1,567 research outputs found

    Enhancing feature selection with a novel hybrid approach incorporating genetic algorithms and swarm intelligence techniques

    Get PDF
    Computing advances in data storage are leading to rapid growth in large-scale datasets. Using all features increases temporal/spatial complexity and negatively influences performance. Feature selection is a fundamental stage in data preprocessing, removing redundant and irrelevant features to minimize the number of features and enhance the performance of classification accuracy. Numerous optimization algorithms were employed to handle feature selection (FS) problems, and they outperform conventional FS techniques. However, there is no metaheuristic FS method that outperforms other optimization algorithms in many datasets. This motivated our study to incorporate the advantages of various optimization techniques to obtain a powerful technique that outperforms other methods in many datasets from different domains. In this article, a novel combined method GASI is developed using swarm intelligence (SI) based feature selection techniques and genetic algorithms (GA) that uses a multi-objective fitness function to seek the optimal subset of features. To assess the performance of the proposed approach, seven datasets have been collected from the UCI repository and exploited to test the newly established feature selection technique. The experimental results demonstrate that the suggested method GASI outperforms many powerful SI-based feature selection techniques studied. GASI obtains a better average fitness value and improves classification performance

    Application of Saliency Maps for Optimizing Camera Positioning in Deep Learning Applications

    Get PDF
    In the fields of process control engineering and robotics, especially in automatic control, optimization challenges frequently manifest as complex problems with expensive evaluations. This thesis zeroes in on one such problem: the optimization of camera positions for Convolutional Neural Networks (CNNs). CNNs have specific attention points in images that are often not intuitive to human perception, making camera placement critical for performance. The research is guided by two primary questions. The first investigates the role of Explainable Artificial Intelligence (XAI), specifically GradCAM++ visual explanations, in Computer Vision for aiding in the evaluation of different camera positions. Building on this, the second question assesses a novel algorithm that leverages these XAI features against traditional black-box optimization methods. To answer these questions, the study employs a robotic auto-positioning system for data collection, CNN model training, and performance evaluation. A case study focused on classifying flow regimes in industrial-grade bioreactors validates the method. The proposed approach shows improvements over established techniques like Grid Search, Random Search, Bayesian optimization, and Simulated Annealing. Future work will focus on gathering more data and including noise for generalized conclusions.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and OutlookIm Bereich der Prozessleittechnik und Robotik, speziell bei der automatischen Steuerung, treten oft komplexe Optimierungsprobleme auf. Diese Arbeit konzentriert sich auf die Optimierung der Kameraplatzierung in Anwendungen, die Convolutional Neural Networks (CNNs) verwenden. Da CNNs spezifische, für den Menschen nicht immer ersichtliche, Merkmale in Bildern hervorheben, ist die intuitive Platzierung der Kamera oft nicht optimal. Zwei Forschungsfragen leiten diese Arbeit: Die erste Frage untersucht die Rolle von Erklärbarer Künstlicher Intelligenz (XAI) in der Computer Vision zur Bereitstellung von Merkmalen für die Bewertung von Kamerapositionen. Die zweite Frage vergleicht einen darauf basierenden Algorithmus mit anderen Blackbox-Optimierungstechniken. Ein robotisches Auto-Positionierungssystem wird zur Datenerfassung und für Experimente eingesetzt. Als Lösungsansatz wird eine Methode vorgestellt, die XAI-Merkmale, insbesondere solche aus GradCAM++ Erkenntnissen, mit einem Bayesschen Optimierungsalgorithmus kombiniert. Diese Methode wird in einer Fallstudie zur Klassifizierung von Strömungsregimen in industriellen Bioreaktoren angewendet und zeigt eine gesteigerte performance im Vergleich zu etablierten Methoden. Zukünftige Forschung wird sich auf die Sammlung weiterer Daten, die Inklusion von verrauschten Daten und die Konsultation von Experten für eine kostengünstigere Implementierung konzentrieren.:Contents 1 Introduction 1.1 Motivation 1.2 Problem Analysis 1.3 Research Question 1.4 Structure of the Thesis 2 State of the Art 2.1 Literature Research Methodology 2.1.1 Search Strategy 2.1.2 Inclusion and Exclusion Criteria 2.2 Blackbox Optimization 2.3 Mathematical Notation 2.4 Bayesian Optimization 2.5 Simulated Annealing 2.6 Random Search 2.7 Gridsearch 2.8 Explainable A.I. and Saliency Maps 2.9 Flowregime Classification in Stirred Vessels 2.10 Performance Metrics 2.10.1 R2 Score and Polynomial Regression for Experiment Data Analysis 2.10.2 Blackbox Optimization Performance Metrics 2.10.3 CNN Performance Metrics 3 Methodology 3.1 Requirement Analysis and Research Hypothesis 3.2 Research Approach: Case Study 3.3 Data Collection 3.4 Evaluation and Justification 4 Concept 4.1 System Overview 4.2 Data Flow 4.3 Experimental Setup 4.4 Optimization Challenges and Approaches 5 Data Collection and Experimental Setup 5.1 Hardware Components 5.2 Data Recording and Design of Experiments 5.3 Data Collection 5.4 Post-Experiment 6 Implementation 6.1 Simulation Unit 6.2 Recommendation Scalar from Saliency Maps 6.3 Saliency Map Features as Guidance Mechanism 6.4 GradCam++ Enhanced Bayesian Optimization 6.5 Benchmarking Unit 6.6 Benchmarking 7 Results and Evaluation 7.1 Experiment Data Analysis 7.2 Recommendation Scalar 7.3 Benchmarking Results and Quantitative Analysis 7.3.1 Accuracy Results from the Benchmarking Process 7.3.2 Cumulative Results Interpretation 7.3.3 Analysis of Variability 7.4 Answering the Research Questions 7.5 Summary 8 Discussion 8.1 Critical Examination of Limitations 8.2 Discussion of Solutions to Limitations 8.3 Practice-Oriented Discussion of Findings 9 Summary and Outloo

    Optimization of Beyond 5G Network Slicing for Smart City Applications

    Get PDF
    Transitioning from the current fifth-generation (5G) wireless technology, the advent of beyond 5G (B5G) signifies a pivotal stride toward sixth generation (6G) communication technology. B5G, at its essence, harnesses end-to-end (E2E) network slicing (NS) technology, enabling the simultaneous accommodation of multiple logical networks with distinct performance requirements on a shared physical infrastructure. At the forefront of this implementation lies the critical process of network slice design, a phase central to the realization of efficient smart city networks. This thesis assumes a key role in the network slicing life cycle, emphasizing the analysis and formulation of optimal procedures for configuring, customizing, and allocating E2E network slices. The focus extends to catering to the unique demands of smart city applications, encompassing critical areas such as emergency response, smart buildings, and video surveillance. By addressing the intricacies of network slice design, the study navigates through the complexities of tailoring slices to meet specific application needs, thereby contributing to the seamless integration of diverse services within the smart city framework. Addressing the core challenge of NS, which involves the allocation of virtual networks on the physical topology with optimal resource allocation, the thesis introduces a dual integer linear programming (ILP) optimization problem. This problem is formulated to jointly minimize the embedding cost and latency. However, given the NP-hard nature of this ILP, finding an efficient alternative becomes a significant hurdle. In response, this thesis introduces a novel heuristic approach the matroid-based modified greedy breadth-first search (MGBFS) algorithm. This pioneering algorithm leverages matroid properties to navigate the process of virtual network embedding and resource allocation. By introducing this novel heuristic approach, the research aims to provide near-optimal solutions, overcoming the computational complexities associated with the dual integer linear programming problem. The proposed MGBFS algorithm not only addresses the connectivity, cost, and latency constraints but also outperforms the benchmark model delivering solutions remarkably close to optimal. This innovative approach represents a substantial advancement in the optimization of smart city applications, promising heightened connectivity, efficiency, and resource utilization within the evolving landscape of B5G-enabled communication technology

    Face Emotion Recognition Based on Machine Learning: A Review

    Get PDF
    Computers can now detect, understand, and evaluate emotions thanks to recent developments in machine learning and information fusion. Researchers across various sectors are increasingly intrigued by emotion identification, utilizing facial expressions, words, body language, and posture as means of discerning an individual's emotions. Nevertheless, the effectiveness of the first three methods may be limited, as individuals can consciously or unconsciously suppress their true feelings. This article explores various feature extraction techniques, encompassing the development of machine learning classifiers like k-nearest neighbour, naive Bayesian, support vector machine, and random forest, in accordance with the established standard for emotion recognition. The paper has three primary objectives: firstly, to offer a comprehensive overview of effective computing by outlining essential theoretical concepts; secondly, to describe in detail the state-of-the-art in emotion recognition at the moment; and thirdly, to highlight important findings and conclusions from the literature, with an emphasis on important obstacles and possible future paths, especially in the creation of state-of-the-art machine learning algorithms for the identification of emotions

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Automatic application watershed in early detection and classification masses in mammography image using machine learning methods

    Get PDF
    Mammogram images are used by radiologists for the diagnosis of breast cancer. However, the interpretation of these images remains difficult depending on the type of breast, especially those of dense breasts, which are difficult to read, as they may contain abnormal structures similar to normal breast tissue and could lead to a high rate of false positives and false negatives. In this paper, we present an efficient computer-aided diagnostic system for the detection and classification of breast masses. After removing noise and artefacts from the images using 2D median filtering, mathematical morphology and pectoral muscle removal by Hough's algorithm, the resulting image is used for breast mass segmentation using the watershed algorithm. Thus, after the segmentation, the help system extracts several data by the wavelet transform and the co-occurrence matrix (GLCM) to finally lead to a classification in terms of malignant and benign mass via the Support Vector Machine (SVM) classifier. This method was applied on 48 MLO images from the image base (mini-MIAS) and the results obtained from this proposed system is 93,75% in terms of classification rate, 88% in terms of sensitivity and a specificity of 94%

    Research on the analytics of traffic pumping in telecommunications via data science using rehabilitated frog leaping algorithm

    Get PDF
    One kind of telecom crime known as "traffic pumping" occurs when local phone companies artificially overstate the volume of calls flowing into their systems so that they may charge the calling party a greater access fee than their own. Lacking labels for training set makes it difficult to determine whether congestion pumps has occurred. In this study, we suggested a decision-support system based on cluster analysis and decision trees for identifying fraudulent cases. In this study, we use the IBM Telco and Cell2cell datasets. The gathered information can be preprocessed using normalization. When we have collected enough data, we use the rehabilitation frog leaping algorithm (RFLA) to divide up the possible incidents of fraud into distinct groups. Next, we used the cluster participation labels to build a decision tree that led us to the criteria that must be met in order to pursue legal action against the circumstances that raised red flags. Professionals in the field of telecommunications (TC) verify these guidelines in an effort to find a legal remedy against accused offenders. The results are demonstrated and proved the efficiency of the proposed system by comparing it with the conventional techniques

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning
    • …
    corecore