorithm to synthetic radiances for channels of the Geostationary Operational Environmental Satellites (GOES-R) simulated by a high-resolution weather prediction model. The proposed method compares favorably with the existing cloud-patch-based segmentation technique implemented in the PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network - Cloud Classification System) rainfall retrieval algorithm. Evaluation of event-based images indicates that the proposed algorithm has potential to improve rain detection and estimation skills with an average of more than 45% gain comparing to the segmentation technique used in PERSIANN-CCS and identifying cloud regions as objects with accuracy rates up to 98%

    Penyelenggaraan struktur penahan cerun rock shed: langkah mitigasi runtuhan tanah di Simpang Pulai - Blue Valley, Perak

    Get PDF
    Industri pembinaan merupakan industri yang sangat mencabar bukan sahaja di Malaysia malah di seluruh dunia yang merangkumi skop 3D dirty, difficult and dangerous. Industri ini juga meruapakan antara penyumbang terbesar KDNK iaitu sebanyak 7.4 peratus pada tahun 2016, walaupun industri ini antara penyumbang terbesar dari aspek keselamatan iaitu kemalangan (CIDB, 2017). Justeru itu, pihak yang bertanggungjawab seharusnya memandang serius mengenai masalah-masalah yang dihadapi supaya industri ini mampu bersaing di peringkat antarabangsa

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    PetroSurf3D - A Dataset for high-resolution 3D Surface Segmentation

    Full text link
    The development of powerful 3D scanning hardware and reconstruction algorithms has strongly promoted the generation of 3D surface reconstructions in different domains. An area of special interest for such 3D reconstructions is the cultural heritage domain, where surface reconstructions are generated to digitally preserve historical artifacts. While reconstruction quality nowadays is sufficient in many cases, the robust analysis (e.g. segmentation, matching, and classification) of reconstructed 3D data is still an open topic. In this paper, we target the automatic and interactive segmentation of high-resolution 3D surface reconstructions from the archaeological domain. To foster research in this field, we introduce a fully annotated and publicly available large-scale 3D surface dataset including high-resolution meshes, depth maps and point clouds as a novel benchmark dataset to the community. We provide baseline results for our existing random forest-based approach and for the first time investigate segmentation with convolutional neural networks (CNNs) on the data. Results show that both approaches have complementary strengths and weaknesses and that the provided dataset represents a challenge for future research.Comment: CBMI Submission; Dataset and more information can be found at http://lrs.icg.tugraz.at/research/petroglyphsegmentation

    Potential of X-ray computed tomography for 3D anatomical analysis and microdensitometrical assessment in wood research with focus on wood modification

    Get PDF
    Studying structure and chemistry of wood and wood-based materials is the backbone of all wood research and many techniques are at hand to do so. A very valuable modality is X-ray computed tomography (CT), able to non-destructively probe the three-dimensional (3D) structure and composition. In this paper, we elaborate on the use of Nanowood, a flexible multi-resolution X-ray CT set-up developed at UGCT, the Ghent University Centre for X-ray Tomography. The technique has been used successfully in many different fields of wood science. It is illustrated how 3D structural and microdensitometrical data can be obtained using different scan set-ups and protocols. Its potential for the analysis of modified wood is exemplified, e.g. for the assessment of wood treated with hydrophobing agents, localisation of modification agents, pathway analysis related to functional tissues, dimensional changes due to thermal treatment, etc. Furthermore, monitoring of transient processes is a promising field of activity too

    Automatic Palaeographic Exploration of Genizah Manuscripts

    Get PDF
    The Cairo Genizah is a collection of hand-written documents containing approximately 350,000 fragments of mainly Jewish texts discovered in the late 19th century. The fragments are today spread out in some 75 libraries and private collections worldwide, but there is an ongoing effort to document and catalogue all extant fragments. Palaeographic information plays a key role in the study of the Genizah collection. Script style, and–more specifically–handwriting, can be used to identify fragments that might originate from the same original work. Such matched fragments, commonly referred to as “joins”, are currently identified manually by experts, and presumably only a small fraction of existing joins have been discovered to date. In this work, we show that automatic handwriting matching functions, obtained from non-specific features using a corpus of writing samples, can perform this task quite reliably. In addition, we explore the problem of grouping various Genizah documents by script style, without being provided any prior information about the relevant styles. The automatically obtained grouping agrees, for the most part, with the palaeographic taxonomy. In cases where the method fails, it is due to apparent similarities between related scripts
    • …
    corecore