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0. Introduction

A number of questions arising in topology can be framed in terms of realizing an algebraic or homotopic structure in
a topological setting: for example, realizing an unstable algebra over the Steenrod algebra as the cohomology of a space,
realizing a IT-algebra, or lifting a group action up to homotopy to a strict action. In these examples, the answer appears in
the form of an obstruction theory, in which elements in appropriate cohomology groups serve both as the obstructions to
realization, and as difference obstructions which classify the various possible realizations.

Three general approaches to dealing with such questions have been described in [6,34,35,16,33]. Our goal in this paper is
to prove that these three approaches essentially coincide, in the cases where they all apply. In order to do so, we introduce
the notion of a mapping algebra - a simplicially enriched version of an algebra over a theory, in the sense of Lawvere and
Ehresmann (see Section 8) - and describe a fourth approach to the realization problem using this concept.

An important example of these methods is contained in the work of Goerss, Hopkins, and Miller on realizing ring spectra
as structured spectra (cf. [37]).

To show that the four approaches coincide, we first exhibit natural isomorphisms between the various kinds of
cohomologies, after identifying both the objects to which they apply, and the coefficient systems:

(a) The Baues-Wirsching cohomology Hg,, (X; D) of a small category KX with coefficients in a natural system D (see
Section 2.6),

(b) The (8., ©)-cohomology HZ,(Z; M) of a simplicially enriched category Z, with coefficients in a module M over the track
category 77, Z (see Section 3.3).

(c) The André-Quillen cohomology HXQ(A; M) of a IT-algebra A, with coefficients in a A-module M (see Section 4.1).

The identification of (a) and (b), under suitable circumstances, is given in Theorem 3.10; that of (b) and (c) is given in
Theorem 4.5. After identifying the cohomology groups, we also identify the obstructions, for which we need:
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0.1. The basic setting

Let C be a pointed model category. A collection of spherical objects for C is a set A of cofibrant homotopy cogroup objects
in €, closed under the suspension. The motivating example is the collection of spheres A = {S"}:° in the category of
topological spaces, but there are many others.

Let I1, denote the full subcategory of the homotopy category ho ¢ whose objects are finite coproducts of objects from A.
A I1,-algebra is a contravariant functor A : IT, — Set, which takes coproducts to products. The category of all IT,-algebras
is denoted by I7,-Alg.

Such a 14-algebra A is determined by its value A{A} € Set, oneachA € A, together withamap&* : [],., A{A} — A{A)
forevery & : A — [];,; Aiin 11, C ho €. Because each A € A is a homotopy cogroup object, each A{A} has an underlying
group structure (although the operations £* need not be group homomorphisms).

Thus when A = {§"}2° ,, as above, a I1,-algebra (called simply a /7-algebra) is a graded group (G;){°; with Whitehead
products, composition operations, and a G;-action on each Gy, as for the homotopy groups 7.X of a space X.

For simplicity we assume that for any collection {A;};c; of objects from A and any B € A, the natural map

colim; |:B, 11 Aj} — |:B, 11 A,-:| (0.2)
hoe hoe

jel iel

is an isomorphism, where the colimit on the left is taken over the lattice of all finite subsets ] C I.

0.3. The basic problem

The canonical example of a I71,-algebra is a realizable one, denoted by 74X, for fixed X € C. This is defined by setting
(4 X){A} :=[A, X]hoe foreach A € I1,.

The problem we consider in this paper is that of realizing an abstract I7,-algebra A: that is, finding an object X € € with
m,X = A.Such an X may not exist, and need not be unique. There are three main approaches to the realization problem,
each describing the obstructions in terms of appropriate cohomology classes:

(a) Trying to lift A to a “secondary I1,-algebra”, which has additional structure encoding the second-order homotopy
operations in the model category C in terms of track categories. In this case, the obstruction to such a lifting lies in
Baues-Wirsching cohomology (see Section 6.7).

One could try in principle to continue this process to “higher order track categories”, but the appropriate setting for
this is not yet clear (see [8] and [21]).

(b) Starting with a simplicial /7,-algebra-resolution of A, we obtain a “simplicial object up to homotopy” over C. We try to
rectify it in © to a strict simplicial object. If we succeed, we can show that its “geometric realization” realizes the given
I1,-algebra A.

In this setting A, together with I7,, can be used to construct a certain category X, as well as a simplicially enriched
category, such that the Dwyer-Kan-Smith obstructions to rectifying the “simplicial object up to homotopy” lie in the
(84, ©@)-cohomology of X (see Section 5.5).

(c) Starting again with a simplicial I7,-algebra-resolution of A, and trying to lift it to a strict simplicial object over € through
a Postnikov tower, as in [16], we find that in this case the obstructions lie in the André-Quillen cohomology of A (see
Theorem 7.5).

The identification of the obstructions appearing in (a) and (b) is given in Theorem 6.5. In order to do this for (b) and (c),
we set up yet another, fourth, version of the obstruction theory in terms of A-mapping algebras. The identification is then
given via Theorem 10.11 and Remark 10.12.

Remark 0.4. We observe that one can dualize this setting by taking a set A of group objects in ho € as our dual spherical
objects, and define IT# to be the full subcategory of ho € consisting of finite products of objects from A. A IT#-algebra is
then a covariant product-preserving functor I7* — Set,.. This is one reason why we work in a general categorical setting,
which can readily be dualized. However, the dual of (0.2) is unlikely to hold, so more care is needed in dealing with infinite
products of objects from A.

An important example is provided by letting A = {K(IF,, n)}72 ; consist of the mod p Eilenberg-Mac Lane spaces. In this
case a IT"-algebra is just an unstable algebra over the mod p Steenrod algebra (cf. [45, Section 1.4]). See [7,14] for more
details.

0.5. Organization

Section 1 describes the respective abstract model category settings for the cohomology theories and the general
realization problem. Section 2 provides some background on track categories and the Baues-Wirsching cohomology of small
categories. In Section 3 we define (4., @)-categories, and show how Baues-Wirsching cohomology can be identified with
(84, @)-cohomology (Theorem 3.10). In Section 4 we similarly show how the André-Quillen cohomology of a IT,-algebra
can be identified with relative (8., @)-cohomology (Theorem 4.5).

In the second half of the paper, we describe the various obstruction theories and show how they correspond: the
Dwyer-Kan-Smith (4,, @)-obstructions to rectifying homotopy commutative diagrams are defined in Section 5, and in
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Section 6 the Baues-Wirsching class for classifying linear track extensions is identified with the first (8., @)-obstruction
(Theorem 6.5). The Dwyer-Kan-Stover approach to realizing IT-algebras via André-Quillen cohomology obstructions is
described in Section 7. In Section 8 we introduce the concept of an .A-mapping algebra, and describe the main example, the
Stover mapping algebras, in Section 9. Finally, Section 10 reinterprets the obstruction theory of [16] in terms of mapping
algebras, and shows how they may be used to identify the André-Quillen obstructions to realizing a IT,-algebra as suitable
(84, ©@)-obstructions (Theorem 10.11).

0.6. Notation and conventions

The category of pointed connected topological spaces will be denoted by 7, that of pointed sets by Set., that of groups
by Gp, and that of groupoids by Gpd. For any category C, sC denotes the category of simplicial objects over €. However, sSet
is denoted by 4, sSet, by 4., and sSp by §. The full subcategory of reduced simplicial sets in 4, (with a single 0-simplex) will
be denoted by 4§..q. Objects in sC will generally be written as X,, Y., and so on. The constant simplicial object on an object
X € Cis written as c(X) € sC.

If A is the category of finite ordered sets 0, 1, 2, ... with order-preserving maps, then s¢ = CA. We write 7,A for
the full subcategory of A with objects {0, 1, ..., n}, and the corresponding diagram category ™4 is called the category
of n-truncated simplicial objects in @, also denoted by t,sC. The inclusion ¢, : 7,A < A induces the n-truncation functor
Ty : SC — T1,5C. Its left adjoint (when it exists) induces the n-skeleton functor sk, : s€ — sC, and its right adjoint induces
the n-coskeleton functor csk, : SC — sC.

Given A € $ and an object X in a category € with coproducts, define X®A € sC by (X®A), := LI

degeneracy maps induced from those of A. For Y € sC, set Y ® A := diag(Y®A) € sC.
The category of all small categories will be denoted by €at. For any set @, @-Cat denotes the subcategory of Cat consisting
of the categories having Obj(€) = @, with functors which are the identity on objects.

ach, X, with face and

1. Model categories and cohomology

We first describe the model category framework needed to define the cohomology theories, and study the realization
problems described above:

Assumption 1.1. We assume throughout this paper that our model categories are pointed, cofibrantly generated, simplicial
(see [43, I, Section 1]), and right proper (that is, the pullback of a weak equivalence along a fibration is a weak equivalence).

For simplicity of treatment we will assume that all objects in € are fibrant (although many of our constructions make
use of the category 4 of simplicial sets, where this does not hold). Note that we may take ¢ = § if we want such a model
category for the homotopy theory of pointed connected topological spaces.

First, in order to provide an appropriate setting for resolutions, we shall need to deal with simplicial objects over our
model category C, for which we have the following:

Definition 1.2. Let C be a model category as above, with a set A of spherical objects (Section 0.1). In order to define a model
category structure on sC, we choose the set A := {A ® A[n]/(A ® dA[n])}nen.aca (See Section 0.6) as the collection of
spherical objects for s€. We think of A ® A[n]/(A ® dA[n]) as the simplicial suspension of A; we reserve the notation X*
for (internal) suspension in C.

Extending the simplicial structure from € to sC in the usual way (cf. [43, II, Section 4]), we set [X,, Yo)hose =
7o mapse (X, Ys) for X,, Yo € sC. We write nf (X.) for the A-graded group [A®S™, Xelhose (A € A). These are called the
natural homotopy groups of X,.

We now define the resolution model category structure on sC determined by A, by letting a simplicial map f : X, — Y,
be:

(i) a weak equivalence if *(f) is a weak equivalence of A-graded simplicial groups.
(ii) a cofibration if it is (a retract of) a map with the following property: for each n > 0, there is a cofibrant object W,, in €
which is weakly equivalent to a coproduct of objects from A, and a map ¢, : W;; — Y, in € inducing a trivial cofibration
(Xn Up,x, LpYe) I W, — Y. Here L,Y, is the n-th latching object for Y, (cf. [17, Section 2.1]).
(iii) a fibration if it is a Reedy fibration (cf. [39, 15.3]) and 7 4f (Section 0.3) is a fibration of A-graded simplicial groups.

See [24,34].

Applying 7, in each simplicial dimension to any X, € sC yields a simplicial I7,-algebra 7 ,X,. By taking the usual
homotopy groups of the underlying A-graded simplicial group in each degree, we obtain the N-graded I1,-algebra ., X,.
This is related to natural homotopy groups by a spiral long exact sequence (cf. [35, 8.1]):

n hn In
C = ent (X)) D At B mmXe = enl,X) (1.3)
Sn— x>~ -
N (X)) > o = mfX) > momaXe

It follows that a map f : X, — Y, in sC is a weak equivalence if and only if the map of simplicial I7,-algebras
fy Xy — m,Y, is a weak equivalence in the resolution model category sI7T,-Alg.
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1.4. Examples of resolution model categories

(a) Let @ = gp with the trivial model category structure, and A := {Z}. The resulting resolution model category structure
on § := sC is the usual one.

(b) More generally, let ¢ = @-Alg be a category of universal algebras (with an underlying group structure), represented by
a theory @ (cf. [1, Section 1]), such as I1,-Alg. In this case we let A be the collection of free monogenic algebras.

(c) We can iterate the process by taking § for C, and letting A consist of the §-spheres. We thus obtain a resolution model
category structure on s4 (or on s7 ), which is the original example of [34].

(d) If € is a resolution model category and I is some small category, the category €' of I-diagrams in € also has a resolution
model category structure, in which the spherical objects are certain free I-diagrams (cf. [ 17, Section 1]).

In order to define cohomology groups in our model category, it is convenient to consider the following setting:
Definition 1.5. A model category C is called semi-spherical (see [18, Section 2.23]) if:

(a) Itis equipped with a coefficient category Coef(®), together with a functor 77; : € — Coef(C).

(b) For each n > 2,, it is equipped with a functor 7, : @ — 7;(—)-Mod taking Z € € into the category of modules over 7,Z
(that is, abelian group objects in Coef(C)/71Z).

(c) Each Z € € has a functorial Postnikov tower of fibrations under Z:

p(n) p(nfl)
Z--+—>PZ—PZ— - = P27,
with Z — lim, P,Z a weak equivalence, and the usual properties for the structure maps r™ : Z — P,Z.

(d) For every A € Coef(C), there is a functorial classifying object BA € €, unique up to homotopy, with BA >~ P;BA and
mT1BA = A.

(e) Given A € Coef(€) and a A-module M, for each n > 1 there is a functorial Eilenberg-Mac Lane object E = E4(G, n) in
€, unique up to homotopy, equipped with a section s for rV) : E — P{E ~ BA, such that 7,E = M as A-modules and
mE =0fork #0, 1, n.

(f) Foreveryn > 1, there is a functor that assigns to each Z € € a homotopy pullback square:

p(n+1)
PoiZ — > P,z

l lkn (16)

B(71Z) — EMZ (mp1Z,n+2) .
The map k, is called the n-th k-invariant for Z.

Examples 1.7. The motivating example is the category 7, of pointed topological spaces.

In addition, all the resolution model categories of Section 1.4 are semi-spherical (see [17, Section 3]). We note that for the
“algebraic” categories C = s@-Alg of simplicial universal algebras (Section 1.4(b)), 771X, is just moX,,and Coef(C) is ®@-Alg
itself. Thus a module over a ®-algebra A is just an abelian group object in @-Alg/ A (cf. [12]).

Definition 1.8. Let C be a semi-spherical simplicial model category, and assume given A € Coef(€), a A-module M, and an
object Z € € equipped with a twisting map p : 1:Z — A. Following [43, 11, Section 5], we define the n-th cohomology group
of Z with coefficients in M to be

HYZ/A; M) = [Z,E*(M,m)]e/pa = Tomapep(Z, E* (M, 1)),

where mape,(Z, Y) is the sub-simplicial set of the mapping space map¢(Z, Y) in € consisting of maps over a fixed base A.
Typically, we have A = 7,Z, with p a weak equivalence; if in addition Z ~ BA, we denote H"(Z/A; M) simply by
H"(A; M).

Remark 1.9. There is also a relative version, for a cofibrationi : X < Y in C/BA: If Z is the cofiber of i in €/BA — that is,
the homotopy pushout of

X

Y
pl \Lq (1.10)
BA ———>1Z7,
then
HY (Y, X)/A; M) := [(Z,BA), (E*(M,n), BA)]e/pa
(cf. [32, Section 2.1]). Again if A = ;Y we write simply H"(Y, X; M).
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1.11. The module 2 A

We close this section with the following important example of a module in the category of I7,-algebras:

Given a I1,-algebra A, we define the I71,-algebra §2, A as an A-graded group by (£2, A){A} := A{XA Vv A}. We identify
the I7,-algebra structure on £2, A as follows:

Givenf : B — Ain Il,, define Vf : B —> AV Atobe —i, o f + (i1 + i3) o f, using the cogroup structure on B (where
i1, iy : A— AV Aare the two inclusions).Ifj : AVA < Ais % Vv Id, thenjo Vf ~ %, with a nullhomotopy H : CB — A. Now
let I.X denote the reduced cylinder in € and let G be the composite of

LB 2% LAVvA) =LAVLA 2% sAvA,
whereq : [,LA — X Aisthe quotient map and pg : I,A — Aisthe projection. If we identify X'B with the pushout CBUgl,,BUgCB
(under the two inclusions of B into I,B), we define E(Vf) : ¥B — XAV A to be the map given on the pushout by (H, G, H),
and call it the partial suspension of Vf.Because [ ¥'B, XA Vv A] is an abelian group, this is independent of H. See [4, Section 3]
for more details, including explicit rules for applying the partial suspension to maps among wedges of spheres.
Since A is contravariant, the map (EVf,i;of) : ¥BV B — XAV Ainduces the required map f* : 2, A{A} — 2, A{B}.
We thus have a split exact sequerlggf\ﬂfl—algebras:

*4>_QA4>.Q+AT> A —*,
where 2 A := Ker (p). This gives §2, A the structure of a module over A — or equivalently, a natural system on 71, (see

Section 2.4 below). Note that (2 A){A} = A{XA}, forall A € I1,, but the operation f* : 2 A{A} — 2 A{B} described as
above for f : B— Aisnot in general (Xf)* : A{XA} —> A{XB}.

Remark 1.12. A canonical identification of (A ® S')/(* ® S') with XA Vv A in any pointed model category is given in [10],
such that

(F@sh)/(+x®s!)

B®SH/(x®S" A®SH/(x®S

w w

YBVvB EVFho) YAVA

commutes up to homotopy for any f : B — A. Thus our definition of £2, A agrees with that of [35, Section 9.4].

2. Track categories and natural systems

The first approach to realization problems in Section 0.3(a), developed in [11] (cf. [7, Sections 2-3]), concentrates on
secondary homotopy structure, in the following sense:

Definition 2.1. A track category is a category & enriched in groupoids. It thus consists of two categories &, and &, with the
same objects, and two functors s, t : & — & which are the identity on objects. Here & is the ordinary category underlying
&, while &;(X, Y) is a groupoid, with maps f : X — Y in &; as objects, and a set &;(f, g) of morphisms (called 2-cells) from
SHy=f:X —> Ytot(H) =g :X — Y,writtenas H : f = g. The groupoid operation is denoted by HOH’, when defined.

There is natural equivalence relation on maps in & induced by the 2-cells, and the quotient category ho & is called the
homotopy category of &. See [5, VI, Section 3] for further details.

Example 2.2. The motivating example of a track category is obtained from a model category C by letting & = C (the
full subcategory of fibrant and cofibrant objects), with &;(X, Y) the groupoid of tracks (homotopy classes of homotopies)
between maps from X to Y in €. This is called the homotopy track category of C.

Remark 2.3. There is a model category structure on the category 7tk of (small) track categories, with (strict) track functors,
in which the weak equivalences are bi-essential surjections F : & — &' which induced equivalences of categories
F:&(X,Y) > & (FX, FY) (see [41]).

Definition 2.4. For any category X, the category of factorizations of X is the category Fac X having as objects Arr X (the
morphism set of X' ) and as morphisms from f to g commuting squares of the form

—_—

1 2
03

with the obvious composition. A natural system on J with values in a category .M is a functor D : Fac.X — M. The
category of such natural systems (with natural transformations as morphisms) will be denoted by NSy (M) = MK,
When M = AbSp, D is called simply a natural system on X (see [11, Section 1]).
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Example 2.5. For A C C as in Section 0.1, we have a canonical natural system $211, on I1,, defined forf : B — Ain I1,
by 211,(f) := Homp,(¥B,A) = [XB, Alpoe. Forg : A — A’ the induced map g, : 2IT,(f) — $2I1,(gf) is given by
post-composition, while for h : B — B, h* : 1I1,(f) — $211,(fh) is given by (EVh)*(«, ) (cf. Section 1.11).

2.6. Baues-Wirsching cohomology of a small category
If NX is the nerve of X, define 0pax : Ny K — N1 K by Omax(0) := didy---dp_10 € N; K (the composite of the
corresponding composable sequence in X ), and set

Nylf] := {0 € Ny K : Omax(0) = f} forany arrow f in X.

This defines a collection of sets indexed by Arr K. Note that there is a forgetful functor from natural systems on X to Arr X -
graded sets, whose left adjoint is the free natural system functor (cf. [21, Section 5.14]. Thus for each n > 0 we have a free
natural system in sets on K denoted by Ny X

The face and degeneracy maps of N.X induce maps of natural systems as follows:

(@Q)If¢p =di : NyK — Ny K (0 <i<n)org =s;: NyK — Npp1 K (0 <j < n),we deﬁneq@ : NpK — Nyi1X to be
F .

(b) Given o € N, X, define the map of natural systems do : NyK — Np_1 K by setting ao(a) = (dy - - - dyo)*(doo). This
extends to all of N, X by the adjointness of U and ¥ above.

(c) We similarly define the n-th face map d,, : N, X — Np,_1 K by d,(c) := (dp - - - dy—20)(dy0).

This makes N X := (Np.X e, into a simplicial object in the category NSy (Set).

Finally, a natural system (m Abgp) on KX can be thought of as an abelian group object £ in NS 4 (Set), so we can define
a cosimplicial abelian group C*(X; D) by setting C"(K; D) := HOmNSK(get) (N,,JC D). Its n-th cohomotopy group is defined
to be the n-th Baues-Wirsching cohomology group of K with coefficients in D, written as Hg,,, (KX; D) := 7"(C*(X; D)).

The cochain complex F*(X, D) used in [11] to define H,, (X; D)is that associated Wlth C*(K; D) so H, (K; D) =
H"F*(X, D).
Definition 2.7. A linear track extension of a category X by a natural system D is a track category & with ho & = X, for which
Autg (f) is naturally isomorphic to D([f]) for all maps f in &,. Such an extension is denoted by D — & — X.

Proposition 2.8 ([5, VI, Theorem 3.15]). The set of all linear track extensions of a category X by a given natural system D, up to
(D-equivariant) weak equivalence, is in one-to-one correspondence with H w (K D).

This can be interpreted as describing the homotopy equivalence classes in Jrk/ ho & (as in Section 2.3).

Remark 2.9. If A is a set of spherical objects in a model category C, let €, be a sub-track category of the homotopy track
category of € with ho @, = I1,.This is a linear track extension 211, — G, — I1,, and one can describe an explicit cocycle
representing the corresponding cohomology class xz, in Hpw(I; 211,) as follows:

Choose an arbitrary fixed representative s¢ : 0 — 1 in € for each 1-simplex ¢ : 0 — 1 in N;(I1,), and a fixed

track Hig y) @ s¢ o sy =~ s(¢y) for each 2-simplex 0 AN 1 4 2 in My (I14). Now we associate with each 3-simplex
0 g 1 ﬂ 2 ﬁ) 3in N3([1,) the element

H(gs. 62000 0@3)H(g, 00 D@D Higy 5 OHig 0 1) (2.10)
in Aut(s(¢z o ¢2 0 ¢1)) = (£2114)(¢h3 0 P2 © P1).

3. (84, O)-categories and (4,, @)-cohomology

For the second approach to the realization problem of Section 0.3, due to Dwyer and Kan, we use the framework of
simplicially enriched categories:

Definition 3.1. For a fixed set O, a category Z enriched in simplicial sets with object set ©® will be called an (8, @)-category,
and the category of all such will be denoted by (8, @)-Cat. Equivalently, such a category Z can be thought of as a simplicial
object in @¥-cat (Section 0.6): this means that € has a fixed object set @ in each dimension, and all face and degeneracy
functors the identity on objects.

More generally, if (V, ®) is any monoidal category, a ('V, ©)-category is a small category € € ¢-Cat enriched over V. The
category of all such categories will be denoted by (V, ©)-Cat. Examples for (V, ®) include 7, Sp, Spd, and 4§, with ® = x
(Cartesian product), or the category Set" of cubical sets with its monoidal enrichment ® (see [18, Section 1.5]).

The main example that we shall be working with is V = 4,, with ® = A (smash product). Again we can identify an
(84, @)-category with a simplicial pointed ©@-category.

3.2. (84, O@)-categories

In [29, Section 1], Dwyer and Kan define a simplicial model category structure on (4§, ©)-Cat, also valid for (4., @)-Cat
(cf. [40, Prop. 1.1.8]), in whichamap f : X — ¥ is a fibration (or a weak equivalence) if for each a, b € O, the induced map
fap  X(a,b) — Y(a, b) is such.
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The cofibrations in (4§, @)-Cat or (8, ©)-Cat are not easy to describe. However, if X € @-Cat is any category with object
set @, then c(K) € sO-Cat = (4, @)-Cat has a cofibrant replacement defined as follows:

There is a forgetful functor U : €at — Di§ to the category of directed graphs, whose left adjoint F : Di§ — Cat is the
free category functor (cf. [29, Section 2.4] and [26, Section 2]). Both U and F are the identity on objects. A canonical cofibrant
replacement for the constant simplicial category c(K) € s@-Cat is provided by the simplicial category ¥, K, obtained by
iterating the comonad FU : ©-Cat — O-Cat (so F, K := (FU)""1X). The augmentation %,,K — X induces a weak
equivalence £, X =~ c(K) insO-Cat ~ (4§, @)-Cat. If X is pointed, F, X is an (4., @)-category.

Both (4, ®)-Cat and (8., @)-Cat are semi-spherical (Section 1.5), with coefficient category (Spd, ©@)-Cat (=track
categories with object set O).

The fundamental track category of a (fibrant) (4§, @)- or (8, @)-category Z is obtained by applying the fundamental
groupoid functor 77; : 4 — $pd to each mapping space Z(a, b), noting that 77; commutes with cartesian products, and thus
extends to (4, ©)-Cat (and to (4,, @)-Cat, too, since in the pointed case the composition factors through A). For eachn > 2
we obtain a 77,Z-module by applying 7, (—) to each mapping space of Z (again, 7r,, preserves products).

The usual Postnikov tower functor, classifying space, and Eilenberg-Mac Lane functors for 4 or 4, similarly preserve
products, and thus extend to (&, ®)-Cat and (8, ©@)-Cat. For the functorial k-invariants, use the construction of
[16, Section 6].

Notation 3.3. We write H,(Z/A; M) (or just Hi,(Z; M)) for the cohomology groups of an (3., 9)-category Z, as defined
in Section 1.8. Similarly, we write H,((Z, Y¥)/A; M) (or just H{,(Z, %; M)) for the relative cohomology of Section 1.9. We
call this the (8., @)-cohomology (compare [32]).

Definition 3.4. A cubical version of the free simplicial category ¥, X on a category X € ©-Cat is provided by the bar
construction of Boardman and Vogt: this is a category W X enriched in the monoidal category (Set”, ®) of cubical sets
(Section 0.6). For a, b € @ = Obj X, the cubical mapping complex W X (a,+1, o) has an n-cube I("f.) for each sequence

i n
fo = (anﬂ 2 a, LY Un_1...01 i ao> (3.5)

of (n + 1) composable maps in X .

The i-th 0-face d? of I"f, isidentified with I"~'f; o - - - o (f; - fiz1) © - - - fay1, that is, we carry out (in X ) the i-th composition
in the sequence f,.

The cubical composition

WX (ag, a;) ® WK (a, any1) — WK(ag, any1) = WK(a, b)

identifies the “product” (n—1)-cube I'fy o - - - 0 i®I"~1fi, 1 o - - - 0 fry1 with the i-th 1-face d! of I"f,. See [22, III, Section 1]
or [18, Section 3.1] for further details.

Lemma 3.6. For any small category X, the simplicial category ¥,.K is a natural triangulation of W K.

Proof. The n-cube I'f, is subdivided into n! n-simplices by fully parenthesizing (f1, .. ., f,+1) in all possible ways, with the
i-th face map defined by omitting the i-th level of parentheses (cf. [20, Section 2.21]). O

Example 3.7. For n = 2, given three composable maps 0 LY 152 i> 3, we have

(@) (h)e (e o(fg) (h)

(@O EN ™Y

(@) h)

(M) ) ((fg)(h) (3.8)

(@A) (@ m))]

(
(H(gh)e D@ *(fgh)

Remark 3.9. If D is a natural system on a category X, with @ = Obj(.X), it can be thought of as an abelian group object
on @-Cat/K. Moreover, X itself is the (discrete) fundamental groupoid of the homotopically trivial simplicial category
FoK =~ K in (8, O)-Cat. (or (84, O)-Cat, if X is pointed). Thus D is just a module M over X.

Theorem 3.10. If D is a natural system on a small pointed category X, the n-th Baues-Wirsching cohomology group Hy,,,(X; D)
is naturally isomorphic to the (n — 1)-st (84, @)-cohomology group Hg‘o’l (X; D), foreachn > 1.
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In [31, Theorem 5.3], Dwyer and Kan prove a similar result, using a different definition of the cohomology of a small
category, which they call the Hochschild-Mitchell cohomology.

Proof. The (4., ©)-cohomology groups H{,(X/4; D) = [F.X, E¢(M, 1)](s,,0)-cat/pg Of Section 1.8 may be computed as
the cohomotopy groups of the cosimplicial abelian group E® := Homy, ¢)-car;x (Fo K, D) (cf. [19, Proposition 3.11]).

In order to compare E® with C* (X, D) of Section 2.6, note that for n > 1, there is an obvious one-to-one correspondence
between the n-cubes of W X (Section 3.4) and the (n+ 1)-simplices of the nerve & (K). Moreover, for n > 2 this extends to
the face maps, if we omit the d}—faces with 1 < i < n — that is, those which are cubical products of two lower dimensional

cubes. There are 2n — (n — 2) = n + 2 remaining (n — 1)-facets, of which two are the Cartesian products 18 ) X I'1

~~~~~ fn+1)
and I(f0 ..... fy X I(f) (corresponding to doU(f. and dn10(;,), respectively), and the others are obtained from the adjacent
compositions as for dios, (i = 1, n). Note that the facets that we have omitted are not relevant for the coboundary of

a cubical (n — 1)-chain.

Finally, the cubical cochain complex C? := Homseo, 9)-cqat/x (W K, D) has the same cohomology as E® by the Lemma 3.6
and the Acyclic Model Theorem (cf.[36]), and clearly has the same cohomology as C* (X, D) by the correspondence described
above. O

Remark 3.11. Using the triangulation of Lemma 3.6, we can realize correspondence between the n-cubes of W X and the
(n 4+ 1)-simplices of the nerve & (X) simplicially in the barycentric subdivision B of the nerve, as follows:
Consider the triangulated n-cube Igf.) indexed by the composable sequence (3.5) as a subcomplex of #, K. and let B,

denote the barycentric subdivision of the corresponding (n + 1)-simplex cr”“ of N/ (XK).

Note that for i > 1, the i-simplices of 0('}31 are labeled by sub—sequences of f,, with a single level of parenthesization

(indicating where compositions, if any, have been carried out) — for example, (f>f3)(fs)(fsfs). These also label the
corresponding vertices of B, (ignoring those which come from the vertices of a(’}f)] ), and each k-simplex of B, corresponds

to an ascending “flag” of k + 1 inclusions of faces of a”“

Now let C;,) denote the set of vertices of By, Whlcfl are labeled by (one-level) parenthesizations of the full sequence

(f1, - .., far1) (corresponding to the simplices of of ! which have both ay and a,;; as vertices), and let Eg,) be the
subcomplex of B,y spanned by C,). A k-simplex of E;,) thus corresponds to a sequence of k + 1 parenthesizations of
(f1, - ., far1), each obtained from the next by coalescing a neighbouring pair of parentheses (since this describes the only
face maps of & (X) which remain inside C,)). Therefore, such a (k + 1)-flag can be labeled by a single (k + 1)-level
parenthesization of (f(), . .., fin+1)), just like the (k — 1)-simplices of I{‘f.). Thus Ig’m is isomorphic as a simplicial complex
to E(f.).

4. André-Quillen cohomology of I7,-algebras

Since the category sI1,-Alg of simplicial I7,-algebras is a semi-spherical model category (Section 1.5), we can use
Section 1.8 to define the cohomology groups of a IT1,-algebra A with coefficients in a A-module M (see Section 1.7).

Notation 4.1. In such algebraic settings, this is traditionally called the André-Quillen cohomology, since it can be computed
via a cotangent complex, as in [3,44]. We therefore denote it by Hy,(A; M) := H*(BA; M).

We would like to compare this with the (4, ©)-cohomology of a suitable (4,, @)-category (cf. Section 3.2), for which
we need the following framework:

Definition 4.2. Given a set A of spherical objects in a model category C, we let ¢, denote the smallest full subcategory of
C containing A and closed under weak equivalences and arbitrary coproducts.

Using (0.2), we see that the functor w, : ho® — [II4-Alg induces an equivalence of categories between the
corresponding subcategory ho G, of the homotopy category ho € and the category ¥, of free IT,-algebras in I1,-Alg
(namely, those which are isomorphic to 74B for B € C,4). Moreover, we can extend any I1,-algebra A : IT, — Set, to
a functor ho €, — Set, taking (arbitrary) coproducts to products.

A small F,-variant is a full small subcategory D of ¥, (or ho C,) containing an isomorphic copy of I71,: in other words,
Obj H must contain all finite coproducts of objects from A, up to isomorphism.

Given a IT,-algebra A and a small ¥,-variant D with @ := Obj(D), we let D denote the category with object set
OF := @ U {x}, where

Homyg (A, B) ifa,be ©
_ JHomp, 4 (A, A) = A{A} ifA€ @andB=x
Homg+ (A, B) = (1dy. %) FA—B =« (4.3)
{x} otherwise.

That is, all maps out of « are trivial. Thus we have a full and faithful embedding of £ in £, and  is a weakly terminal object
in DT. We call (D, D) a A-pair (in ho ).

Equivalently, if we embed £ in @*-Cat (making all maps into * trivial), we can think of a A-pair (in ho €) as an
Ot -category under D (and require only the last three conditions of (4.3)).



1428 H.-J. Baues, D. Blanc / Journal of Pure and Applied Algebra 215 (2011) 1420-1439

Example 4.4. Let D be the subcategory of ho € whose objects are of the form [ [;,.; A withA; € A (i € S) and cardinality
Card(S) < max{Ry, Card(U A)}. This is a small F,-variant. We can think of D% as a subcategory of IT,-Alg, by identifying
* with A.

It turns out that the relative (8, ©)-cohomology of such a pair (cf. Section 1.9) has an algebraic interpretation:

Theorem 4.5. Let A be a IT,-algebra, M a A-module, and (D", D) a A-pair. Then for any n > 1, the n-th André—Quillen
cohomology group HKQ(A; M) is naturally isomorphic to the n-th relative (8., @)-cohomology group Hi, (D™, D; M).

Proof. LetV, — A bethe canonical free simplicial resolution (in the resolution model category on sI7,-Alg of Section 1.4(b))
produced by the “free on underlying” comonad ¥ = FU, and let &, be the analogous free (4$,, @)-resolution for D =
D U {x} as in Section 4.4. Thus 7o &, is DT € (8,, @T)-Cat. The relative version é. is obtained from &, by “excision of D” —
that is, we define the simplicial mapping spaces for &, by

&.(A, B) ifB=x

S4B = {c(Hom;A(A, B)) ifBe ;.

The twisting map p : 8, — c(X) induces an (4, @)-functor p : § — é,.

Note that 7oV, = UA and UV, = - V][], where V[¢] is the component of ¢ € A{A} for some A € I,
(Section 0.1). Then each V[¢] is isomorphic to the component of ¢ : A — A in the simplicial mapping space &,(A, A) =
é, (A, A) (so in simplicial dimension n, V[¢], consists of depth n parenthesizations of composable sequences of morphisms

in X, with composite ¢). Because V, is a simplicial I1,-algebra, for any # : A” — Ain F, we have a simplicial map
0* : Vip] — V[p o 0] (4.6)
defining an action of ¥, on the simplicial sets V[—].

Since the category sI1,-Alg is semi-spherical, for each A-module M and n > 1 we have an Eilenberg-Mac Lane object
E4(M, n) in sIT,-Alg/BA, as well as an object E4(D, n) in (4,, ©)-Cat /X . Moreover, we can assume that both are strict
abelian group objects in their respective categories (see [17, Section 3.14]).

Any map of simplicial I7,-algebras f : V, — E4(M, n) (over BA) defines an (4, (9)—mapf : &, — EA(D, n), which is
defined on the simplicial mapping spaces &,(A, A) via the above identification with the components V[¢] of V,. These fit
together to define an (8., ©)-map, because of the action (4.6).

Precomposing this with p : &, — &, yields an element in the relative (4., ©)-cohomology group Hi, (D", D; M). The
converse direction is treated similarly. O

5. Diagrams and (4, @)-categories

We now explain the approach of Dwyer et al. (see [29,30,32,33]) to realizing a homotopy commutative diagram X : X —
ho 7, based on the concepts introduced in Section 3.

Definition 5.1. A diagram up to homotopy in a simplicial model category € is a functor X : X — ho € from some small

indexing category K. By definition, one can choose a functor Xy : skg F(KX) — € lifting X (sometimes called a 0-realization
of X). An extension of any such Xj to a simplicial functor X, : F(K) — C makes X co-homotopy commutative.

A classical result of Boardman and Vogt (compare [33, Corollary 2.5]) says:

Theorem 5.2 ([22, Cor. 4.21 & Thm. 4.49]). A diagram X : X — ho T can be rectified (i.e., lifted to X: XK > 7 ) if and only if
X can be made co-homotopy commutative.

Notation 5.3. When we want to emphasize that we are thinking of a simplicial model category € just as a simplicially
enriched category, we denote it by C.

Remark 5.4. Theorem 5.2 implies that the rectification of a homotopy commutative diagram X : KX — ho € can be
described purely in terms of the simplicially enriched category °C — in fact, we can restrict to an (4., ©)-category *Cy
the sub-simplicially enriched category of °C with function complex map se, (11, v) := map se(Xu, Xv) foreachu, v € 0 :=
Obj K.

Note that a choice of a 0-realization Xy : I" — 75 is equivalent to choosing basepoints in each *Cx(u, v), though of
course this cannot be done coherently unless X is rectifiable.

5.5. The obstruction theory

Given X : KX — ho C as above, the (possibly empty) moduli space hc X of all rectifications of X is homotopy equivalent
to the space hco X := mapy_ e (F(K), *Cx) of all functors making X co-homotopy commutative, which in turn is the
(homotopy) inverse limit of the tower

hceoX — -+ —> hcy X — hey X+ — ha X,

where hc, A := mapg_gq (F(K), Ph—1 *Cx). Therefore, the realization problem can be solved if one can successively lift
X1 € hcq X through the tower.

The components of hc, X are not in general determined by those of the spaces hc, X (cf. [33, 3.4]). Because each hc, X
is a mapping space, we can use successive liftings X;, € hc, X to pull back the (n — 1)-st k-invariant for *Cx to a map
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hn : FoK — KC(m, SCx, n + 1), and Dwyer, Kan, and Smith show:
Proposition 5.6 ([33, Proposition 3.6]). The map )A(n lifts to )A(,H] € hepy1 X ifand only if [hy] € HgaLl(JC; 7, *Cx) vanishes.

5.7. Arelative version
There is also a relative version of this obstruction theory, in which, given X : X — ho € as above, we assume that we

have a subcategory £ of X equipped with a lift Y:L—>0C of X| ;. This defines a map from the pushout

1

Fol FoK
p
£L Fo(K, L)

(compare (1.10)) into Py *Cx, which lifts (non-canonically) to P; *Cx because X is homotopy commutative.

Again, we can use each of the successive liftings )A(n € hc, X to pull back the (n — 1)-st k-invariant for *Cyx to a map
hy : Fo(K, L£) — K (, Cx, n + 1), representing an (4., ©)-cohomology class [h, € HSJ]((JC, L)/ K; 7, *Cx), and the
relative version of Proposition 5.6 clearly holds.

6. The first obstruction

Given a natural system D on a category X, one can always construct a trivial linear track category with D as its (abelian)
fundamental groupoid. Moreover, by Proposition 2.8, the linear track extensions of X by D are classified up to weak
equivalence by H§W(J<; D). When X = I1, for some set A of spherical objects in a model category ¢, the cohomology
class determining the extension is represented by the explicit cocycle of Section 2.9. We now show how this is reflected in
(84, ©)-Cat. For this purpose, we need an (4, ©)-version of Definition 4.2:

Definition 6.1. Let C be a simplicial model category with spherical objects A. A small*C,-variant is a full (necessarily small)
fibrant sub-simplicial category *C’, of *C, (Section 5.3), such that 7o *C/, is a small F,-variant (Section 4.2). This just means
that © := Obj °C/, contains all finite coproducts of objects of A, up to weak equivalence.

We assume that all objects in €, are cofibrant, and for simplicity we also assume that @ contains a canonical copy of
Obj I1,.

Example 6.2. A minimal small *C,-variant is any skeletal subcategory X of *C, with 7oX = I1, (Section 0.1). In particular,
we denote by 5@;{““ the canonical minimal small *@,-variant, whose objects consist of a (functorial) fibrant and cofibrant
replacement for each non-isomorphic finite coproduct of objects from A.

More generally, if £ is any small #,-variant, choose any embeddingi : £ < ho € for which i(a) is fibrant and cofibrant
for each a € © := Obj D. We then obtain a fibrant small *C,-variant €/, by setting map sel, (a, b) := mape, (i(a), i(b)).

6.3. The 0-th k-invariant

In general, it makes no sense to speak of the 0-th k-invariant of an (8., @)-category X, since 71 X is not an abelian group
object over X := moX — even though we do have a pullback square of the form (1.6) for n = 0, too. However, kg is a
well-defined cohomology class in the following specialized situation:

Assumption 6.4. Let A be a collection of spherical objects in a simplicial model category *@, let *€/, be a small *C,-variant
— so that O := mg *C), is a small F,-variant, the track category € of *€/, is linear (Section 2.2), and £2D is a natural system
on D := 1y °C), (cf. Section 1.11 and Section 2.5). We let © := Obj °C/,.

With these assumptions we find:

Theorem 6.5. The 0-th k-invariant for *C/, corresponds to the cohomology class xe classifying the linear track extension
D — & — D (cf Section 2.9) under the natural isomorphism of Theorem 3.10.

Proof. Set X := °C/, and consider the following square of the form (1.6) in (4., 9):
P,X i y 3

POXfZ,

FoD =BD

in which the homotopy pushout Z satisfies P,Z =~ E4(£2D,2) >~ Egp(m1X,2) by [16, Proposition 6.4], and thus if
r® : Z — P,Zis the structure map of Section 1.5(c), the O-th k-invariant for X is ky := r'® oq ~ r® oj by construction. We
use Kan’s original model for the Postnikov system, so (P¢X), consists of ~-equivalence classes of n-simplices in X, where
o~ T & skgo = skgt (cf. [38, VI, Section 2]). We assume that X is fibrant (so each mapping space X (u, v) is a Kan
complex).
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Factor p = pV : ;X — PyX as a cofibrationi : P;X — ¥ followed by a weak equivalence, so the pushout above
is a homotopy pushout, as required. Thus ¥; = X; fori < 1, while Y, = (X3/ ~) L Y, where Y has a “fill-in” 2-simplex
T = T(5y,0,,0,) for every triple of 1-simplices (og, 01, 02) in X;, with matching faces, having d;T = o;. The pushout Z thus
consists of the reduction via ~¢ of the copy of X in Y, with Y unaffected. The 2-simplices K(s.0,0) for non-nullhomotopic o
represent 771X in P, Z >~ E4 (71X, 2). We shall not need the description of % or Z in higher dimensions.

Let #,D be the cofibrant replacement for Py X constructed as in Section 3.2. The weak equivalence £ : £,D — ¥ is then
defined as follows:

Every O-simplex (¢) € %, corresponds to a homotopy class ¢ € [Xu, Xv]no e, and £(¢) is a choice of a representative
s(¢) in (PoX)o = X (u, v)o. For a (non-composite) 1-simplex o = ((¢) . .. (¢1)) in (FU)?D, £ (o) is a choice of a homotopy
Hg,,...¢;) between s(¢y) - ... -+ (¢1) and s(¢y - ... - ¢1), which exists since £ = ho €. Finally, the faces of any 2-simplex
T € (FU)?D form a triple of matching 1-simplices, so their image under £ has a canonical fill-in T € Y, and we set E(r) =T.

Now either of the two maps from Py X to P, Z represents ko; using the cofibrant model %, D for the source, it is enough to
identify the map on 2-simplices — or, using the identification of simplicial and cubical cohomology mentioned in the proof
of Theorem 3.10, on the (triangulated) square I(2¢30¢20¢1) as in (3.8). By the descriptions of £ and ¥ above, this maps to

Hgs,65)s61)

s(¢3) - s(¢2) - s(¢1) ° ® 5(¢3¢2) - (1)
§(((93)(¢2))((¢1)))
$(93) - Higy.01) Hgs.65.01) Hegs45.01)
£(((¢3))(42) (1))

s(¢3) - s(291) ® s(P3¢201)

H(¢3.¢2¢1)
which is just the cocycle of (2.10), under the isomorphism of Theorem 3.10. O

Corollary 6.6. Under the assumptions of Section 6.4, the equivalence classes of linear track extensions 29D — & — D are in
one-to-one correspondence with one-stage Postnikov systems of (8, O)-categories Y (that is, those satisfying Y ~ P1Y) such
that moY = D, and mY = 2D as (K-Mod, O)-categories.

6.7. Arelative version

Now assume that *C, € (4., ©)-Cat as in Section 6.4 extends to an (8., @T)-subcategory X of *C, obtained by
adding a single new object Y € €. Thus OF := O U {Y}, X|o= °C/, and we omit all non-trivial maps out of Y, so
mapy (Y, Y) = c({Idy, *}) and map, (Y, B) = c({*}) for all B € O (see Section 8.1 below).

In this case we can extend the track category &€ of *C/ to a track category &* for X, which is still linear (since all non-
trivial maps are out of homotopy cogroup objects). If DT := 7y X, then (D, D) is a A-pair, for A := 7Y (Section 4.2),
and 297 is a natural system on D . Therefore, Theorem 6.5 applies in this situation, too: that is, the 0-th k-invariant for
X corresponds to the cohomology class classifying the linear track extension 25+ — ¢+ — D™,

Note that the inclusion of categories *C/, < X, and the corresponding inclusion of object sets @ < ©, induces natural
transformations in the Baues-Wirsching cohomology and (4., ©)-cohomology fitting into long exact sequences with the
relative versions, with all vertical maps being isomorphisms by Theorem 3.10:

HR (DT D7) — > HIW (D5 20) — > 1D+, D; 20%) ...

i: | l: l: (68)

n—1

HST(X: 2DF) — > HIS (€ 2D) ———> HIL (X, € 2DT) ...
Lemma 6.9. The class §3(x¢) in Hglo(:Dﬂ D; D7) is the obstruction to realizing A by a track category & inside that of C.

Proof. The class §>(x¢) vanishes if and only if x¢ is in the image of i* in the top row of (6.8) — that is, if and only if & extends
to a linear track category &% realizing A. 0O
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From the ladder of isomorphisms (6.8) we deduce:

Corollary 6.10. The class 82()(35) maps under the isomorphism of Theorem 3.10 to the relative k-invariant §2(ky) in
HSO(X , SC; D), which is the obstruction to realizing A as a one-stage Postnikov system in the (8., O)-category for C.

7. Realizing I1,-algebras

The approach of [35,35,16] to realizing IT-algebras can be generalized somewhat (see [17]), but it still does not apply to
arbitrary resolution model categories (for example, it does not even apply to topological spaces if A consists of mod-p Moore
spaces — see [13, Section 4.6]). We therefore restrict to the following setting:

Definition 7.1. If C is a semi-spherical resolution model category equipped with a set of spherical objects A, the resolution
model category sC (Section 1.2) is called a strict E2-model category if the inclusion c(—) : ¢ — sC has a left adjoint
R : sC — ¢, called the realization functor for s, such that for all A € A, the natural map induced by the unit
ex, : Xo = Cc(RX,)

&4 © || mape (Ao, Xo)|| — mape (Ao, R(X,)) is a weak equivalence (7.2)

as long as X, € sC is cofibrant in the resolution model category structure on sC determined by Ag := {EkAO};f":O. Here ||Q, ||
is the diagonal of a bisimplicial set Q, € s4.

Example 7.3. The main example that we have in mind is € = 7, with A = {S"},f;, and R the usual geometric realization.
In this case the cofibrancy condition on X, implies that each X,, is (k — 1)-connected, when A, = S¥, so (7.2) holds by [42,
Theorem 12.3] (see also [2]).

In [17, Theorems 3.15-3.19], it was shown that all the examples of Section 1.4 are E2-model categories, which satisfy a
somewhat weaker set of axioms (see [17, Definition 3.12]). However, there are a number of additional examples satisfying
these stricter conditions — 75 can be replaced by ;.4 Or §, or various categories of spectra, or DG-categories; or we can
take diagrams in these categories. We can also use localized or truncated spheres. In order to cover all these cases we have
therefore stated the conditions needed in axiomatic form. This also permits them to be dualized more readily (Section 0.4).

In this context the obstruction theory of [ 16] can be stated using the following:

Definition 7.4. A quasi-Postnikov tower for a I1,-algebra A is a tower of fibrations

p+D p® p=1 p@
-—> X(n+ 1)y — X(n)g — --- —> X(0)y @ BA

in s@/BA such that X (n), >~ E4 (2" A, n + 2) (as for the usual Postnikov system of a realization of BA in s€ — see [17,
Section 5.8]). The object X (n), € sC will be called an n-th quasi-Postnikov section for A.
The following is shown in [ 16, Section 9] and [17, Theorems 5.6-5.7]:

Theorem 7.5. Let € be an E2-model category with a set of spherical objects A. A IT,-algebra A is realizable if and only it has a
quasi-Postnikov tower in sC/BA. Moreover, if such a tower exists in degrees < n — 1, then:

(a) Up to homotopy, there is a unique X{n), € sC with P,_1X(n)e = X(n — 1),,
kA foro<k<n,

7.6
0 otherwise (7.6)

T (X (n)a) = {

(see Section 1.11).
(b) This X(n), is an n-th quasi-Postnikov section for A if and only if the (n + 2)-nd k-invariant for m,X(n), vanishes in
Hn+3(A. 9n+1A)
aQ b .
(c) In that case, the different choices for the map p™ : X{(n + 1)s — X(n). are in one-to-one correspondence with elements of
Hn+2(A. Qn+]A)
aQ b .
Note that from the spiral exact sequence (1.3) we can deduce from (7.6) that

A for k=0
maaX(n)e = { 2"'A  for k=n+2, (7.7)
0 otherwise.

The vanishing of the (n + 2)-nd k-invariant for 7 ,X(n), is equivalent to the latter being an Eilenberg-Mac Lane object
EA(Q2™1 A, n+2)insIT,-Alg.

8. Mapping algebras
In order to compare the approaches of Sections 5 and 7, we need to recast the problem of realizing A € I1,-Alg as one

of rectifying a suitable homotopy commutative diagram - or more precisely, of lifting a diagram through the Postnikov
system of an (4,, @)-category.
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The obvious first choice is to consider a diagram X : X — ho C for X := F, A+ (Section 4.2). Unfortunately, there are two
problems with this:

(a) We do not actually have such a diagram X to begin with, since the putative value of X(x) € ho € is precisely the
realization of the I7,-algebra A in € that we are looking for.

(b) Moreover, we do not expect a rectification X : F — C to exist (unless the model category € is “formal”), since
commuting diagrams in ho € do not generally lift to C.

In order to solve the second problem, we introduce the following concept:

Definition 8.1. Let °C/, be a small *C,-variant (Section 6.1) with object set @, and let Ot := @ U {x}. An A-mapping algebra
(based on °C’)is an (8., ©T)-category X with mapping spaces as follows (compare (4.3)):

mapse, (B, C) ifB,C €0
mapy (B, C) = {c({*,Idx«}) ifB=C=x (8.2)
c({x}H otherwise.

The category of all A-mapping algebras based on *C/, will be denoted by Mﬁ” (or simply M, when *€) is understood
from the context). Elements in M, will be written as X, 9), etc, and we denote map, (B, x) by X{B} for all B € 0. If we
embed (8., @)-Cat in (8,, @)-Cat by making map(B, x) = {x} forall B € @ (as in Section 4.2), then we can think of
an A-mapping algebra based on *C/, as an (8., @1)-category under €/, subject to last two conditions of (8.2). Thus M,
inherits a simplicial model category structure from (8, ©@™)-Cat.

Note that if we set DT := moX, we obtain a A-pair (D, D) for D := mp °C/, where the I14-algebra A is defined by
A{A} ;= myX{A} for all A € A. Thus we can think of an .A-mapping algebra as an enriched version of a IT,-algebra.

Example 8.3. Given a small °C4-variant *C/, C° C4, the motivating example of an A-mapping algebra X based on *C/, is

obtained by choosing any X € G, and setting mapy (A, x) := map sq (A, X). We denote this A-mapping algebra by EmAS@AX
(or simply 971,X, when *€/, is understood from the context). Clearly o(91,X) = 7,X. We say that an A-mapping algebra
9) is realizable (by X € €)if 9 = 9M,X. Since any Y € C is fibrant, M ,X is always fibrant.

Remark 8.4. Recall that the path object PK € 4, for a fibrant pointed simplicial set K has (PK), = {x € K,11
di...dpy1x = %}, with re-indexed face and degeneracy maps, and the universal fibration p : PK — K is induced by dp

(cf. [27, Section 2.9]). We denote the path fibration functor K — (PK Lk Yby p : 8, — &I, where 4! is the category of
diagrams in 4§, indexed by T = (0 — 1). Because p commutes with products, it extends to a functor p : M, — ,Mfl.
Note that

pmap se(A,Y) isinduced by the inclusioni: A — CA. (8.5)

If we define the suspension XX in € as the cofiber of i : X — CX, where CX is the reduced cone, then for any fibrant
A-mapping algebra X and every B € *€’, we have a natural map ¢ to the pullback (in 4.), as indicated:

KQBE{B} . PX{B) (8.6)

\ l PB \Lp
\) % ———— > X{B}

Similarly, if B = [ |, B; for B; € °C/,, we have a natural map

iel
0
x(B) > [[=xiBi}. (8.7)
iel

Definition 8.8. An A-mapping algebra X based on *€/, will be called realistic if whenever there are weak equivalences

A'~3A and B~]][B. (8.9)
iel
in *¢/, the maps ¢ in (8.6) and @ in (8.7) are weak equivalences.
Lemma 8.10. Any realizable A-mapping algebra is realistic.

Proof. This holds since both ¢ in (8.6) and € in (8.7) map into homotopy limits. O
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Note that if X := 91,Y and one of the maps in (8.9) is an isomorphism, then so is the corresponding map ¢ or 6.

Lemma 8.11. Any map f : X — X’ in C induces a morphism of A-mapping algebras f, : 9MM,Y — 9M,Y’, and f is an
A-equivalence (Section 0.1) if and only if f, : M, Y{A} — M,.Y'{A} is a weak equivalence in 8, foreachA € A. O

Definition 8.12. A free A-mapping algebra based on °C/, is one of the form 9t,B for B € °C/.
Lemma 8.13. IfQ) is an A-mapping algebra based on *C) and B € °C}, there is a natural isomorphism map ,, (M,B, ) =

2{B}.
Proof. This follows from the enriched Yoneda Lemma (cf. [28]). O

Definition 8.14. If X is a A-mapping algebra based on *€/, for any n > 0 we obtain its n-th Postnikov section P,X by
setting (P,X){B} := P,(X{B}) for any B € @ := Obj °C. This is well-defined, since when we compose the composition
map y : mapy(B,A) x mapy(A,x) — mapy(B,*) = X{B} of the simplicial enrichment with Postnikov fibration
p : X{B} — P,(X{B}), the result factors as

map se, (B, A) x mapy (B, x) — P, map sel (B,A) x (P,X){A}
= Py (map s, (B, A) x X(4}) 5 (P 0)(B).

A map of A-mapping algebras @ : X — 9) is called an n-equivalence if it induces a weak equivalence of n-th Postnikov
sections. Amap f : X — Y in C is an n-stage A-equivalence if M f : M, X — 9M,Y is an n-equivalence of A-mapping
algebras.

Example 8.15. For n = 0, we can replace PyX by mpX, using the fact that the composition in any simplicially enriched
category X factors through its homotopy category moX. In particular, this shows that if *C/, is a small *G,-variant and
D := 7y °C),, then any A-pair (DT, D) can be enriched by an A-mapping algebra X 4 based on *C/, with X, = A.

Remark 8.16. The tower (P,91,X):2 , may be the best approximation to an .A-Postnikov tower available, since the category
C itself may not have such towers - e.g., when € = 7, and A consist of mod-p Moore spaces (see [15, Section 3.10]).

9. The Stover category

We now specialize to a specific small *C,-variant, which defines A-mapping algebras with various useful properties:
Definition 9.1. Let € be an E2-model category with spherical objects .A. We assume for simplicity that
A= {E"Ao},j";o for some strict cogroup object Ag. (9.2)
An elementary Stover object in C is one of the form

B := colim (A L (CA(,-))16T> , (9.3)

where A € A, and the colimit is that of the diagram consisting of A, together with an inclusion A < CA;, into the cone on
A (acopy of A) for each j € T.The set T is called the null set for B. Note that Bis still in C,, and is still a cogroup object in C.

A Stover object is any coproduct B = [ [;., B of elementary Stover objects {B }ic/.

The Stover category, denoted by Seff, is the full sub-simplicial category of °C, consisting of all Stover objects such that the
cardinalities of the indexing set I for the coproduct, and of the null sets T(; for each coproduct summand B;), are bounded
by a fixed limit cardinal « (see Remark 9.18 below).

Evidently, SGEJ is a small *C4-variant (Section 6.1). Any A-mapping algebra based on ‘@flt will be called a Stover mapping
algebra, and the realizable Stover mapping algebra forany Y € € will be denoted by smify. The category of all Stover mapping
algebras will be denoted by Mff.

Similarly, any .A-mapping algebra based on the canonical minimal small *C4-variant Sejl“i“ (Section 6.2) will be called a
minimal A-mapping algebra, and the minimal .A-mapping algebra for Y will be denoted by Sm‘j{““Y.

Lemma 9.4. For any Y € C, the mapping spaces of the Stover mapping algebra X' = 95Y are canonically determined by the
minimal A-mapping algebra X™" = gnminy,

Proof. For A € A, set ¥5{A} := x™"{A}. If B is an elementary Stover object as in (9.3) (with T # @), we define X5{B} to be
the pullback in 4,:

St . P:{min A
X {B} l_[jeT { (l)}

fl J/l_[j pj (9.5)
%min{A} 4 l_[jeT xmin{Aq)}

(where PX is the path functor of Section 8.4 and A is the diagonal).
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If B= 1], B is a coproduct of elementary Stover objects, we set

B} = [ 2By} O (9.6)
lel

Remark 9.7. If X is any fibrant A-mapping algebra based on the minimal small € 4-variant *€™", we may use (9.5) and (9.6)
to define the mapping spaces of the corresponding .A-mapping algebra X5 based on $C5'. Of course, this does not determine
the action of *C3f on X*.

Lemma 9.8. If an A-mapping algebra X based on * @2““ is realistic (Section 8.8), so is the corresponding A-mapping algebra X5
based on *C3!.

Proof. Since the right vertical map in (9.5) is a fibration, so is f : ¥5¢ — x™" and (9.5) is a homotopy pullback. Thus if  in
(8.6) and @ in (8.7) are weak equivalences for X whenever the maps in (8.9) are, the same is true for x5, O

Corollary 9.9. Under assumption (9.2), all the mapping spaces of a realistic Stover mapping algebra X5 are determined up to
weak equivalence by the single simplicial set X{Ao}.

In the dual case (Section 0.4), when we have homotopy group objects {W,}72 , in € with each W;, = 2W,;, it is not
enough to know the single mapping space map. (X, W;); in this case we need its £2°°-structure.

Definition 9.10. Let X be an A-mapping algebra based on a small G4-variant °C/,and B € *C/,.Foreach ¢ € X{A}o we call
the pullback N (in 4,)

N$ ——— PX{B}

=

o . me X{B}
the space of nullhomotopies for ¢. (It will be empty if ¢ is not nullhomotopic.)
If *€, is any small *C,4-variant containing A itself, and g) is any A-mapping algebra based on *€’,, the Stover construction
on 2 is the Stover object given by

K@ = ]_[ L[ colim (A(¢) E) (CA(qs))q)ENap) . (911)

AcA (A}
This defines a functor K : M3 — C.
Proposition 9.12. The composite L := K o smf{ : C — Cisacomonad on C.

Proof. Note that K9) depends only on the 0-simplices po2) := (P2)o — o) of the path fibration p (Section 8.4). Because p is
a functor, any map of A-mapping algebras ¥ : ) — 3 induces a map of the indexing categories for the colimit (9.11). Again,
this depends only on po¥. This in turn induces a map K¥ : K9 — K3. Thus we have defined a functor Kj : poMit — C.
We show that the functor Ky is left adjoint to po95 : € — po M3

Givenf : K9 — X in €, we define f : 0o — poMX by sending ¢ € P{A}o t0 flag € (MX){A}o = map se (A, X)o,
and similarly for @ € 9{A}; withdy® = 0 and d;® = ¢ (using (8.5)).

Conversely, given ¢ : po) — ,oo(imff{X) in po M3, we define 1} : K9 — X using the fact that K9) is defined by the
colimit (9.11), so it is enough to define a map of diagrams, given by ¥ (¢) : Aig) — X for ¢ € D{A}o and Y (@) : CAey — X
for @ € (PY{A})o, again using (8.5).

Since we can factor L := K o smj‘ as the composite Ky o (poimff) of an adjoint pair of functors, the functorL : € — Cisa
comonad (cf. [23, Section 4]). O

Remark 9.13. Let X be a fibrant Stover mapping algebra, and assume that each A € A is a strict cogroup object in €. Thus
X{A} is the underlying simplicial set of a simplicial group. Moreover, since the structure maps in (9.5)and (9.6) are all maps
of simplicial groups (see Section 8.4), the same is true of X{B} for B € Seff. (Of course, the composition maps in Seff need
not be homomorphisms, so X is not necessarily enriched in §.)

If K¢ is the zero-component of K = X{B}, we thus have two canonical short exact sequences of simplicial groups
(respectively, groups):

d,
1— K*— K — mK — 1 1— PKp —> Kf ——> K& — 1

S0

This implies that K; is canonically determined as a set by Ky, 7oK, and PKy. In other words, poX and X together determine
csky X up to isomorphism (and of course conversely).
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Definition 9.14. We callL : € — C the Stover comonad on C.

The counit ¢ : L — Id for L is the “tautological” natural transformation ex : K(93X) — X, which sends the copy of A
indexed by ¢ € (S)thth){A}o = Homc¢(A, X) in (9.11) to X by ¢, and similarly for the cones CA(q).

The comultiplication p : L — [? is induced by the natural inclusion v : K — K(93(KD)), defined for any Stover
mapping algebra 9), which sends Ay in K9 identically to the copy of A in K (951 (K)) indexed by the inclusion A4, <> K.

The Stover resolution of an object Y € € is the simplicial resolution Q, of Y, where Q, := L"'Y for each n > 0 (and the
face and degeneracy maps are induced by n and ).

Remark 9.15. If we extend K to a simplicial functor K : Mff — @, it factors through K : ,o,Mff — 5@, so csk, K depends
on csky, p M3, which is determined in turn by csky 1 M.

Proposition 9.16. If sC is a strict E2-model category with spherical objects A, the Stover resolution defines a one-to-one
correspondence between objects Y € C up to A-equivalence (Section 0.1) and weak equivalence of simplicial objects Q, € sC
with m,Q, >~ BA (where A = 7,Y).

Proof. By [34, Section 3.3], the simplicial object Q, is cofibrant in the resolution model category structure on s, and by
[46, Section 2], the map € : Q, — c(Y) (induced by n) is a weak equivalence. Thus 7,Q, >~ BA by (1.3). From (7.2) we see
that || mape (Ao, Q.)|l = mape (Ao, R(Q,)). Applying the Bousfield-Friedlander spectral sequence of [25, Theorem B.5] to the
bisimplicial set M, := mape (Ao, Q,), with

El = mmMe = Topill Ml (9.17)
we conclude that 7. ||M,]| = A, and thus 7,4 (RQ,) = m, mape(Ag, R(Q,)) = A. This is an isomorphism of [7,-algebras,
since imitQ. is a simplicial mapping algebra, and so applying || — || to each bisimplicial set Smfo,{A} (A € A)yields a
mapping algebra, which is actually determined by [|M, || = (]|95'Q.||){Ao} by Corollary 9.9. Thus RQ, is A-equivalent to Y.

Functoriality of the Stover construction (and of the spectral sequence) shows that the correspondence of weak A-homotopy
types is one-to-one. 0O

Remark 9.18. We can now explain how the cardinal « of Section 9.1 is chosen:

Given a IT1,-algebra A, the collection of all homotopy types of objects Y € ho € with A = 7,Y is a set (as can be seen by
considering all choices of k-invariants for cofibrant replacements of c(Y) in s€).

Define « to be the smallest limit cardinal such that each such homotopy type Y has a Stover resolution in which each of
the sets MH(L"Y){A}o and N? for ¢ € M3 (L"Y){A}o in (9.11), for each A € A and n > 0, has cardinality < «.

9.19. Extending the Stover comonad

Applying the functor 93" to the augmented simplicial object Q, — Y over € yields an augmented simplicial object
MmeQ, — MS'Y. We can think of this as coming from a monad £ on realizable Stover mapping algebras, given by
£(9) 1= M (KY), with counit 1 := 95 (¢) right inverse to the unit £ : MY — M (K(MS'Y)) (sending ¢ : A — Y to
the inclusion Ay < K (SmffY))). Because & was a counit for L, the following square commutes:

cex > ox
2(77x)l/ 77xl (9.20)
£X i X
for & = MY (cf. [23, Section 4.1].

We observe that even though the simplicial functor 9, does not usually preserve coskeleta (even for A = S' in 4,,), we
deduce from Remark 9.15 that

csk, £X is determined by csky 1 X (9.21)

because K actually lands in * Gflt, so £ takes values in free Stover mapping algebras (Section 8.12).

Definition 9.22. A fibrant Stover mapping algebra X is called an £-algebra if it is equipped with a splitting nx : £X — X%
for £ : X — £X%, such that (9.20) commutes.

Proposition 9.23. Any realistic Stover mapping algebra 9) can be realized, up to A-equivalence.

Proof. Iterating the functor £ on 9) yields an augmented simplicial Stover mapping algebra ¥, — %), and since £ = smi{ oK,
in fact g, = smffq.. Here Q, is the simplicial Stover object with Qy = K%) and Q, := K,_; for n > 1. The extra face map
dy:Qn = QuorisKE™ () : KL TMSLKY — KL 'Y, where n : MSKY — 2 is the L-algebra structure map.
Proposition 2.6 of [46] shows that if Q, € sC is the Stover resolution of X € €, then ,.Q, is a free I7,-algebra resolution
of w,Y. The proof does not in fact depend on the existence of X, but only on its mapping algebra ) := 9""X. Here we
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use the fact that 9) is realistic. Thus we deduce that the simplicial I7,-algebra G, := 7,Q, = 7Y, is a free I1,-algebra
resolution of A = my%). Thus the spectral sequence of (9.17) collapses, showing that RQ, realizes A.

Finally, by combining the weak equivalences of Section 8.8 with Lemma 9.4, we deduce that ||J, || (the realization functor
applied to each simplicial space ,{B} for B € S@f{) is a Stover mapping algebra, which is weakly equivalent to M3'(RQ, ),as
well as to the original mapping algebra ). O

Since every realizable Stover mapping algebra is realistic, this shows:

Corollary 9.24. The correspondence of Proposition 9.16 actually factors through the category of realistic £-algebras, up to weak
equivalence.

10. Realizing mapping algebras

In order to solve the first problem mentioned at the beginning of Section 8, we must reinterpret the inductive approach
to realizing a I1,-algebra A described in Section 7 as an inductive process for realizing mapping algebras. For this we need:

Definition 10.1. A map of A-mapping algebras f : X — 92 is called an n-equivalence if P,f is a weak equivalence of A-
mapping algebras. Similarly,amap f : X — Y in € is called an n-A-equivalence if 9 ,f is an n-equivalence of A-mapping
algebras.

An g£-algebra X is called a n-realistic £-algebra if:

(@) r™ : x — P,X is a weak equivalence of A-mapping algebras.
(b) The map ¢ in (8.6) is an (n — 1)-equivalence in 4§, whenever the first map in (8.9) is a weak equivalence.
(c) The map 6 in (8.7) is an n-equivalence whenever the second map in (8.9) is a weak equivalence.

Remark 10.2. Note that we cannot expect to do better than (b) above, since 2P"K is just P"~! 2K forany K € 4,.Thus even
under Assumption (9.2), where for a realistic Stover mapping algebra X, the simplicial set X{Ao} determines X{B} for any B
in * (B/Slt up to weak equivalence, in the n-realistic case X{ XAy} carries more information than £2X{A,} does.

We can now refine Corollary 9.24 as follows:

Proposition 10.3. There is a one-to-one correspondence between n-realistic £-algebras X with moX = A € I14-Alg and n-th
quasi-Postnikov sections for A, up to weak equivalence.

Proof. Let X be an n-realistic £-algebra, so its structure map n = 5y factors through P, £X — X ~ P,X = csk,q X. We
wish to construct the Stover resolution 2, — X as in the proof of Proposition 9.23. For all k > 0, the objects U := £k*1x
depend only on pgX, which is determined by PyX = csk; X. Similarly, all the degeneracy and face maps, in all simplicial
dimensions, are determined by U, € Seff, except for dy : Uy — Vy_1, which is £¢. By (9.21), this map itself, as an arrow
in @ff C @, depends only on csk 1 : csky By — cskg X. Thus 1 determines the n + 1-st truncation 7,15, of U,, and thus
P,%3,.

Conversely, if we can construct 7,41Y, for X, this is equivalent (as in the proof of Proposition 9.23) to constructing t,,1Q,
for the (putative) object Y € € realizing X, with t,41D, := S)thf(rn+1Q,). Thus we have an n-th quasi-Postnikov section for
A, which we denote by Q (n), € sC (see Definition 7.4). Applying the n-th Postnikov section functor P, : 7,158 — S8,
to each (n + 1)-truncated simplicial set 7,,1%,{A} yields the corresponding quasi-Postnikov section U(n), € stf, with
V(n), 1= Smff(Q(n).). This is because each Q (n), for k > n + 2 is constructed as a matching object (cf. [35, Section 2.1]),
which is a limit, so it commutes with mapping spaces.

In particular, 7,Q (n)x = (oW (n)k{A})aeca for all k > 0. Thus from (7.7) we see that

A{A} for k=0
memoB(n)ofA} = m(maQ(n)){A} = { (2K A) A} for k=n+2, (104)
0 otherwise

for any A € A (and thus, using Lemma 9.4, for any B € Seff). The Bousfield-Friedlander spectral sequence (9.17) for the
bisimplicial set U (n),{A} converges to .|| U(n).|, because 7oL (n),{A} is a simplicial group. Moreover, the first possible
differential is d"*? : (21 A){A})o = A{A}nt1, 50 ;|| V() {A}|| = A{A}; for i < n. By naturality we deduce that the map
of Stover mapping algebras ||T{(n),.|| — X is an n-equivalence, so P, ||T(n).|| =~ X.

In summary, each of U(n), € &Mff, Q(n), € sC, and the n-realistic Stover mapping algebra X determines the other
two. O

Remark 10.5. Note that from the quasi-Postnikov section Q (n), € sC we can also recover an object Z(n) := R(Q (n),) € C
(using Definition 7.1), and we see that [ A, Z(n)]e = mX{Ao} = A{X'Ay} for 0 < i < n, by (7.2), since Q (n), is A-
cofibrant and A is generated by Ag by (9.2).

However, we can do more than this, by Remark 10.2: the inclusion of the subcollection of spherical objects A(k) :=
{ZkAg, Z¥F1A, ...} in A induces a forgetful functor M, — My (which omits the simplicial set X{4}} (0 < i < k) from
X). If we denote this by ¥ — x® | applying the procedure described in the proof of Proposition 10.3 to the .A-mapping
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algebra x® (which is still n-realistic) yields a new simplicial object Q (n)¥ € s¢, and Z(n)® := RQ(n)¥ now realizes
the I7,-algebra £2¥ A through degree n. Moreover, there is a natural (n — 1)-A-equivalence £2Z (n)**D — z(n)® for each
k > 0, induced by the maps ¢ of (8.6).

The collection of objects {Z (n)(">},fi0, equipped with these structure maps, thus form an n-stem, in the sense of [9]. In
the case when € = 7, and A = {S"},fil, these behave like the collection {Pn.X (k — 1)};2 of (k — 1)-connected covers of
(n + k)-Postnikov sections of a (putative) space X.

Lemma 10.6. Let X be an n-realistic A-mapping algebra, and let Q (n), be the n-quasi-Postnikov section in SC corresponding to
X under Proposition 10.3, with A := moX. Then there is a natural isomorphism ;X = ni#(Q(n).) as A-modules for alli > 0.

Proof. From (10.4), (7.6), and (9.17), we see that

QKA for k<n

X E Q) = {0 otherwise.

To describe the natural identification, note that by Proposition 10.3 we know that X is n-equivalent to || T(n),|| =
||9ﬁ§f(Q(n).) ||l Since we assumed that each A € A was a strict cogroup object in G, K := ||Sm§f(Q(n).) [I{A} has the natural
structure of a simplicial group. Therefore, an element in 77, X{A} may be represented by a Moore k-cycle ¢ in

ZK C K = mape (A, Q(n))x = Home (A ® A[K], Q(n)r) € Homge(c(A)®AIK], Q(n),)

(see Section 0.6).

On the other hand, by [35, Proposition 5.8] we can represent an element of n,f (Q(n)s){A} by an element in
Home (A, ZkQ(n),) — thatisbyamapf : A — Q(n), such thatdf = xforall0 < i < k.If §, € A[k]y is the non-
degenerate k-simplex of A[k], we define <f> : AQA[k] — Q(n), by sending A ® {8} to Q (n), by f, and extend by zero to the
other non-degenerate simplices of A[k]. O

Definition 10.7. For any A-mapping algebra X, the associated simplicial IT,-algebra I1,(X), is defined by requiring IT,(X),
to be the I14-algebra induced by the action of 7y *C/, on each set of n-simplices X{A}, of X{A} € 4.. Note that IT,(X), is
itself an A-mapping algebra, and the quotient map h : X — I1,4(X), is a map of A-mapping algebras.

For simplicity, let us denote the cofibrant object Q, € sC associated by Proposition 9.23 with a realistic .A-mapping
algebra X by Q (c0).,.

Lemma 10.8. Assume that X is an n-realistic A-mapping algebra, with 0 < n < oo, and Q (n), is the object associated with X by
Proposition 9.23 (or Proposition 10.3). There is a natural isomorphism of IT,(X), with the simplicial I1,-algebra 7t,Q (n),, and
h: % — I,(X), induces the Hurewicz homorphism hy : w#(Q (n),) — m.mw4Q{(n), of (1.3).

Proof. As in the proof of Lemma 10.6, we may replace X by the n-equivalent A-mapping algebra ||931f4t(Q(n).) I, so that any
element inX{A}; may be identified withamap f : A® A[k] — Q(n);.

Since Q := Q(n)y € S@i‘, we may identify this with f*(Idg), for f € (ZmifQ){A}, so by definition of h we have
h(f) = [fT*h(dg) = [f] € [A, Qle = (waQ(n)r){A}. This identifies I1,(X), with 7,4Q (n),. From the description of the
Hurewicz homomorphism in [35, Section 5], we see that it coincides with hy. O

Proposition 10.9. If X = X(n) is an n-realistic A-mapping algebra with A := moX € I1,-Alg, the obstruction to extending X
to an (n 4 1)-realistic A-mapping algebra X(n + 1) (with P,X{(n + 1) = X(n)) is the (n + 1)-st k-invariant for IT,(X),, i.e.,
kni1 € Hyg(A; 21 A).

Proof. Again, let Q (n), be the n-th quasi-Postnikov section for A corresponding to X under Proposition 10.3, with X =~
Py ||9755(Q (n),)|. By Lemma 10.8 and (7.7) we know that I7,(%X). has only two non-zero homotopy groups: o1, (%), = A
and 7,11, (%), = 21 A,

If the extension X (n + 1) exists, the fibration p®* : %(n + 1) — P,X(n + 1) ~ %(n) induces p{"™" : MM, (X(n+ 1)),
— I1,(%{(n))., which is the identity on moX(n + 1) = mX(n) = A (again by Lemma 10.8).

Since T, (X(n)) = Poyi IT4(X(n)),, piY factors via Poyq [T, (X(n + 1)), = BA, so the structure map p™+2) : IT,(%),
— Pny1I1,4(%)s = BA hasasections. This is equivalent to the vanishing of the (n+1)-st k-invariant f<n+1 IS HK?(A; 2mM1A)
for IT,(X),.

Conversely, if the k-invariant I~<n+1 for IT,(X), = m,4Q (n), vanishes, then Q (n), extends to an (n + 1)-st quasi-Postnikov
section Q (n 4 1), for A, by Theorem 7.5, so we obtain X(n + 1) := IIDﬁi‘(Q(n + 1)4)|l, as required by Proposition 10.3. O

Remark 10.10. Since the quotient map h of Section 10.7 is surjective, and I7,(X¥).{B} has the underlying structure of a
simplicial group for each B € S@ff, his a fibration in Mff C (84, O0)-Cat. In fact, we may identify the long exact sequence in
1, for the fibration h with the spiral exact sequence (1.3), up to a re-indexing.

If we denote the fiber of h by B'X, we deduce from (7.6) and (7.7) that

A for1<i<n+1

(B'%) =
mi(BX) 0 otherwise.
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Looping back the fibration sequence for h, for each A € A we obtain

(n) ’ /
X(ZA) = Px(ZA) P P X(ZA) S Qx(A) = P QX(A) S E(@™ A 0+ 1),

where ¢’ is the weak equivalence of Section 10.1(b), and k' is the (looped) (n — 1)-th k-invariant for X{ X A}.

We can think of ¢’ as the structure map for the n-stem P, X, which is classified by h : ¥ — IT,(%).,. If we could produce a
map q : I1,(X)s — E(2"! A, n + 2) which is a 77,4 ,-isomorphism, then q o h would be the n-th k-invariant for X = X(n),
which would define an (n + 1)-realistic A-mapping algebra X(n + 1), and thus an (n 4+ 1)-quasi-Postnikov section for A.

Now the inclusion of the homotopy fiber of g isamap s : BA — I14(%). which is a section for p = p™? : [1,(%)s —
Py41114(X)s = BA.Moreover, q is then P, applied to the pinch map to of the cofiber of s, so the existence of q is equivalent
to the existence of a section s for p. Both are equivalent as above to the vanishing of the (n + 1)-st k-invariant for I7,(X),.

Thus we can interpret this k-invariant, in the context of stems, as the obstruction to gluing the n-windows of an n-stem
to produce an (n + 1)-stem.

We can thus summarize the results of this section in the following:

Theorem 10.11. Let € be a strict E*>-model category, with spherical objects A satisfying (9.2), and let A be a I1,-algebra.

Proposition 10.9 then provides an inductively defined sequence of (8, @)-cohomology classes k, € H;OH(BA; 22"A) (n =
1, 2, ...)for producing a realistic Stover mapping algebra realizing A — which is equivalent to realizing A in C. O

Remark 10.12. We now interpret the classes k, in the context of the Dwyer-Kan-Smith theory of Section 5. The homotopy
commutative diagram which we are trying to rectify will be indexed by the A-pair (D, DT) := (€T, €3), defined as in
Example 8.15. As in Section 5.7, identifying the (ordinary) category C5' as the zero-simplices of the (simplicially enriched)
Sej{ and applying degeneracies gives the required simplicial map Xo c(@ff) — ‘Gflt.

However, the obstruction theory of Section 5 does not quite apply in our situation, since to begin with we do not have
given a simplicially enriched category *Cx (Section 5.4) extending ° @j‘ — sc. a(we hope realistic) Stover mapping algebra X.
Instead, we construct X by induction on its quasi-Postnikov tower (X(n));2, of n-realistic Stover mapping algebras. At the
beginning of the process we can always choose a 0-realistic Stover mapping algebra X (0) realizing A, as well as an extension
Xo : Po(€5H)* — x(0) for the given X,.

In view of Proposition 10.9, we do not actually need to lift Xy to the successive n-realistic Stover mapping algebras
X(n), but only to their I1,-algebra versions I7,(X(n)), These are Stover mapping algebras, though they are not n-realistic.

Moreover, the Dwyer-Kan-Smith obstructions of Section 5.7 reduce in this case to the k-invariants kn, as in the proof of
Proposition 10.9.
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