463 research outputs found

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd

    Best practices for building hardware designs for living computational science applications

    Get PDF
    Scientific computing or Computational science, is a field of study where engineers and scientists use computer simulations to solve equations that model the physical world. In some cases, these equations come from the first principles of physics. In the past, these simulations were run on a single processor machine. However, due to various technological reasons, the performance of these machines are not likely to improve at the same rate as in the past. In order to improve the performance per watt of these simulations, special-purpose hardware accelerators can be used. This work mainly focuses on using FPGA-based hardware accelerators. In order to run these simulations on an FPGA accelerator, the application code needs to be re-factored into software and hardware sections. These faster simulations have motivated scientists to capture more behavior of the physical world. As additional behavior is captured, the application code needs to be re-factored each time, and a significant effort is required to re-build the design. Unfortunately, these multiple cycles of re-design reduces the overall productivity of scientists and engineers. This work proposes a set of hardware design guidelines for changing computational science codes or living computational science codes. These guidelines co-evolve the hardware with the software, reducing the overall effort of re-design and improving productivity. The design guidelines are evaluated for effectiveness, communicability, and broad applicability. Experimental results have shown that the overall re-design effort is reduced, and these guidelines are broadly applicable to a wide variety of scientific computing applications

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    H-SIMD machine : configurable parallel computing for data-intensive applications

    Get PDF
    This dissertation presents a hierarchical single-instruction multiple-data (H-SLMD) configurable computing architecture to facilitate the efficient execution of data-intensive applications on field-programmable gate arrays (FPGAs). H-SIMD targets data-intensive applications for FPGA-based system designs. The H-SIMD machine is associated with a hierarchical instruction set architecture (HISA) which is developed for each application. The main objectives of this work are to facilitate ease of program development and high performance through ease of scheduling operations and overlapping communications with computations. The H-SIMD machine is composed of the host, FPGA and nano-processor layers. They execute host SIMD instructions (HSIs), FPGA SIMD instructions (FSIs) and nano-processor instructions (NPLs), respectively. A distinction between communication and computation instructions is intended for all the HISA layers. The H-SIMD machine also employs a memory switching scheme to bridge the omnipresent large bandwidth gaps in configurable systems. To showcase the proposed high-performance approach, the conditions to fully overlap communications with computations are investigated for important applications. The building blocks in the H-SLMD machine, such as high-performance and area-efficient register files, are presented in detail. The H-SLMD machine hierarchy is implemented on a host Dell workstation and the Annapolis Wildstar II FPGA board. Significant speedups have been achieved for matrix multiplication (MM), 2-dimensional discrete cosine transform (2D DCT) and 2-dimensional fast Fourier transform (2D FFT) which are used widely in science and engineering. In another FPGA-based programming paradigm, a high-level language (here ANSI C) can be used to program the FPGAs in a mode similar to that of the H-SIMD machine in terms of trying to minimize the effect of overheads. More specifically, a multi-threaded overlapping scheme is proposed to reduce as much as possible, or even completely hide, runtime FPGA reconfiguration overheads. Nevertheless, although the HLL-enabled reconfigurable machine allows software developers to customize FPGA functions easily, special architecture techniques are needed to achieve high-performance without significant penalty on area and clock frequency. Two important high-performance applications, matrix multiplication and image edge detection, are tested on the SRC-6 reconfigurable machine. The implemented algorithms are able to exploit the available data parallelism with independent functional units and application-specific cache support. Relevant performance and design tradeoffs are analyzed

    Intrinsically Evolvable Artificial Neural Networks

    Get PDF
    Dedicated hardware implementations of neural networks promise to provide faster, lower power operation when compared to software implementations executing on processors. Unfortunately, most custom hardware implementations do not support intrinsic training of these networks on-chip. The training is typically done using offline software simulations and the obtained network is synthesized and targeted to the hardware offline. The FPGA design presented here facilitates on-chip intrinsic training of artificial neural networks. Block-based neural networks (BbNN), the type of artificial neural networks implemented here, are grid-based networks neuron blocks. These networks are trained using genetic algorithms to simultaneously optimize the network structure and the internal synaptic parameters. The design supports online structure and parameter updates, and is an intrinsically evolvable BbNN platform supporting functional-level hardware evolution. Functional-level evolvable hardware (EHW) uses evolutionary algorithms to evolve interconnections and internal parameters of functional modules in reconfigurable computing systems such as FPGAs. Functional modules can be any hardware modules such as multipliers, adders, and trigonometric functions. In the implementation presented, the functional module is a neuron block. The designed platform is suitable for applications in dynamic environments, and can be adapted and retrained online. The online training capability has been demonstrated using a case study. A performance characterization model for RC implementations of BbNNs has also been presented

    Design of Efficient DNN Accelerator Architectures

    Get PDF
    Deep Neural Networks (DNNs) are the fundamental processing unit behind modern Artificial Intelligence (AI). Accordingly, expecting a future with smart devices that are able to monitor, decide, and take action seems reasonable. However, DNNs are computation and power-hungry, which makes deployment of them into edge devices challenging. The focus of this dissertation is on designing architectures to perform the inference of DNNs efficiently. The contents of this dissertation can be divided into four specific areas: (1) early detection of the ineffectual computations inside the computation engine; (2) enhancing the utilization of Processing Elements (PEs) inside the computation engine; (3) skipping identical effectual computations through binary Multiply and Accumulation (MAC) operations; (4) the design of approximate DNN accelerators. In most DNNs, an activation function follows a convolutional or a fully connected layer. Several popular activation functions involve setting all negative inputs to zero. In this dissertation, firstly, the characteristics of activation layers that are considered for adding non-linearity to DNNs are studied. Then, a novel architecture in which the activation function is merged with the prior computational layer is proposed. To add more detail, the proposed architecture coordinates early sign detection of output features. When compared to the original design, our method achieves a speedup of ×2.19 and reduces energy consumption by ×1.94. The average reduction in the number of multiply-accumulate~(MAC) operations is 10.64% and the average reduction in the number of load operations is 3.86%. These improvements are achieved while maintaining classification accuracy in two popular benchmark networks. One of the main challenges that DNN accelerator developers face is keeping all the PEs busy with performing effectual computations while running DNNs. In this dissertation, a Twin-PE for spatial DNN accelerators is introduced that increases the utilization of the PEs and the performance of the whole computation engine. In more detail, the proposed architecture which comes with a negligible area overhead is implemented based on sharing the scratchpads between the PEs to use the available slack time caused by applying computation-pruning techniques. When compared to the reference design, our proposed method achieves a speedup of ×1.24 and an energy efficiency of ×1.18 per inference. Decomposing the MAC operations down to bit-level provides the chance of skipping bit-wise and word-wise sparsity. However, there is still room for pruning the effectual computations without reducing the accuracy of DNNs. In this dissertation, a novel real-time architecture by decomposing multiplications down to bit level and pruning identical computations while running benchmark networks. Our proposed design achieves an average per layer speedup of ×1.4 and energy efficiency of ×1.21 per inference while maintaining the accuracy of benchmark networks. Applying approximate computing techniques reduces the cost of the underlying circuits so that DNN inference would be performed more efficiently. However, applying approximation to DNNs is somehow different from other applications. In this dissertation, a step-wise approach for implementing a re-configurable Booth multiplier suitable for inference of DNNs is proposed. In addition, the tolerance of different layers of DNNs to approximation is evaluated and the effect of applying various degrees of approximation on inference accuracy is explored. The proposed design achieves an area efficiency of ×1.19 and energy efficiency of ×1.28 compared to the exact design while running benchmark DNNs
    • …
    corecore