21,646 research outputs found

    Power control and receiver design for energy efficiency in multipath CDMA channels with bandlimited waveforms

    Full text link
    This paper is focused on the cross-layer design problem of joint multiuser detection and power control for energy-efficiency optimization in a wireless data network through a game-theoretic approach. Building on work of Meshkati, et al., wherein the tools of game-theory are used in order to achieve energy-efficiency in a simple synchronous code division multiple access system, system asynchronism, the use of bandlimited chip-pulses, and the multipath distortion induced by the wireless channel are explicitly incorporated into the analysis. Several non-cooperative games are proposed wherein users may vary their transmit power and their uplink receiver in order to maximize their utility, which is defined here as the ratio of data throughput to transmit power. In particular, the case in which a linear multiuser detector is adopted at the receiver is considered first, and then, the more challenging case in which non-linear decision feedback multiuser detectors are employed is considered. The proposed games are shown to admit a unique Nash equilibrium point, while simulation results show the effectiveness of the proposed solutions, as well as that the use of a decision-feedback multiuser receiver brings remarkable performance improvements.Comment: appeared in the Proceedings of the 41st Annual Conference on Information Sciences and Systems, John Hopkins University, March 200

    Precoder Design for Physical Layer Multicasting

    Full text link
    This paper studies the instantaneous rate maximization and the weighted sum delay minimization problems over a K-user multicast channel, where multiple antennas are available at the transmitter as well as at all the receivers. Motivated by the degree of freedom optimality and the simplicity offered by linear precoding schemes, we consider the design of linear precoders using the aforementioned two criteria. We first consider the scenario wherein the linear precoder can be any complex-valued matrix subject to rank and power constraints. We propose cyclic alternating ascent based precoder design algorithms and establish their convergence to respective stationary points. Simulation results reveal that our proposed algorithms considerably outperform known competing solutions. We then consider a scenario in which the linear precoder can be formed by selecting and concatenating precoders from a given finite codebook of precoding matrices, subject to rank and power constraints. We show that under this scenario, the instantaneous rate maximization problem is equivalent to a robust submodular maximization problem which is strongly NP hard. We propose a deterministic approximation algorithm and show that it yields a bicriteria approximation. For the weighted sum delay minimization problem we propose a simple deterministic greedy algorithm, which at each step entails approximately maximizing a submodular set function subject to multiple knapsack constraints, and establish its performance guarantee.Comment: 37 pages, 8 figures, submitted to IEEE Trans. Signal Pro

    Performance analysis of pre-equalized multilevel partial response schemes

    Get PDF
    In order to achieve high speed on electrical interconnects, channel attenuation at high frequencies must be dealt with by proper transceiver design. In this paper we investigate finite-complexity MMSE pre-equalization under an average transmit power constraint, to compensate for channel distortion in the case of both full-response and precoded partial response signaling with L-PAM mapping, and consider the resulting error performance for symbol-by-symbol detection and sequence detection. For a representative electrical interconnect, we point out that the constellation size (2-PAM or 4-PAM), the type of signaling (full response or partial response), the detection method (symbol-by-symbol detection or sequence detection) and the number of pre-equalizer taps should be carefully selected in order to achieve satisfactory error performance at high data rates. For several scenarios, precoded duobinary 4-PAM is found to yield the best error performance for given average transmit power

    Robust Design of Transmit Waveform and Receive Filter For Colocated MIMO Radar

    Full text link
    We consider the problem of angle-robust joint transmit waveform and receive filter design for colocated Multiple-Input Multiple-Output (MIMO) radar, in the presence of signal-dependent interferences. The design problem is cast as a max-min optimization problem to maximize the worst-case output signal-to-interference-plus-noise-ratio (SINR) with respect to the unknown angle of the target of interest. Based on rank-one relaxation and semi-definite programming (SDP) representation of a nonnegative trigonometric polynomial, a cyclic optimization algorithm is proposed to tackle this problem. The effectiveness of the proposed method is illustrated via numerical examples.Comment: 6 pages, 13 figures, part of this work was submitted to IEEE Signal Processing Letters; (short introduction; typos corrected; revised statement in section III-B and IV; revised figure labels

    Joint Transmit and Receive Filter Optimization for Sub-Nyquist Delay-Doppler Estimation

    Full text link
    In this article, a framework is presented for the joint optimization of the analog transmit and receive filter with respect to a parameter estimation problem. At the receiver, conventional signal processing systems restrict the two-sided bandwidth of the analog pre-filter BB to the rate of the analog-to-digital converter fsf_s to comply with the well-known Nyquist-Shannon sampling theorem. In contrast, here we consider a transceiver that by design violates the common paradigm B≤fsB\leq f_s. To this end, at the receiver, we allow for a higher pre-filter bandwidth B>fsB>f_s and study the achievable parameter estimation accuracy under a fixed sampling rate when the transmit and receive filter are jointly optimized with respect to the Bayesian Cram\'{e}r-Rao lower bound. For the case of delay-Doppler estimation, we propose to approximate the required Fisher information matrix and solve the transceiver design problem by an alternating optimization algorithm. The presented approach allows us to explore the Pareto-optimal region spanned by transmit and receive filters which are favorable under a weighted mean squared error criterion. We also discuss the computational complexity of the obtained transceiver design by visualizing the resulting ambiguity function. Finally, we verify the performance of the optimized designs by Monte-Carlo simulations of a likelihood-based estimator.Comment: 15 pages, 16 figure

    Multi-stage Antenna Selection for Adaptive Beamforming in MIMO Arrays

    Full text link
    Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where large transmit and receive arrays are multiplexed in a smaller set of k baseband signals. We consider four stages for the MIMO array configuration and propose four different selection strategies to offer dimensionality reduction in post-processing and achieve hardware cost reduction in digital signal processing (DSP) and radio-frequency (RF) stages. We define the problem as a determinant maximization and develop a unified formulation to decouple the joint problem and select antennas/elements in various stages in one integrated problem. We then analyze the performance of the proposed selection approaches and prove that, in terms of the output SINR, a joint transmit-receive selection method performs best followed by matched-filter, hybrid and factored selection methods. The theoretical results are validated numerically, demonstrating that all methods allow an excellent trade-off between performance and cost.Comment: Submitted for publicatio

    Nonregenerative MIMO Relaying with Optimal Transmit Antenna Selection

    Full text link
    We derive optimal SNR-based transmit antenna selection rules at the source and relay for the nonregenerative half duplex MIMO relay channel. While antenna selection is a suboptimal form of beamforming, it has the advantage that the optimization is tractable and can be implemented with only a few bits of feedback from the destination to the source and relay. We compare the bit error rate of optimal antenna selection at both the source and relay to other proposed beamforming techniques and propose methods for performing the necessary limited feedback
    • …
    corecore