7,968 research outputs found

    Advanced Security Infrastructures for Grid Education

    Get PDF
    This paper describes the research conducted into advanced authorization infrastructures at the National e-Science Centre (NeSC) at the University of Glasgow and their application to support a teaching environment as part of the Dynamic Virtual Organisations in e-Science Education (DyVOSE) project. We outline the lessons learnt in teaching Grid computing and rolling out the associated security authorisation infrastructures, and describe our plans for a future, extended security infrastructure for dynamic establishment of inter-institutional virtual organisations (VO) in the education domain

    Advanced security infrastructures for grid education

    Get PDF
    This paper describes the research conducted into advanced authorization infrastructures at the National e-Science Centre (NeSC) at the University of Glasgow and their application to support a teaching environment as part of the Dynamic Virtual Organisations in e-Science Education (DyVOSE) project. We outline the lessons learnt in teaching Grid computing and rolling out the associated security authorisation infrastructures, and describe our plans for a future, extended security infrastructure for dynamic establishment of inter-institutional virtual organisations (VO) in the education domain

    Advanced security infrastructures for grid education

    Get PDF
    This paper describes the research conducted into advanced authorization infrastructures at the National e-Science Centre (NeSC) at the University of Glasgow and their application to support a teaching environment as part of the Dynamic Virtual Organisations in e-Science Education (DyVOSE) project. We outline the lessons learnt in teaching Grid computing and rolling out the associated security authorisation infrastructures, and describe our plans for a future, extended security infrastructure for dynamic establishment of inter-institutional virtual organisations (VO) in the education domain

    Experiences in teaching grid computing to advanced level students

    Get PDF
    The development of teaching materials for future software engineers is critical to the long term success of the grid. At present however there is considerable turmoil in the grid community both within the standards and the technology base underpinning these standards. In this context, it is especially challenging to develop teaching materials that have some sort of lifetime beyond the next wave of grid middleware and standards. In addition, the current way in which grid security is supported and delivered has two key problems. Firstly in the case of the UK e-Science community, scalability issues arise from a central certificate authority. Secondly, the current security mechanisms used by the grid community are not line grained enough. In this paper we outline how these issues are being addressed through the development of a grid computing module supported by an advanced authorisation infrastructure at the University of Glasgow

    Shibboleth-based access to and usage of grid resources

    Get PDF
    Security underpins grids and e-research. Without a robust, reliable and simple grid security infrastructure combined with commonly accepted security practices, large portions of the research community and wider industry will not engage. The predominant way in which security is currently addressed in the grid community is through public key infrastructures (PKI) based upon X.509 certificates to support authentication. Whilst PKIs address user identity issues, authentication does not provide fine grained control over what users are allowed to do on remote resources (authorization). In this paper we outline how we have successfully combined Shibboleth and advanced authorization technologies to provide simplified (from the user perspective) but fine grained security for access to and usage of grid resources. We demonstrate this approach through different security focused e-science projects being conducted at the National e-Science Centre (NeSC) at the University of Glasgow. We believe that this model is widely applicable and encourage the further uptake of e-science by non-IT specialists in the research communitie

    DyVOSE project: experiences in applying privilege management infrastructures

    Get PDF
    Privilege Management Infrastructures (PMI) are emerging as a necessary alternative to authorization through Access Control Lists (ACL) as the need for finer grained security on the Grid increases in numerous domains. The 2-year JISC funded DyVOSE Project has investigated applying PMIs within an e-Science education context. This has involved establishing a Grid Computing module as part of Glasgow University’s Advanced MSc degree in Computing Science. A laboratory infrastructure was built for the students realising a PMI with the PERMIS software, to protect Grid Services they created. The first year of the course centered on building a static PMI at Glasgow. The second year extended this to allow dynamic attribute delegation between Glasgow and Edinburgh to support dynamic establishment of fine grained authorization based virtual organizations across multiple institutions. This dynamic delegation was implemented using the DIS (Delegation Issuing) Web Service supplied by the University of Kent. This paper describes the experiences and lessons learned from setting up and applying the advanced Grid authorization infrastructure within the Grid Computing course, focusing primarily on the second year and the dynamic virtual organisation setup between Glasgow and Edinburgh

    The European Parliament : leadership and 'followership'

    Get PDF
    The weakened European Commission and the increasingly assertive European Council and Council of Ministers have contended for control of agenda-setting but it is in the sphere of foreign and security policy that the EU's logic of leaderlessness has been most conspicuous

    An introduction of a modular framework for securing 5G networks and beyond

    Get PDF
    Fifth Generation Mobile Network (5G) is a heterogeneous network in nature, made up of multiple systems and supported by different technologies. It will be supported by network services such as device-to-device (D2D) communications. This will enable the new use cases to provide access to other services within the network and from third-party service providers (SPs). End-users with their user equipment (UE) will be able to access services ubiquitously from multiple SPs that might share infrastructure and security management, whereby implementing security from one domain to another will be a challenge. This highlights a need for a new and effective security approach to address the security of such a complex system. This article proposes a network service security (NSS) modular framework for 5G and beyond that consists of different security levels of the network. It reviews the security issues of D2D communications in 5G, and it is used to address security issues that affect the users and SPs in an integrated and heterogeneous network such as the 5G enabled D2D communications network. The conceptual framework consists of a physical layer, network access, service and D2D security levels. Finally, it recommends security mechanisms to address the security issues at each level of the 5G-enabled D2D communications network

    ViotSOC: Controlling Access to Dynamically Virtualized IoT Services using Service Object Capability

    Get PDF
    Virtualization of Internet of Things(IoT) is a concept of dynamically building customized high-level IoT services which rely on the real time data streams from low-level physical IoT sensors. Security in IoT virtualization is challenging, because with the growing number of available (building block) services, the number of personalizable virtual services grows exponentially. This paper proposes Service Object Capability(SOC) ticket system, a decentralized access control mechanism between servers and clients to effi- ciently authenticate and authorize each other without using public key cryptography. SOC supports decentralized partial delegation of capabilities specified in each server/- client ticket. Unlike PKI certificates, SOC’s authentication time and handshake packet overhead stays constant regardless of each capability’s delegation hop distance from the root delegator. The paper compares SOC’s security bene- fits with Kerberos and the experimental results show SOC’s authentication incurs significantly less time packet overhead compared against those from other mechanisms based on RSA-PKI and ECC-PKI algorithms. SOC is as secure as, and more efficient and suitable for IoT environments, than existing PKIs and Kerberos
    • 

    corecore