405,158 research outputs found

    MUSE-inspired view of the quasar Q2059-360, its Lyman alpha blob, and its neighborhood

    Full text link
    The radio-quiet quasar Q2059-360 at redshift z=3.08z=3.08 is known to be close to a small Lyman α\alpha blob (LAB) and to be absorbed by a proximate damped Lyα\alpha (PDLA) system. Here, we present the Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopy follow-up of this quasi-stellar object (QSO). Our primary goal is to characterize this LAB in detail by mapping it both spatially and spectrally using the Lyα\alpha line, and by looking for high-ionization lines to constrain the emission mechanism. Combining the high sensitivity of the MUSE integral field spectrograph mounted on the Yepun telescope at ESO-VLT with the natural coronagraph provided by the PDLA, we map the LAB down to the QSO position, after robust subtraction of QSO light in the spectral domain. In addition to confirming earlier results for the small bright component of the LAB, we unveil a faint filamentary emission protruding to the south over about 80 pkpc (physical kpc); this results in a total size of about 120 pkpc. We derive the velocity field of the LAB (assuming no transfer effects) and map the Lyα\alpha line width. Upper limits are set to the flux of the N V λ1238−1242\lambda 1238-1242, C IV λ1548−1551\lambda 1548-1551, He II λ1640\lambda 1640, and C III] λ1548−1551\lambda 1548-1551 lines. We have discovered two probable Lyα\alpha emitters at the same redshift as the LAB and at projected distances of 265 kpc and 207 kpc from the QSO; their Lyα\alpha luminosities might well be enhanced by the QSO radiation. We also find an emission line galaxy at z=0.33z=0.33 near the line of sight to the QSO. This LAB shares the same general characteristics as the 17 others surrounding radio-quiet QSOs presented previously. However, there are indications that it may be centered on the PDLA galaxy rather than on the QSO.Comment: Accepted for publication in Astronomy & Astrophysics; 16 pages, 19 figure

    Comparing cohomology obstructions

    Get PDF
    We show that three different kinds of cohomology - Baues-Wirsching cohomology, the (S,O)-cohomology of Dwyer-Kan, and the Andre-Quillen cohomology of a Pi-algebra - are isomorphic, under certain assumptions. This is then used to identify the cohomological obstructions in three general approaches to realizability problems: the track category version of Baues-Wirsching, the diagram rectifications of Dwyer-Kan-Smith, and the Pi-Algebra realization of Dwyer-Kan-Stover. Our main tool in this identification is the notion of a mapping algebra: a simplicially enriched version of an algebra over a theory

    Hydrodynamic object recognition using pressure sensing

    No full text
    Hydrodynamic sensing is instrumental to fish and some amphibians. It also represents, for underwater vehicles, an alternative way of sensing the fluid environment when visual and acoustic sensing are limited. To assess the effectiveness of hydrodynamic sensing and gain insight into its capabilities and limitations, we investigated the forward and inverse problem of detection and identification, using the hydrodynamic pressure in the neighbourhood, of a stationary obstacle described using a general shape representation. Based on conformal mapping and a general normalization procedure, our obstacle representation accounts for all specific features of progressive perceptual hydrodynamic imaging reported experimentally. Size, location and shape are encoded separately. The shape representation rests upon an asymptotic series which embodies the progressive character of hydrodynamic imaging through pressure sensing. A dynamic filtering method is used to invert noisy nonlinear pressure signals for the shape parameters. The results highlight the dependence of the sensitivity of hydrodynamic sensing not only on the relative distance to the disturbance but also its bearing

    Conditions for interoperability

    Get PDF
    Interoperability for information systems remains a challenge both at the semantic and organisational levels. The original three-level architecture for local databases needs to be replaced by a categorical four-level one based on concepts, constructions, schema types and data together with the mappings between them. Such an architecture provides natural closure as further levels are superfluous even in a global environment. The architecture is traversed by means of the Godement calculus: arrows may be composed at any level as well as across levles. The necessary and sufficient conditions for interoperability are satisfied by composable (formal) diagrams both for intension and extension in categories that are cartesian closed and locally cartesian closed. Methods like partial categories and sketches in schema design can benefit from Freyd’s punctured diagrams to identify precisely type-forcing natural transformations. Closure is better achieved in standard full categories. Global interoperability of extension can be achieved through semantic annotation but only if applied at run time

    Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM)

    Full text link
    [EN] Inspecting a 3D object which shape has elastic manufacturing tolerances in order to find defects is a challenging and time-consuming task. This task usually involves humans, either in the specification stage followed by some automatic measurements, or in other points along the process. Even when a detailed inspection is performed, the measurements are limited to a few dimensions instead of a complete examination of the object. In this work, a probabilistic method to evaluate 3D surfaces is presented. This algorithm relies on a training stage to learn the shape of the object building a statistical shape model. Making use of this model, any inspected object can be evaluated obtaining a probability that the whole object or any of its dimensions are compatible with the model, thus allowing to easily find defective objects. Results in simulated and real environments are presented and compared to two different alternatives.This work was partially funded by Generalitat Valenciana through IVACE (Valencian Institute of Business Competitiveness) distributed nominatively to Valencian technological innovation centres under project expedient IMAMCN/2020/1.PĂ©rez, J.; Guardiola Garcia, JL.; PĂ©rez JimĂ©nez, AJ.; Perez-Cortes, J. (2020). Probabilistic Evaluation of 3D Surfaces Using Statistical Shape Models (SSM). Sensors. 20(22):1-16. https://doi.org/10.3390/s20226554S1162022Brosed, F. J., Aguilar, J. J., GuillomĂ­a, D., & Santolaria, J. (2010). 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot. Sensors, 11(1), 90-110. doi:10.3390/s110100090Perez-Cortes, J.-C., Perez, A., Saez-Barona, S., Guardiola, J.-L., & Salvador, I. (2018). A System for In-Line 3D Inspection without Hidden Surfaces. Sensors, 18(9), 2993. doi:10.3390/s18092993Bi, Z. M., & Wang, L. (2010). Advances in 3D data acquisition and processing for industrial applications. Robotics and Computer-Integrated Manufacturing, 26(5), 403-413. doi:10.1016/j.rcim.2010.03.003Fu, K., Peng, J., He, Q., & Zhang, H. (2020). Single image 3D object reconstruction based on deep learning: A review. Multimedia Tools and Applications, 80(1), 463-498. doi:10.1007/s11042-020-09722-8Pichat, J., Iglesias, J. E., Yousry, T., Ourselin, S., & Modat, M. (2018). A Survey of Methods for 3D Histology Reconstruction. Medical Image Analysis, 46, 73-105. doi:10.1016/j.media.2018.02.004Pathak, V. K., Singh, A. K., Sivadasan, M., & Singh, N. K. (2016). Framework for Automated GD&T Inspection Using 3D Scanner. Journal of The Institution of Engineers (India): Series C, 99(2), 197-205. doi:10.1007/s40032-016-0337-7Bustos, B., Keim, D. A., Saupe, D., Schreck, T., & Vranić, D. V. (2005). Feature-based similarity search in 3D object databases. ACM Computing Surveys, 37(4), 345-387. doi:10.1145/1118890.1118893Mian, A., Bennamoun, M., & Owens, R. (2009). On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes. International Journal of Computer Vision, 89(2-3), 348-361. doi:10.1007/s11263-009-0296-zLiu, Z., Zhao, C., Wu, X., & Chen, W. (2017). An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors. Sensors, 17(3), 451. doi:10.3390/s17030451Barra, V., & Biasotti, S. (2013). 3D shape retrieval using Kernels on Extended Reeb Graphs. Pattern Recognition, 46(11), 2985-2999. doi:10.1016/j.patcog.2013.03.019Xie, J., Dai, G., Zhu, F., Wong, E. K., & Fang, Y. (2017). DeepShape: Deep-Learned Shape Descriptor for 3D Shape Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(7), 1335-1345. doi:10.1109/tpami.2016.2596722Lague, D., Brodu, N., & Leroux, J. (2013). Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS Journal of Photogrammetry and Remote Sensing, 82, 10-26. doi:10.1016/j.isprsjprs.2013.04.009Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208. doi:10.1016/j.geomorph.2016.11.009MartĂ­nez-Carricondo, P., AgĂŒera-Vega, F., Carvajal-RamĂ­rez, F., Mesas-Carrascosa, F.-J., GarcĂ­a-Ferrer, A., & PĂ©rez-Porras, F.-J. (2018). Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. International Journal of Applied Earth Observation and Geoinformation, 72, 1-10. doi:10.1016/j.jag.2018.05.015Burdziakowski, P., Specht, C., Dabrowski, P. S., Specht, M., Lewicka, O., & Makar, A. (2020). Using UAV Photogrammetry to Analyse Changes in the Coastal Zone Based on the Sopot Tombolo (Salient) Measurement Project. Sensors, 20(14), 4000. doi:10.3390/s20144000MARDIA, K. V., & DRYDEN, I. L. (1989). The statistical analysis of shape data. Biometrika, 76(2), 271-281. doi:10.1093/biomet/76.2.271Heimann, T., & Meinzer, H.-P. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 13(4), 543-563. doi:10.1016/j.media.2009.05.004Ambellan, F., Tack, A., Ehlke, M., & Zachow, S. (2019). Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Medical Image Analysis, 52, 109-118. doi:10.1016/j.media.2018.11.009Avendi, M. R., Kheradvar, A., & Jafarkhani, H. (2016). A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Medical Image Analysis, 30, 108-119. doi:10.1016/j.media.2016.01.005Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. (2017). Large Scale 3D Morphable Models. International Journal of Computer Vision, 126(2-4), 233-254. doi:10.1007/s11263-017-1009-7Erus, G., Zacharaki, E. I., & Davatzikos, C. (2014). Individualized statistical learning from medical image databases: Application to identification of brain lesions. Medical Image Analysis, 18(3), 542-554. doi:10.1016/j.media.2014.02.00
    • 

    corecore