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a b s t r a c t

We show that three different kinds of cohomologies – Baues–Wirsching cohomology,
the (S∗,O)-cohomology of Dwyer and Kan, and the André–Quillen cohomology of a
Π-algebra – are isomorphic, under certain assumptions. This is then used to identify
the cohomological obstructions in three general approaches to realizability problems: the
track category version of Baues and Wirsching, the diagram rectifications of Dwyer, Kan,
and Smith, and the Π-algebra realization of Dwyer, Kan, and Stover. Our main tool in
this identification is the notion of a mapping algebra: a simplicially enriched version of an
algebra over a theory.

© 2010 Elsevier B.V. All rights reserved.

0. Introduction

A number of questions arising in topology can be framed in terms of realizing an algebraic or homotopic structure in
a topological setting: for example, realizing an unstable algebra over the Steenrod algebra as the cohomology of a space,
realizing aΠ-algebra, or lifting a group action up to homotopy to a strict action. In these examples, the answer appears in
the form of an obstruction theory, in which elements in appropriate cohomology groups serve both as the obstructions to
realization, and as difference obstructions which classify the various possible realizations.

Three general approaches to dealing with such questions have been described in [6,34,35,16,33]. Our goal in this paper is
to prove that these three approaches essentially coincide, in the cases where they all apply. In order to do so, we introduce
the notion of a mapping algebra – a simplicially enriched version of an algebra over a theory, in the sense of Lawvere and
Ehresmann (see Section 8) – and describe a fourth approach to the realization problem using this concept.

An important example of these methods is contained in the work of Goerss, Hopkins, andMiller on realizing ring spectra
as structured spectra (cf. [37]).

To show that the four approaches coincide, we first exhibit natural isomorphisms between the various kinds of
cohomologies, after identifying both the objects to which they apply, and the coefficient systems:

(a) The Baues–Wirsching cohomology H∗

BW(K;D) of a small category K with coefficients in a natural system D (see
Section 2.6),

(b) The (S∗,O)-cohomology H∗

SO(Z;M) of a simplicially enriched category Z, with coefficients in a moduleM over the track
category π̂1Z (see Section 3.3).

(c) The André–Quillen cohomology H∗

AQ(Λ;M) of aΠ-algebraΛ, with coefficients in aΛ-moduleM (see Section 4.1).

The identification of (a) and (b), under suitable circumstances, is given in Theorem 3.10; that of (b) and (c) is given in
Theorem 4.5. After identifying the cohomology groups, we also identify the obstructions, for which we need:
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0.1. The basic setting
Let C be a pointed model category. A collection of spherical objects for C is a set A of cofibrant homotopy cogroup objects

in C, closed under the suspension. The motivating example is the collection of spheres A = {Sn}∞n=1 in the category of
topological spaces, but there are many others.

LetΠA denote the full subcategory of the homotopy category hoC whose objects are finite coproducts of objects from A.
AΠA-algebra is a contravariant functorΛ : ΠA → Set∗ which takes coproducts to products. The category of allΠA-algebras
is denoted byΠA-Alg .

Such aΠA-algebraΛ is determined by its valueΛ{A} ∈ Set∗ on each A ∈ A, togetherwith amap ξ ∗
:
∏

i∈I Λ{Ai} → Λ{A}

for every ξ : A →


i∈I Ai inΠA ⊆ hoC. Because each A ∈ A is a homotopy cogroup object, each Λ{A} has an underlying
group structure (although the operations ξ ∗ need not be group homomorphisms).

Thus when A = {Sn}∞n=1, as above, a ΠA-algebra (called simply a Π-algebra) is a graded group (Gi)
∞

i=1 with Whitehead
products, composition operations, and a G1-action on each Gn, as for the homotopy groups π∗X of a space X .

For simplicity we assume that for any collection {Ai}i∈I of objects from A and any B ∈ A, the natural map

colimJ


B,


j∈J

Aj


hoC

−→


B,


i∈I

Ai


hoC

(0.2)

is an isomorphism, where the colimit on the left is taken over the lattice of all finite subsets J ⊆ I .

0.3. The basic problem
The canonical example of a ΠA-algebra is a realizable one, denoted by πAX , for fixed X ∈ C. This is defined by setting

(πAX){A} := [A, X]hoC for each A ∈ ΠA.
The problemwe consider in this paper is that of realizing an abstractΠA-algebraΛ: that is, finding an object X ∈ C with

πAX ∼= Λ. Such an X may not exist, and need not be unique. There are three main approaches to the realization problem,
each describing the obstructions in terms of appropriate cohomology classes:

(a) Trying to lift Λ to a ‘‘secondary ΠA-algebra’’, which has additional structure encoding the second-order homotopy
operations in the model category C in terms of track categories. In this case, the obstruction to such a lifting lies in
Baues–Wirsching cohomology (see Section 6.7).

One could try in principle to continue this process to ‘‘higher order track categories’’, but the appropriate setting for
this is not yet clear (see [8] and [21]).

(b) Starting with a simplicialΠA-algebra-resolution ofΛ, we obtain a ‘‘simplicial object up to homotopy’’ over C. We try to
rectify it in C to a strict simplicial object. If we succeed, we can show that its ‘‘geometric realization’’ realizes the given
ΠA-algebraΛ.

In this settingΛ, together withΠA, can be used to construct a certain category K , as well as a simplicially enriched
category, such that the Dwyer–Kan–Smith obstructions to rectifying the ‘‘simplicial object up to homotopy’’ lie in the
(S∗,O)-cohomology of K (see Section 5.5).

(c) Starting againwith a simplicialΠA-algebra-resolution ofΛ, and trying to lift it to a strict simplicial object overC through
a Postnikov tower, as in [16], we find that in this case the obstructions lie in the André–Quillen cohomology of Λ (see
Theorem 7.5).

The identification of the obstructions appearing in (a) and (b) is given in Theorem 6.5. In order to do this for (b) and (c),
we set up yet another, fourth, version of the obstruction theory in terms of A-mapping algebras. The identification is then
given via Theorem 10.11 and Remark 10.12.

Remark 0.4. We observe that one can dualize this setting by taking a set A of group objects in hoC as our dual spherical
objects, and define ΠA to be the full subcategory of hoC consisting of finite products of objects from A. A ΠA-algebra is
then a covariant product-preserving functor ΠA

→ Set∗. This is one reason why we work in a general categorical setting,
which can readily be dualized. However, the dual of (0.2) is unlikely to hold, so more care is needed in dealing with infinite
products of objects from A.

An important example is provided by letting A = {K(Fp, n)}∞n=1 consist of the mod p Eilenberg–Mac Lane spaces. In this
case a ΠA-algebra is just an unstable algebra over the mod p Steenrod algebra (cf. [45, Section 1.4]). See [7,14] for more
details.

0.5. Organization
Section 1 describes the respective abstract model category settings for the cohomology theories and the general

realization problem. Section 2 provides some background on track categories and the Baues–Wirsching cohomology of small
categories. In Section 3 we define (S∗,O)-categories, and show how Baues–Wirsching cohomology can be identified with
(S∗,O)-cohomology (Theorem 3.10). In Section 4 we similarly show how the André–Quillen cohomology of a ΠA-algebra
can be identified with relative (S∗,O)-cohomology (Theorem 4.5).

In the second half of the paper, we describe the various obstruction theories and show how they correspond: the
Dwyer–Kan–Smith (S∗,O)-obstructions to rectifying homotopy commutative diagrams are defined in Section 5, and in
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Section 6 the Baues–Wirsching class for classifying linear track extensions is identified with the first (S∗,O)-obstruction
(Theorem 6.5). The Dwyer–Kan–Stover approach to realizing Π-algebras via André–Quillen cohomology obstructions is
described in Section 7. In Section 8 we introduce the concept of an A-mapping algebra, and describe the main example, the
Stover mapping algebras, in Section 9. Finally, Section 10 reinterprets the obstruction theory of [16] in terms of mapping
algebras, and shows how they may be used to identify the André–Quillen obstructions to realizing aΠA-algebra as suitable
(S∗,O)-obstructions (Theorem 10.11).

0.6. Notation and conventions
The category of pointed connected topological spaces will be denoted by T∗, that of pointed sets by Set∗, that of groups

by Gp, and that of groupoids by Gpd. For any category C, sC denotes the category of simplicial objects over C. However, sSet
is denoted by S, sSet∗ by S∗, and sGp by G. The full subcategory of reduced simplicial sets in S∗ (with a single 0-simplex) will
be denoted by Sred. Objects in sC will generally be written as X•, Y•, and so on. The constant simplicial object on an object
X ∈ C is written as c(X) ∈ sC.

If 1 is the category of finite ordered sets 0, 1, 2, . . . with order-preserving maps, then sC ∼= C1. We write τn1 for
the full subcategory of 1 with objects {0, 1, . . . ,n}, and the corresponding diagram category Cτn1 is called the category
of n-truncated simplicial objects in C, also denoted by τnsC. The inclusion ιn : τn1 ↩→ 1 induces the n-truncation functor
τn : sC → τnsC. Its left adjoint (when it exists) induces the n-skeleton functor skn : sC → sC, and its right adjoint induces
the n-coskeleton functor cskn : sC → sC.

Given A ∈ S and an object X in a category C with coproducts, define X⊗̂A ∈ sC by (X⊗̂A)n :=


a∈An X , with face and
degeneracy maps induced from those of A. For Y ∈ sC, set Y ⊗ A := diag(Y ⊗̂A) ∈ sC.

The category of all small categories will be denoted by Cat . For any setO,O-Cat denotes the subcategory of Cat consisting
of the categories having Obj(C) = O, with functors which are the identity on objects.

1. Model categories and cohomology

We first describe the model category framework needed to define the cohomology theories, and study the realization
problems described above:

Assumption 1.1. We assume throughout this paper that ourmodel categories are pointed, cofibrantly generated, simplicial
(see [43, II, Section 1]), and right proper (that is, the pullback of a weak equivalence along a fibration is a weak equivalence).

For simplicity of treatment we will assume that all objects in C are fibrant (although many of our constructions make
use of the category S of simplicial sets, where this does not hold). Note that we may take C = G if we want such a model
category for the homotopy theory of pointed connected topological spaces.

First, in order to provide an appropriate setting for resolutions, we shall need to deal with simplicial objects over our
model category C, for which we have the following:

Definition 1.2. Let C be amodel category as above, with a set A of spherical objects (Section 0.1). In order to define a model
category structure on sC, we choose the set Ã := {A ⊗ 1[n]/(A ⊗ ∂1[n])}n∈N,A∈A (see Section 0.6) as the collection of
spherical objects for sC. We think of A ⊗ 1[n]/(A ⊗ ∂1[n]) as the simplicial suspension of A; we reserve the notation Σk

for (internal) suspension in C.
Extending the simplicial structure from C to sC in the usual way (cf. [43, II, Section 4]), we set [X•, Y•)ho sC :=

π0 mapsC(X•, Y•) for X•, Y• ∈ sC. We write π#
n (X•) for the A-graded group [A⊗̂Sn, X•]ho sC (A ∈ A). These are called the

natural homotopy groups of X•.
We now define the resolution model category structure on sC determined by A, by letting a simplicial map f : X• → Y•

be:

(i) a weak equivalence if π#
∗
(f ) is a weak equivalence of A-graded simplicial groups.

(ii) a cofibration if it is (a retract of) a map with the following property: for each n ≥ 0, there is a cofibrant object Wn in C
which is weakly equivalent to a coproduct of objects fromA, and amap ϕn : Wn → Yn inC inducing a trivial cofibration
(Xn ⨿LnX•

LnY•)⨿ Wn → Yn. Here LnY• is the n-th latching object for Y• (cf. [17, Section 2.1]).
(iii) a fibration if it is a Reedy fibration (cf. [39, 15.3]) and πAf (Section 0.3) is a fibration of A-graded simplicial groups.

See [24,34].

Applying πA in each simplicial dimension to any X• ∈ sC yields a simplicial ΠA-algebra πAX•. By taking the usual
homotopy groups of the underlying A-graded simplicial group in each degree, we obtain the N-gradedΠA-algebra π∗πAX•.
This is related to natural homotopy groups by a spiral long exact sequence (cf. [35, 8.1]):

· · · → Ωπ#
n−1(X•)

sn
−→ π#

n (X•)
hn
−→ πnπAX•

∂n
−→ Ωπ#

n−2(X•)
sn−1
−−→ π#

n−1(X•) → · · · → π#
0 (X•)

∼=
−→ π0πAX•

(1.3)

It follows that a map f : X• → Y• in sC is a weak equivalence if and only if the map of simplicial ΠA-algebras
f∗ : πAX• → πAY• is a weak equivalence in the resolution model category sΠA-Alg .
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1.4. Examples of resolution model categories

(a) Let C = Gp with the trivial model category structure, and A := {Z}. The resulting resolution model category structure
on G := sC is the usual one.

(b) More generally, let C = Θ-Alg be a category of universal algebras (with an underlying group structure), represented by
a theoryΘ (cf. [1, Section 1]), such asΠA-Alg . In this case we let A be the collection of free monogenic algebras.

(c) We can iterate the process by taking G for C, and letting A consist of the G-spheres. We thus obtain a resolution model
category structure on sG (or on sT∗), which is the original example of [34].

(d) If C is a resolution model category and I is some small category, the category C I of I-diagrams in C also has a resolution
model category structure, in which the spherical objects are certain free I-diagrams (cf. [17, Section 1]).

In order to define cohomology groups in our model category, it is convenient to consider the following setting:

Definition 1.5. A model category C is called semi-spherical (see [18, Section 2.23]) if:

(a) It is equipped with a coefficient category Coef(C), together with a functor π̂1 : C → Coef(C).
(b) For each n ≥ 2,, it is equipped with a functor πn : C → π̂1(−)-Mod taking Z ∈ C into the category ofmodules over π̂1Z

(that is, abelian group objects in Coef(C)/π̂1Z).
(c) Each Z ∈ C has a functorial Postnikov tower of fibrations under Z:

Z · · · → PnZ
p(n)
−−→ Pn−1Z

p(n−1)

−−−→ · · · → P0Z ,

with Z → limn PnZ a weak equivalence, and the usual properties for the structure maps r (n) : Z → PnZ .
(d) For every Λ ∈ Coef(C), there is a functorial classifying object BΛ ∈ C, unique up to homotopy, with BΛ ≃ P1BΛ and

π̂1BΛ ∼= Λ.
(e) Given Λ ∈ Coef(C) and a Λ-module M , for each n ≥ 1 there is a functorial Eilenberg–Mac Lane object E = EΛ(G, n) in

C, unique up to homotopy, equipped with a section s for r (1) : E → P1E ≃ BΛ, such that πnE ∼= M as Λ-modules and
πkE = 0 for k ≠ 0, 1, n.

(f) For every n ≥ 1, there is a functor that assigns to each Z ∈ C a homotopy pullback square:

Pn+1Z
PB

p(n+1)
//

��

PnZ

kn
��

B(π̂1Z) // Eπ̂1Z (πn+1Z, n + 2) .

(1.6)

The map kn is called the n-th k-invariant for Z .

Examples 1.7. The motivating example is the category T∗ of pointed topological spaces.
In addition, all the resolutionmodel categories of Section 1.4 are semi-spherical (see [17, Section 3]). We note that for the

‘‘algebraic’’ categories C = sΘ-Alg of simplicial universal algebras (Section 1.4(b)), π̂1X• is just π0X•,and Coef(C) isΘ-Alg
itself. Thus a module over aΘ-algebraΛ is just an abelian group object inΘ-Alg/Λ (cf. [12]).

Definition 1.8. Let C be a semi-spherical simplicial model category, and assume givenΛ ∈ Coef(C), aΛ-moduleM , and an
object Z ∈ C equipped with a twisting map p : π̂1Z → Λ. Following [43, II, Section 5], we define the n-th cohomology group
of Z with coefficients inM to be

Hn(Z/Λ;M) := [Z, EΛ(M, n)]C/BΛ = π0 mapC/BΛ(Z, E
Λ(M, n)),

where mapC/A(Z, Y ) is the sub-simplicial set of the mapping space mapC(Z, Y ) in C consisting of maps over a fixed base A.
Typically, we have Λ = π̂1Z , with p a weak equivalence; if in addition Z ≃ BΛ, we denote Hn(Z/Λ;M) simply by

Hn(Λ;M).

Remark 1.9. There is also a relative version, for a cofibration i : X ↩→ Y in C/BΛ: If Z is the cofiber of i in C/BΛ — that is,
the homotopy pushout of

X

PO
p

��

i // Y

q

��
BΛ // Z ,

(1.10)

then

Hn((Y , X)/Λ;M) := [(Z, BΛ), (EΛ(M, n), BΛ)]C/BΛ

(cf. [32, Section 2.1]). Again ifΛ = π̂1Y we write simply Hn(Y , X;M).
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1.11. The moduleΩΛ
We close this section with the following important example of a module in the category ofΠA-algebras:
Given aΠA-algebraΛ, we define theΠA-algebraΩ+Λ as an A-graded group by (Ω+Λ){A} := Λ{ΣA ∨ A}. We identify

theΠA-algebra structure onΩ+Λ as follows:
Given f : B → A in ΠA, define ∇f : B → A ∨ A to be −i2 ◦ f + (i1 + i2) ◦ f , using the cogroup structure on B (where

i1, i2 : A → A∨ A are the two inclusions). If j : A∨ A ↩→ A is ∗ ∨ Id, then j ◦ ∇f ∼ ∗, with a nullhomotopy H : CB → A. Now
let I∗X denote the reduced cylinder in C and let G be the composite of

I∗B
I∗∇f
−−→ I∗(A ∨ A) = I∗A ∨ I∗A

q∨p0
−−→ ΣA ∨ A,

where q : I∗A → ΣA is the quotientmap and p0 : I∗A → A is the projection. Ifwe identifyΣBwith the pushoutCB∪BI∗B∪BCB
(under the two inclusions of B into I∗B), we define E(∇f ) : ΣB → ΣA∨ A to be the map given on the pushout by (H,G,H),
and call it the partial suspension of ∇f . Because [ΣB,ΣA∨ A] is an abelian group, this is independent of H . See [4, Section 3]
for more details, including explicit rules for applying the partial suspension to maps among wedges of spheres.

SinceΛ is contravariant, the map (E∇f , i2 ◦ f ) : ΣB∨ B → ΣA∨ A induces the required map f ∗
: Ω+Λ{A} → Ω+Λ{B}.

We thus have a split exact sequence ofΠA-algebras:

∗ // ΩΛ // Ω+Λ p
// Λ

zz
// ∗,

where ΩΛ := Ker (p). This gives Ω+Λ the structure of a module over Λ — or equivalently, a natural system on ΠA (see
Section 2.4 below). Note that (ΩΛ){A} ∼= Λ{ΣA}, for all A ∈ ΠA, but the operation f ∗

: ΩΛ{A} → ΩΛ{B} described as
above for f : B → A is not in general (Σ f )∗ : Λ{ΣA} → Λ{ΣB}.

Remark 1.12. A canonical identification of (A ⊗ S1)/(∗ ⊗ S1) withΣA ∨ A in any pointed model category is given in [10],
such that

(B ⊗ S1)/(∗ ⊗ S1)
(f⊗S1)/(∗⊗S1) //

≃

��

(A ⊗ S1)/(∗ ⊗ S1)

≃

��
ΣB ∨ B

(E∇f ,i2◦f )
// ΣA ∨ A

commutes up to homotopy for any f : B → A. Thus our definition ofΩ+Λ agrees with that of [35, Section 9.4].

2. Track categories and natural systems

The first approach to realization problems in Section 0.3(a), developed in [11] (cf. [7, Sections 2–3]), concentrates on
secondary homotopy structure, in the following sense:

Definition 2.1. A track category is a category E enriched in groupoids. It thus consists of two categories E0 and E1, with the
same objects, and two functors s, t : E1 → E0 which are the identity on objects. Here E0 is the ordinary category underlying
E , while E1(X, Y ) is a groupoid, with maps f : X → Y in E0 as objects, and a set E1(f , g) of morphisms (called 2-cells) from
s(H) = f : X → Y to t(H) = g : X → Y , written as H : f ⇒ g . The groupoid operation is denoted by H�H ′, when defined.

There is natural equivalence relation on maps in E0 induced by the 2-cells, and the quotient category ho E is called the
homotopy category of E . See [5, VI, Section 3] for further details.

Example 2.2. The motivating example of a track category is obtained from a model category C by letting E0 = Ccf (the
full subcategory of fibrant and cofibrant objects), with E1(X, Y ) the groupoid of tracks (homotopy classes of homotopies)
between maps from X to Y in C. This is called the homotopy track category of C.

Remark 2.3. There is a model category structure on the category Trk of (small) track categories, with (strict) track functors,
in which the weak equivalences are bi-essential surjections F : E → E ′ which induced equivalences of categories
F : E1(X, Y )

∼=
−→ E ′

1(FX, FY ) (see [41]).

Definition 2.4. For any category K , the category of factorizations of K is the category FacK having as objects ArrK (the
morphism set of K) and as morphisms from f to g commuting squares of the form

1
f // 2

β

��
0

α

OO

g
// 3

with the obvious composition. A natural system on K with values in a category M is a functor D : FacK → M. The
category of such natural systems (with natural transformations as morphisms) will be denoted by NSK(M) = MFacK .
When M = AbGp, D is called simply a natural system on K (see [11, Section 1]).
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Example 2.5. For A ⊆ C as in Section 0.1, we have a canonical natural system ΩΠA on ΠA, defined for f : B → A in ΠA

by ΩΠA(f ) := HomΠA
(ΣB, A) = [ΣB, A]hoC . For g : A → A′, the induced map g∗ : ΩΠA(f ) → ΩΠA(gf ) is given by

post-composition, while for h : B′
→ B, h∗

: ΩΠA(f ) → ΩΠA(fh) is given by (E∇h)∗(α, f ) (cf. Section 1.11).

2.6. Baues–Wirsching cohomology of a small category
If NK is the nerve of K , define ∂max : NnK → N1K by ∂max(σ ) := d1d2 · · · dn−1σ ∈ N1K (the composite of the

corresponding composable sequence in K), and set

Nn[f ] := {σ ∈ NnK : ∂max(σ ) = f } for any arrow f in K.

This defines a collection of sets indexed by ArrK . Note that there is a forgetful functor from natural systems onK to ArrK-
graded sets, whose left adjoint is the free natural system functor (cf. [21, Section 5.14]. Thus for each n ≥ 0 we have a free
natural system in sets on K denoted by ÑnK .

The face and degeneracy maps of NK induce maps of natural systems as follows:

(a) If φ = di : NnK → Nn−1K (0 < i < n) or φ = sj : NnK → Nn+1K (0 ≤ j ≤ n), we define φ̃ : ÑnK → Ñn±1K to be
F φ.

(b) Given σ ∈ NnK , define the map of natural systems d̃0 : ÑnK → Ñn−1K by setting d̃0(σ ) := (d2 · · · dnσ)∗(d0σ). This
extends to all of ÑnK by the adjointness of U and F above.

(c) We similarly define the n-th face map d̃n : ÑnK → Ñn−1K by d̃n(σ ) := (d0 · · · dn−2σ)∗(dnσ).

This makes Ñ•K := (ÑnK)
∞

n=0 into a simplicial object in the category NSK(Set).
Finally, a natural system (in AbGp) on K can be thought of as an abelian group object D in NSK(Set), so we can define

a cosimplicial abelian group C•(K;D) by setting Cn(K;D) := HomNSK (Set)(ÑnK,D). Its n-th cohomotopy group is defined
to be the n-th Baues–Wirsching cohomology group of K with coefficients in D, written as Hn

BW(K;D) := πn(C•(K;D)).
The cochain complex F∗(K,D) used in [11] to define Hn

BW(K;D)is that associated with C•(K;D), so Hn
BW(K;D) ∼=

HnF∗(K,D).

Definition 2.7. A linear track extension of a categoryK by a natural systemD is a track category E with ho E = K , for which
AutE (f ) is naturally isomorphic to D([f ]) for all maps f in E0. Such an extension is denoted by D → E → K .

Proposition 2.8 ([5, VI, Theorem 3.15]). The set of all linear track extensions of a category K by a given natural system D, up to
(D-equivariant) weak equivalence, is in one-to-one correspondence with H3

BW(K;D).

This can be interpreted as describing the homotopy equivalence classes in Trk/ ho E (as in Section 2.3).

Remark 2.9. If A is a set of spherical objects in a model category C, let C̃A be a sub-track category of the homotopy track
category ofC with ho C̃A

∼= ΠA. This is a linear track extensionΩΠA → C̃A → ΠA, and one can describe an explicit cocycle
representing the corresponding cohomology class χC̃A

in H3
BW(ΠA;ΩΠA) as follows:

Choose an arbitrary fixed representative sφ : 0 → 1 in C for each 1-simplex φ : 0 → 1 in N1(ΠA), and a fixed

track H(φ,ψ) : sφ ◦ sψ ≃ s(φψ) for each 2-simplex 0
ψ
−→ 1

φ
−→ 2 in N2(ΠA). Now we associate with each 3-simplex

0
φ1
−→ 1

φ2
−→ 2

φ3
−→ 3 in N3(ΠA) the element

H(φ3,φ2◦φ1)�(φ3)∗H(φ2,φ1)�(φ1)
∗H−1

(φ3,φ2)
�H−1

(φ3◦φ2,φ1)
(2.10)

in Aut(s(φ3 ◦ φ2 ◦ φ1)) ∼= (ΩΠA)(φ3 ◦ φ2 ◦ φ1).

3. (S∗, O)-categories and (S∗, O)-cohomology

For the second approach to the realization problem of Section 0.3, due to Dwyer and Kan, we use the framework of
simplicially enriched categories:

Definition 3.1. For a fixed set O, a category Z enriched in simplicial sets with object set O will be called an (S,O)-category,
and the category of all such will be denoted by (S,O)-Cat . Equivalently, such a category Z can be thought of as a simplicial
object in O-Cat (Section 0.6): this means that C has a fixed object set O in each dimension, and all face and degeneracy
functors the identity on objects.

More generally, if (V,⊗) is anymonoidal category, a (V,O)-category is a small categoryC ∈ O-Cat enriched overV . The
category of all such categories will be denoted by (V,O)-Cat . Examples for (V,⊗) include T , Gp, Gpd, and S, with ⊗ = ×

(Cartesian product), or the category Set� of cubical sets with its monoidal enrichment ⊗ (see [18, Section 1.5]).
The main example that we shall be working with is V = S∗, with ⊗ = ∧ (smash product). Again we can identify an

(S∗,O)-category with a simplicial pointed O-category.

3.2. (S∗,O)-categories
In [29, Section 1], Dwyer and Kan define a simplicial model category structure on (S,O)-Cat , also valid for (S∗,O)-Cat

(cf. [40, Prop. 1.1.8]), in which a map f : X → Y is a fibration (or a weak equivalence) if for each a, b ∈ O, the induced map
f(a,b) : X(a, b) → Y(a, b) is such.
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The cofibrations in (S,O)-Cat or (S∗,O)-Cat are not easy to describe. However, ifK ∈ O-Cat is any category with object
set O, then c(K) ∈ sO-Cat ∼= (S,O)-Cat has a cofibrant replacement defined as follows:

There is a forgetful functor U : Cat → DiG to the category of directed graphs, whose left adjoint F : DiG → Cat is the
free category functor (cf. [29, Section 2.4] and [26, Section 2]). Both U and F are the identity on objects. A canonical cofibrant
replacement for the constant simplicial category c(K) ∈ sO-Cat is provided by the simplicial category F•K , obtained by
iterating the comonad FU : O-Cat → O-Cat (so FnK := (FU)n+1K). The augmentation F•K → K induces a weak
equivalence F•K ≃ c(K) in sO-Cat ≈ (S,O)-Cat . If K is pointed, F•K is an (S∗,O)-category.

Both (S,O)-Cat and (S∗,O)-Cat are semi-spherical (Section 1.5), with coefficient category (Gpd,O)-Cat (=track
categories with object set O).

The fundamental track category of a (fibrant) (S,O)- or (S∗,O)-category Z is obtained by applying the fundamental
groupoid functor π̂1 : S → Gpd to each mapping space Z(a, b), noting that π̂1 commutes with cartesian products, and thus
extends to (S,O)-Cat (and to (S∗,O)-Cat , too, since in the pointed case the composition factors through ∧). For each n ≥ 2
we obtain a π̂1Z-module by applying πn(−) to each mapping space of Z (again, πn preserves products).

The usual Postnikov tower functor, classifying space, and Eilenberg–Mac Lane functors for S or S∗ similarly preserve
products, and thus extend to (S,O)-Cat and (S∗,O)-Cat . For the functorial k-invariants, use the construction of
[16, Section 6].

Notation 3.3. We write H∗

SO(Z/Λ;M) (or just H∗

SO(Z;M)) for the cohomology groups of an (S∗,O)-category Z, as defined
in Section 1.8. Similarly, we write H∗

SO((Z,Y)/Λ;M) (or just H∗

SO(Z,Y;M)) for the relative cohomology of Section 1.9. We
call this the (S∗,O)-cohomology (compare [32]).

Definition 3.4. A cubical version of the free simplicial category F•K on a category X ∈ O-Cat is provided by the bar
construction of Boardman and Vogt: this is a category WK enriched in the monoidal category (Set�,⊗) of cubical sets
(Section 0.6). For a, b ∈ O = ObjK , the cubical mapping complexWK(an+1, a0) has an n-cube In(f•) for each sequence

f• =


an+1

fn+1
−−→ an

fn
−→ an−1 . . . a1

f1
−→ a0


(3.5)

of (n + 1) composable maps in K .
The i-th 0-face d0i of I

nf• is identifiedwith In−1f1 ◦ · · · ◦ (fi · fi+1) ◦ · · · fn+1, that is,we carry out (inK) the i-th composition
in the sequence f•.

The cubical composition

WK(a0, ai)⊗ WK(ai, an+1) → WK(a0, an+1) = WK(a, b)

identifies the ‘‘product’’ (n−1)-cube I if0 ◦ · · · ◦ fi⊗ In−i−1fi+1 ◦ · · · ◦ fn+1 with the i-th 1-face d1i of I
nf•. See [22, III, Section 1]

or [18, Section 3.1] for further details.

Lemma 3.6. For any small category K , the simplicial category F•K is a natural triangulation of WK .

Proof. The n-cube Inf• is subdivided into n! n-simplices by fully parenthesizing (f1, . . . , fn+1) in all possible ways, with the
i-th face map defined by omitting the i-th level of parentheses (cf. [20, Section 2.21]). �

Example 3.7. For n = 2, given three composable maps 0
h
−→ 1

g
−→ 2

f
−→ 3, we have

(f )(g)(h)•
((f )(g))((h)) //

((f ))((g)(h))

��

((f )(g)(h))

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ •(fg)(h)

((fg)(h))

��

(((f )(g))((h)))

(((f )((g)(h)))

(f )(gh)•
((f )(gh))

// •(fgh)

(3.8)

Remark 3.9. If D is a natural system on a category K , with O = Obj(K), it can be thought of as an abelian group object
on O-Cat/K . Moreover, K itself is the (discrete) fundamental groupoid of the homotopically trivial simplicial category
F•K ≃ K in (S,O)-Cat . (or (S∗,O)-Cat , if K is pointed). Thus D is just a moduleM over K .

Theorem 3.10. If D is a natural system on a small pointed category K , the n-th Baues–Wirsching cohomology group Hn
BW(K;D)

is naturally isomorphic to the (n − 1)-st (S∗,O)-cohomology group Hn−1
SO (K;D), for each n ≥ 1.
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In [31, Theorem 5.3], Dwyer and Kan prove a similar result, using a different definition of the cohomology of a small
category, which they call the Hochschild–Mitchell cohomology.
Proof. The (S∗,O)-cohomology groups Hn

SO(K/G;D) ∼= [F•K, EG(M, n)](S∗,O)-Cat/BG of Section 1.8 may be computed as
the cohomotopy groups of the cosimplicial abelian group E•

:= Hom(S∗,O)-Cat/K(F•K,D) (cf. [19, Proposition 3.11]).
In order to compare E• with C•(K,D) of Section 2.6, note that for n ≥ 1, there is an obvious one-to-one correspondence

between the n-cubes ofWK (Section 3.4) and the (n+1)-simplices of the nerve N (K). Moreover, for n ≥ 2 this extends to
the face maps, if we omit the d1i -faces with 1 < i < n — that is, those which are cubical products of two lower dimensional
cubes. There are 2n − (n − 2) = n + 2 remaining (n − 1)-facets, of which two are the Cartesian products I0(f0) × In(f1,...,fn+1)

and In(f0,...,fn) × I0(fn) (corresponding to d0σ(f•) and dn+1σ(f•), respectively), and the others are obtained from the adjacent
compositions as for diσ(f•) (i = 1, . . . , n). Note that the facets that we have omitted are not relevant for the coboundary of
a cubical (n − 1)-chain.

Finally, the cubical cochain complex C•
c := Hom(Set�,O)-Cat/K(WK,D) has the same cohomology as E• by the Lemma 3.6

and theAcyclicModel Theorem (cf. [36]), and clearly has the same cohomology as C•(K,D)by the correspondence described
above. �

Remark 3.11. Using the triangulation of Lemma 3.6, we can realize correspondence between the n-cubes of WK and the
(n + 1)-simplices of the nerve N (K) simplicially in the barycentric subdivision B of the nerve, as follows:

Consider the triangulated n-cube In(f•) indexed by the composable sequence (3.5) as a subcomplex of F•K . and let B(f•)
denote the barycentric subdivision of the corresponding (n + 1)-simplex σ n+1

(f•) of N (K).
Note that for i ≥ 1, the i-simplices of σ n+1

(f•) are labeled by sub-sequences of f•, with a single level of parenthesization
(indicating where compositions, if any, have been carried out) — for example, (f2f3)(f4)(f5f6). These also label the
corresponding vertices of Bf• (ignoring those which come from the vertices of σ n+1

(f•) ), and each k-simplex of B(f•) corresponds
to an ascending ‘‘flag’’ of k + 1 inclusions of faces of σ n+1

(f•) .
Now let C(f•) denote the set of vertices of B(f•) which are labeled by (one-level) parenthesizations of the full sequence

(f1, . . . , fn+1) (corresponding to the simplices of σ n+1
f• which have both a0 and an+1 as vertices), and let E(f•) be the

subcomplex of B(f•) spanned by C(f•). A k-simplex of E(f•) thus corresponds to a sequence of k + 1 parenthesizations of
(f1, . . . , fn+1), each obtained from the next by coalescing a neighbouring pair of parentheses (since this describes the only
face maps of N (K) which remain inside C(f•)). Therefore, such a (k + 1)-flag can be labeled by a single (k + 1)-level
parenthesization of (f(1), . . . , f(n+1)), just like the (k − 1)-simplices of In(f•). Thus I

n
(f•) is isomorphic as a simplicial complex

to E(f•).

4. André–Quillen cohomology ofΠA-algebras

Since the category sΠA-Alg of simplicial ΠA-algebras is a semi-spherical model category (Section 1.5), we can use
Section 1.8 to define the cohomology groups of aΠA-algebraΛwith coefficients in aΛ-moduleM (see Section 1.7).
Notation 4.1. In such algebraic settings, this is traditionally called the André–Quillen cohomology, since it can be computed
via a cotangent complex, as in [3,44]. We therefore denote it by H∗

AQ(Λ;M) := H∗(BΛ;M).
We would like to compare this with the (S∗,O)-cohomology of a suitable (S∗,O)-category (cf. Section 3.2), for which

we need the following framework:
Definition 4.2. Given a set A of spherical objects in a model category C, we let CA denote the smallest full subcategory of
C containing A and closed under weak equivalences and arbitrary coproducts.

Using (0.2), we see that the functor πA : hoC → ΠA-Alg induces an equivalence of categories between the
corresponding subcategory hoCA of the homotopy category hoC and the category FA of free ΠA-algebras in ΠA-Alg
(namely, those which are isomorphic to πAB for B ∈ CA). Moreover, we can extend any ΠA-algebra Λ : ΠA → Set∗ to
a functor hoCA → Set∗ taking (arbitrary) coproducts to products.

A small FA-variant is a full small subcategory D of FA (or hoCA) containing an isomorphic copy ofΠA: in other words,
ObjD must contain all finite coproducts of objects from A, up to isomorphism.

Given a ΠA-algebra Λ and a small FA-variant D with O := Obj(D), we let D+ denote the category with object set
O+

:= O ∪ {⋆}, where

HomD+(A, B) =


HomD(A, B) if a, b ∈ O

HomΠA-Alg(A,Λ) = Λ{A} if A ∈ O and B = ⋆

{Id⋆, ∗} if A = B = ⋆

{∗} otherwise.

(4.3)

That is, all maps out of ⋆ are trivial. Thus we have a full and faithful embedding ofD inD+, and ⋆ is a weakly terminal object
in D+. We call (D+,D) aΛ-pair (in hoC).

Equivalently, if we embed D in O+-Cat (making all maps into ⋆ trivial), we can think of a Λ-pair (in hoC) as an
O+-category under D (and require only the last three conditions of (4.3)).
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Example 4.4. Let D be the subcategory of hoC whose objects are of the form


i∈S Ai with Ai ∈ A (i ∈ S) and cardinality
Card(S) ≤ max{ℵ0, Card(UΛ)}. This is a small FA-variant. We can think of D+ as a subcategory ofΠA-Alg , by identifying
⋆withΛ.

It turns out that the relative (S∗,O)-cohomology of such a pair (cf. Section 1.9) has an algebraic interpretation:
Theorem 4.5. Let Λ be a ΠA-algebra, M a Λ-module, and (D+,D) a Λ-pair. Then for any n ≥ 1, the n-th André–Quillen
cohomology group Hn

AQ(Λ;M) is naturally isomorphic to the n-th relative (S∗,O)-cohomology group Hn
SO(D

+,D;M).
Proof. LetV• → Λbe the canonical free simplicial resolution (in the resolutionmodel category on sΠA-Alg of Section1.4(b))
produced by the ‘‘free on underlying’’ comonad F = FU , and let E• be the analogous free (S∗,O)-resolution for D+

=

D ∪ {⋆} as in Section 4.4. Thus π0E• is D+
∈ (S∗,O

+)-Cat . The relative version Ê• is obtained from E• by ‘‘excision of D ’’ —
that is, we define the simplicial mapping spaces for Ê• by

Ê•(A, B) :=


E•(A, B) if B = ⋆

c(HomFA
(A, B)) if B ∈ F +

A .

The twisting map p : E• → c(K) induces an (S∗,O)-functor ρ : E• → Ê•.
Note that π0V•

∼= UΛ and UV•
∼=


ϕ∈π0V•

V [ϕ], where V [ϕ] is the component of ϕ ∈ Λ{A} for some A ∈ ΠA

(Section 0.1). Then each V [ϕ] is isomorphic to the component of ϕ : A → Λ in the simplicial mapping space E•(A,Λ) =

Ê•(A,Λ) (so in simplicial dimension n, V [ϕ]n consists of depth n parenthesizations of composable sequences of morphisms
in K , with composite ϕ). Because V• is a simplicialΠA-algebra, for any θ : A′

→ A in F ′
A we have a simplicial map

θ∗
: V [ϕ] → V [ϕ ◦ θ ] (4.6)

defining an action of F ′

A on the simplicial sets V [−].
Since the category sΠA-Alg is semi-spherical, for each Λ-module M and n ≥ 1 we have an Eilenberg–Mac Lane object

EΛ(M, n) in sΠA-Alg/BΛ, as well as an object EΛ(D, n) in (S∗,O)-Cat/K . Moreover, we can assume that both are strict
abelian group objects in their respective categories (see [17, Section 3.14]).

Any map of simplicial ΠA-algebras f : V• → EΛ(M, n) (over BΛ) defines an (S∗,O)-map f̂ : Ê• → EΛ(D, n), which is
defined on the simplicial mapping spaces E•(A,Λ) via the above identification with the components V [ϕ] of V•. These fit
together to define an (S∗,O)-map, because of the action (4.6).

Precomposing this with ρ : E• → Ê• yields an element in the relative (S∗,O)-cohomology group Hn
SO(D

+,D;M). The
converse direction is treated similarly. �

5. Diagrams and (S, O)-categories

Wenow explain the approach of Dwyer et al. (see [29,30,32,33]) to realizing a homotopy commutative diagram X : K →

ho T , based on the concepts introduced in Section 3.
Definition 5.1. A diagram up to homotopy in a simplicial model category C is a functor X : K → hoC from some small
indexing category K . By definition, one can choose a functor X0 : sk0 F(K) → C lifting X (sometimes called a 0-realization
of X). An extension of any such X0 to a simplicial functor X∞ : F(K) → C makes X ∞-homotopy commutative.

A classical result of Boardman and Vogt (compare [33, Corollary 2.5]) says:

Theorem 5.2 ([22, Cor. 4.21 & Thm. 4.49]). A diagram X : K → ho T can be rectified (i.e., lifted to X̂ : K → T ) if and only if
X can be made ∞-homotopy commutative.
Notation 5.3. When we want to emphasize that we are thinking of a simplicial model category C just as a simplicially
enriched category, we denote it by sC.
Remark 5.4. Theorem 5.2 implies that the rectification of a homotopy commutative diagram X : K → hoC can be
described purely in terms of the simplicially enriched category sC — in fact, we can restrict to an (S∗,O)-category sCX
the sub-simplicially enriched category of sC with function complex map sCX

(u, v) := map sC(Xu, Xv) for each u, v ∈ O :=

ObjK .
Note that a choice of a 0-realization X0 : Γ → T∗ is equivalent to choosing basepoints in each sCX (u, v), though of

course this cannot be done coherently unless X is rectifiable.

5.5. The obstruction theory
Given X : K → hoC as above, the (possibly empty) moduli space hc X of all rectifications of X is homotopy equivalent

to the space hc∞ X := mapO-Cat(F(K), sCX ) of all functors making X ∞-homotopy commutative, which in turn is the
(homotopy) inverse limit of the tower

hc∞ X → · · · → hcn X → hcn−1 X · · · → hc1 X ,
where hcn A := mapO-Cat(F(K), Pn−1

sCX ). Therefore, the realization problem can be solved if one can successively lift
X̂1 ∈ hc1 X through the tower.

The components of hc∞ X are not in general determined by those of the spaces hcn X (cf. [33, 3.4]). Because each hcn X
is a mapping space, we can use successive liftings X̂n ∈ hcn X to pull back the (n − 1)-st k-invariant for sCX to a map
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hn : F•K → KG(πn
sCX , n + 1), and Dwyer, Kan, and Smith show:

Proposition 5.6 ([33, Proposition 3.6]). The map X̂n lifts to X̂n+1 ∈ hcn+1 X if and only if [hn] ∈ Hn+1
SO (K;πn

sCX ) vanishes.

5.7. A relative version
There is also a relative version of this obstruction theory, in which, given X : K → hoC as above, we assume that we

have a subcategory L of K equipped with a lift Ŷ : L → C of X |L. This defines a map from the pushout

F•L

PO
p

��

i // F•K

��
L // F•(K,L)

(compare (1.10)) into P0 sCX , which lifts (non-canonically) to P1 sCX because X is homotopy commutative.
Again, we can use each of the successive liftings X̂n ∈ hcn X to pull back the (n − 1)-st k-invariant for sCX to a map

hn : F•(K,L) → KK(πn
sCX , n + 1), representing an (S∗,O)-cohomology class [hn ∈ Hn+1

SO ((K,L)/K;πn
sCX ), and the

relative version of Proposition 5.6 clearly holds.

6. The first obstruction

Given a natural system D on a category K , one can always construct a trivial linear track category with D as its (abelian)
fundamental groupoid. Moreover, by Proposition 2.8, the linear track extensions of K by D are classified up to weak
equivalence by H3

BW(K;D). When K = ΠA for some set A of spherical objects in a model category C, the cohomology
class determining the extension is represented by the explicit cocycle of Section 2.9. We now show how this is reflected in
(S∗,O)-Cat . For this purpose, we need an (S∗,O)-version of Definition 4.2:

Definition 6.1. LetC be a simplicial model category with spherical objects A. A small sCA-variant is a full (necessarily small)
fibrant sub-simplicial category sC ′

A of sCA (Section 5.3), such that π0
sC ′

A is a small FA-variant (Section 4.2). This just means
that O := Obj sC ′

A contains all finite coproducts of objects of A, up to weak equivalence.
We assume that all objects in C ′

A are cofibrant, and for simplicity we also assume that O contains a canonical copy of
ObjΠA.

Example 6.2. A minimal small sCA-variant is any skeletal subcategory X of sCA with π0X = ΠA (Section 0.1). In particular,
we denote by sCmin

A the canonical minimal small sCA-variant, whose objects consist of a (functorial) fibrant and cofibrant
replacement for each non-isomorphic finite coproduct of objects from A.

More generally, if D is any small FA-variant, choose any embedding i : D ↩→ hoC for which i(a) is fibrant and cofibrant
for each a ∈ O := ObjD . We then obtain a fibrant small sCA-variant sC ′

A by setting map sC′
A
(a, b) := mapCA

(i(a), i(b)).

6.3. The 0-th k-invariant
In general, it makes no sense to speak of the 0-th k-invariant of an (S∗,O)-category X, since π̂1X is not an abelian group

object over K := π0X — even though we do have a pullback square of the form (1.6) for n = 0, too. However, k0 is a
well-defined cohomology class in the following specialized situation:

Assumption 6.4. Let A be a collection of spherical objects in a simplicial model category sC, let sC ′
A be a small sCA-variant

— so that D := π0
sC ′

A is a small FA-variant, the track category E of sC ′
A is linear (Section 2.2), andΩD is a natural system

on D := π0
sC ′

A (cf. Section 1.11 and Section 2.5). We let O := Obj sC ′
A.

With these assumptions we find:

Theorem 6.5. The 0-th k-invariant for sC ′
A corresponds to the cohomology class χE classifying the linear track extension

ΩD → E → D (cf. Section 2.9) under the natural isomorphism of Theorem 3.10.

Proof. Set X :=
sC ′

A, and consider the following square of the form (1.6) in (S∗,O):

P1X

PO
p

��

i // Y

q

��

F•D = BD
ξ

≃

oo

P0X j
// Z ,

in which the homotopy pushout Z satisfies P2Z ≃ ED(ΩD, 2) ≃ ED(π1X, 2) by [16, Proposition 6.4], and thus if
r (2) : Z → P2Z is the structuremap of Section 1.5(c), the 0-th k-invariant forX is k0 := r (2)◦q ∼ r (2)◦ j by construction.We
use Kan’s original model for the Postnikov system, so (PkX)n consists of ∼k-equivalence classes of n-simplices in X, where
σ ∼k τ ⇔ skk σ = skk τ (cf. [38, VI, Section 2]). We assume that X is fibrant (so each mapping space X(u, v) is a Kan
complex).
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Factor p = p(1) : P1X → P0X as a cofibration i : P1X → Y followed by a weak equivalence, so the pushout above
is a homotopy pushout, as required. Thus Yi = Xi for i ≤ 1, while Y2 = (X2/ ∼) ⨿ Ȳ , where Ȳ has a ‘‘fill-in’’ 2-simplex
T = T(σ0,σ1,σ2) for every triple of 1-simplices (σ0, σ1, σ2) in X1, with matching faces, having diT = σi. The pushout Z thus
consists of the reduction via ∼0 of the copy of X in Y, with Ȳ unaffected. The 2-simplices K(σ ,0,0) for non-nullhomotopic σ
represent π̂1X in P2Z ≃ ED(π̂1X, 2). We shall not need the description of Y or Z in higher dimensions.

Let F•D be the cofibrant replacement for P0X constructed as in Section 3.2. The weak equivalence ξ : F•D → Y is then
defined as follows:

Every 0-simplex (φ) ∈ F•D corresponds to a homotopy class φ ∈ [Xu, Xv]hoC , and ξ(φ) is a choice of a representative
s(φ) in (P0X)0 = X(u, v)0. For a (non-composite) 1-simplex σ = ((φk) . . . (φ1)) in (FU)2D , ξ(σ ) is a choice of a homotopy
H(φk,...,φ1) between s(φk) · . . . · · · (φ1) and s(φk · . . . · φ1), which exists since D = ho E . Finally, the faces of any 2-simplex
τ ∈ (FU)3D form a triple of matching 1-simplices, so their image under ξ has a canonical fill-in T ∈ Ȳ , andwe set ξ(τ ) = T .

Now either of the twomaps from P0X to P2Z represents k0; using the cofibrantmodelF•D for the source, it is enough to
identify the map on 2-simplices — or, using the identification of simplicial and cubical cohomology mentioned in the proof
of Theorem 3.10, on the (triangulated) square I2(φ3◦φ2◦φ1) as in (3.8). By the descriptions of ξ and Y above, this maps to

s(φ3) · s(φ2) · s(φ1)
t ✛

H(φ3,φ2)·s(φ1) t s(φ3φ2) · s(φ1)

✻

s(φ3) · H(φ2,φ1)

ts(φ3) · s(φ2φ1)
✛

H(φ3,φ2φ1)

t s(φ3φ2φ1)

✻

H(φ3φ2,φ1)

◗
◗

◗
◗

◗
◗

◗
◗◗❦

H(φ3,φ2,φ1)
◗

◗
◗

◗
◗

◗
◗

◗

ξ(((φ3)(φ2))((φ1)))

ξ(((φ3))(φ2)(φ1)))

which is just the cocycle of (2.10), under the isomorphism of Theorem 3.10. �

Corollary 6.6. Under the assumptions of Section 6.4, the equivalence classes of linear track extensions ΩD → E → D are in
one-to-one correspondence with one-stage Postnikov systems of (S∗,O)-categories Y (that is, those satisfying Y ≃ P1Y) such
that π0Y ∼= D , and π1Y ∼= ΩD as (K-Mod,O)-categories.

6.7. A relative version
Now assume that sC ′

A ∈ (S∗,O)-Cat as in Section 6.4 extends to an (S∗,O
+)-subcategory X of sC, obtained by

adding a single new object Y ∈ C. Thus O+
:= O ∪ {Y }, X|O=

sC ′
A, and we omit all non-trivial maps out of Y , so

mapX(Y , Y ) = c({IdY , ∗}) and mapX(Y , B) = c({∗}) for all B ∈ O (see Section 8.1 below).
In this case we can extend the track category E of sC ′

A to a track category E+ for X, which is still linear (since all non-
trivial maps are out of homotopy cogroup objects). If D+

:= π0X, then (D+,D) is a Λ-pair, for Λ := πAY (Section 4.2),
andΩD+ is a natural system on D+. Therefore, Theorem 6.5 applies in this situation, too: that is, the 0-th k-invariant for
X corresponds to the cohomology class classifying the linear track extensionΩD+

→ E+
→ D+.

Note that the inclusion of categories sC ′
A ↩→ X, and the corresponding inclusion of object setsO ↩→ O+, induces natural

transformations in the Baues–Wirsching cohomology and (S∗,O)-cohomology fitting into long exact sequences with the
relative versions, with all vertical maps being isomorphisms by Theorem 3.10:

. . .Hn
BW(D

+
;ΩD+)

i∗ //

∼=

��

Hn
BW(D;ΩD)

δn //

∼=

��

Hn+1
BW (D+,D;ΩD+) . . .

∼=

��
. . .Hn−1

SO (X;ΩD+)
i∗ // Hn−1

SO ( sC ′
A;ΩD)

δn−1
// Hn

SO(X,
sC ′

A;ΩD+) . . .

(6.8)

Lemma 6.9. The class δ3(χE ) in H4
SO(D

+,D;ΩD+) is the obstruction to realizingΛ by a track category E+ inside that of C.

Proof. The class δ3(χE ) vanishes if and only if χE is in the image of i∗ in the top row of (6.8) — that is, if and only if E extends
to a linear track category E+ realizingΛ. �
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From the ladder of isomorphisms (6.8) we deduce:

Corollary 6.10. The class δ2(χD̃) maps under the isomorphism of Theorem 3.10 to the relative k-invariant δ2(k0) in
H3

SO(X,
sC ′

A;ΩD+), which is the obstruction to realizingΛ as a one-stage Postnikov system in the (S∗,O)-category for C.

7. RealizingΠA-algebras

The approach of [35,35,16] to realizingΠ-algebras can be generalized somewhat (see [17]), but it still does not apply to
arbitrary resolutionmodel categories (for example, it does not even apply to topological spaces ifA consists of mod-pMoore
spaces — see [13, Section 4.6]). We therefore restrict to the following setting:

Definition 7.1. If C is a semi-spherical resolution model category equipped with a set of spherical objects A, the resolution
model category sC (Section 1.2) is called a strict E2-model category if the inclusion c(−) : C → sC has a left adjoint
R : sC → C, called the realization functor for sC, such that for all A0 ∈ A, the natural map induced by the unit
εX•

: X• → c(RX•)

ε∗ : ‖mapC(A0, X•)‖ → mapC(A0, R(X•)) is a weak equivalence (7.2)

as long as X• ∈ sC is cofibrant in the resolution model category structure on sC determined by A0 := {ΣkA0}
∞

k=0. Here ‖Q•‖

is the diagonal of a bisimplicial set Q• ∈ sS.

Example 7.3. The main example that we have in mind is C = T∗ with A = {Sk}∞k=1, and R the usual geometric realization.
In this case the cofibrancy condition on X• implies that each Xn is (k − 1)-connected, when A0 = Sk, so (7.2) holds by [42,
Theorem 12.3] (see also [2]).

In [17, Theorems 3.15–3.19], it was shown that all the examples of Section 1.4 are E2-model categories, which satisfy a
somewhat weaker set of axioms (see [17, Definition 3.12]). However, there are a number of additional examples satisfying
these stricter conditions — T∗ can be replaced by Sred or G, or various categories of spectra, or DG-categories; or we can
take diagrams in these categories. We can also use localized or truncated spheres. In order to cover all these cases we have
therefore stated the conditions needed in axiomatic form. This also permits them to be dualized more readily (Section 0.4).

In this context the obstruction theory of [16] can be stated using the following:

Definition 7.4. A quasi-Postnikov tower for aΠA-algebraΛ is a tower of fibrations

· · ·
p(n+1)

−−−→ X⟨n + 1⟩•
p(n)
−−→ X⟨n⟩•

p(n−1)

−−−→ · · ·
p(0)
−−→ X⟨0⟩• ≃ BΛ

in sC/BΛ such that πAX⟨n⟩• ≃ EΛ(Ωn+1Λ, n + 2) (as for the usual Postnikov system of a realization of BΛ in sC — see [17,
Section 5.8]). The object X⟨n⟩• ∈ sC will be called an n-th quasi-Postnikov section forΛ.

The following is shown in [16, Section 9] and [17, Theorems 5.6–5.7]:

Theorem 7.5. Let C be an E2-model category with a set of spherical objects A. AΠA-algebra Λ is realizable if and only it has a
quasi-Postnikov tower in sC/BΛ. Moreover, if such a tower exists in degrees ≤ n − 1, then:

(a) Up to homotopy, there is a unique X⟨n⟩• ∈ sC with Pn−1X⟨n⟩• = X⟨n − 1⟩•,

π#
k (X⟨n⟩•) ∼=


ΩkΛ for 0 ≤ k ≤ n,
0 otherwise

(7.6)

(see Section 1.11).
(b) This X⟨n⟩• is an n-th quasi-Postnikov section for Λ if and only if the (n + 2)-nd k-invariant for πAX⟨n⟩• vanishes in

Hn+3
AQ (Λ;Ωn+1Λ).

(c) In that case, the different choices for the map p(n) : X⟨n + 1⟩• → X⟨n⟩• are in one-to-one correspondence with elements of
Hn+2

AQ (Λ;Ωn+1Λ).

Note that from the spiral exact sequence (1.3) we can deduce from (7.6) that

πkπAX⟨n⟩• ∼=


Λ for k = 0
Ωn+1Λ for k = n + 2,
0 otherwise.

(7.7)

The vanishing of the (n + 2)-nd k-invariant for πAX⟨n⟩• is equivalent to the latter being an Eilenberg–Mac Lane object
EΛ(Ωn+1Λ, n + 2) in sΠA-Alg .

8. Mapping algebras

In order to compare the approaches of Sections 5 and 7, we need to recast the problem of realizing Λ ∈ ΠA-Alg as one
of rectifying a suitable homotopy commutative diagram – or more precisely, of lifting a diagram through the Postnikov
system of an (S∗,O)-category.
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The obvious first choice is to consider a diagram X : K → hoC for K := F +

A (Section 4.2). Unfortunately, there are two
problems with this:

(a) We do not actually have such a diagram X to begin with, since the putative value of X(⋆) ∈ hoC is precisely the
realization of theΠA-algebraΛ in C that we are looking for.

(b) Moreover, we do not expect a rectification X̂ : F +

A → C to exist (unless the model category C is ‘‘formal’’), since
commuting diagrams in hoC do not generally lift to C.

In order to solve the second problem, we introduce the following concept:

Definition 8.1. Let sC ′
A be a small sCA-variant (Section 6.1) with object set O, and let O+

:= O ∪{⋆}. An A-mapping algebra
(based on sC ′

A) is an (S∗,O
+)-category X with mapping spaces as follows (compare (4.3)):

mapX(B, C) =


mapsCA

(B, C) if B, C ∈ O

c({∗, Id⋆}) if B = C = ⋆

c({∗}) otherwise.
(8.2)

The category of all A-mapping algebras based on sC ′
A will be denoted by M

C′
A

A (or simply MA, when sC ′
A is understood

from the context). Elements in MA will be written as X, Y, etc, and we denote mapX(B, ⋆) by X{B} for all B ∈ O. If we
embed (S∗,O)-Cat in (S∗,O

+)-Cat by making map(B, ⋆) = {∗} for all B ∈ O+ (as in Section 4.2), then we can think of
an A-mapping algebra based on sC ′

A as an (S∗,O
+)-category under sC ′

A, subject to last two conditions of (8.2). Thus MA

inherits a simplicial model category structure from (S∗,O
+)-Cat .

Note that if we set D+
:= π0X, we obtain a Λ-pair (D+,D) for D := π0

sC ′
A, where the ΠA-algebra Λ is defined by

Λ{A} := π0X{A} for all A ∈ A. Thus we can think of an A-mapping algebra as an enriched version of aΠA-algebra.

Example 8.3. Given a small sCA-variant sC ′
A ⊆

s CA, the motivating example of an A-mapping algebra X based on sC ′
A is

obtained by choosing any X ∈ C, and setting mapX(A, ⋆) := map sC(A, X). We denote this A-mapping algebra by M
sC′

A

A X
(or simply MAX , when sC ′

A is understood from the context). Clearly π0(MAX) ∼= πAX . We say that an A-mapping algebra
Y is realizable (by X ∈ C) if Y ∼= MAX . Since any Y ∈ C is fibrant, MAX is always fibrant.

Remark 8.4. Recall that the path object PK ∈ S∗ for a fibrant pointed simplicial set K has (PK)n := {x ∈ Kn+1 :

d1 . . . dn+1x = ∗}, with re-indexed face and degeneracy maps, and the universal fibration p : PK → K is induced by d0
(cf. [27, Section 2.9]). We denote the path fibration functor K → (PK

p
−→ K) by ρ : S∗ → ST

∗
, where ST

∗
is the category of

diagrams in S∗ indexed by T = (0 → 1). Because ρ commutes with products, it extends to a functor ρ : MA → MT
A.

Note that

ρmap sC(A, Y ) is induced by the inclusion i : A ↩→ CA. (8.5)

If we define the suspension ΣX in C as the cofiber of i : X ↩→ CX , where CX is the reduced cone, then for any fibrant
A-mapping algebra X and every B ∈

sC ′
A we have a natural map ζ to the pullback (in S∗), as indicated:

X{ΣB}
i∗

��

ζ

$$

,,

ΩX{B} //

��

PB
PX{B}

p

��
∗ // X{B}

(8.6)

Similarly, if B =


i∈I Bi for Bi ∈
sC ′

A, we have a natural map

X{B}
θ
−→

∏
i∈I

X{Bi}. (8.7)

Definition 8.8. An A-mapping algebra X based on sC ′
A will be called realistic if whenever there are weak equivalences

A′
≃ ΣA and B ≃


i∈I

Bi, (8.9)

in sC ′
A, the maps ζ in (8.6) and θ in (8.7) are weak equivalences.

Lemma 8.10. Any realizable A-mapping algebra is realistic.

Proof. This holds since both ζ in (8.6) and θ in (8.7) map into homotopy limits. �
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Note that if X := MAY and one of the maps in (8.9) is an isomorphism, then so is the corresponding map ζ or θ .

Lemma 8.11. Any map f : X → X ′ in C induces a morphism of A-mapping algebras f∗ : MAY → MAY ′, and f is an
A-equivalence (Section 0.1) if and only if f∗ : MAY {A} → MAY ′

{A} is a weak equivalence in S∗ for each A ∈ A. �

Definition 8.12. A free A-mapping algebra based on sC ′
A is one of the form MAB for B ∈

sC ′
A.

Lemma 8.13. If Y is an A-mapping algebra based on sC ′
A and B ∈

sC ′
A, there is a natural isomorphism mapMA

(MAB,Y) ∼=

Y{B}.

Proof. This follows from the enriched Yoneda Lemma (cf. [28]). �

Definition 8.14. If X is a A-mapping algebra based on sC ′
A, for any n ≥ 0 we obtain its n-th Postnikov section PnX by

setting (PnX){B} := Pn(X{B}) for any B ∈ O := Obj sC ′
A. This is well-defined, since when we compose the composition

map γ : mapX(B, A) × mapX(A, ⋆) → mapX(B, ⋆) = X{B} of the simplicial enrichment with Postnikov fibration
p : X{B} → Pn(X{B}), the result factors as

map sC′
A
(B, A)× mapX(B, ⋆) → Pn map sC′

A
(B, A)× (PnX){A}

= Pn

map sC′

A
(B, A)× X{A}


Pnγ
−−→ (PnX){B}.

A map of A-mapping algebras Φ : X → Y is called an n-equivalence if it induces a weak equivalence of n-th Postnikov
sections. A map f : X → Y in C is an n-stage A-equivalence if MAf : MAX → MAY is an n-equivalence of A-mapping
algebras.

Example 8.15. For n = 0, we can replace P0X by π0X, using the fact that the composition in any simplicially enriched
category X factors through its homotopy category π0X. In particular, this shows that if sC ′

A is a small sCA-variant and
D := π0

sC ′
A, then anyΛ-pair (D+,D) can be enriched by an A-mapping algebra XΛ based on sC ′

A with π0XΛ ∼= Λ.

Remark 8.16. The tower (PnMAX)∞n=0 may be the best approximation to an A-Postnikov tower available, since the category
C itself may not have such towers – e.g., when C = T∗ and A consist of mod-p Moore spaces (see [15, Section 3.10]).

9. The Stover category

We now specialize to a specific small sCA-variant, which defines A-mapping algebras with various useful properties:

Definition 9.1. Let C be an E2-model category with spherical objects A. We assume for simplicity that

A = {ΣkA0}
∞

k=0 for some strict cogroup object A0. (9.2)

An elementary Stover object in C is one of the form

B := colim

A

inc
−→ (CA(j))j∈T


, (9.3)

where A ∈ A, and the colimit is that of the diagram consisting of A, together with an inclusion A ↩→ CA(j) into the cone on
A(j) (a copy of A) for each j ∈ T . The set T is called the null set for B. Note that B is still in CA, and is still a cogroup object in C.

A Stover object is any coproduct B =


i∈I B(i) of elementary Stover objects {B(i)}i∈I .
The Stover category, denoted by sCSt

A , is the full sub-simplicial category of sCA consisting of all Stover objects such that the
cardinalities of the indexing set I for the coproduct, and of the null sets T(i) for each coproduct summand B(i), are bounded
by a fixed limit cardinal κ (see Remark 9.18 below).

Evidently, sCSt
A is a small sCA-variant (Section 6.1). Any A-mapping algebra based on sCSt

A will be called a Stover mapping
algebra, and the realizable Stovermapping algebra for any Y ∈ C will be denoted byMSt

A Y . The category of all Stovermapping
algebras will be denoted by MSt

A .
Similarly, any A-mapping algebra based on the canonical minimal small sCA-variant sCmin

A (Section 6.2) will be called a
minimal A-mapping algebra, and the minimal A-mapping algebra for Y will be denoted by Mmin

A Y .

Lemma 9.4. For any Y ∈ C, the mapping spaces of the Stover mapping algebra XSt
= MSt

A Y are canonically determined by the
minimal A-mapping algebra Xmin

= Mmin
A Y .

Proof. For A ∈ A, set XSt
{A} := Xmin

{A}. If B is an elementary Stover object as in (9.3) (with T ≠ ∅), we define XSt
{B} to be

the pullback in S∗:

XSt
{B}

PB
//

f

��

∏
j∈T PXmin

{A(j)}

∏
j pj

��
Xmin

{A}
∆ // ∏

j∈T Xmin
{A(j)}

(9.5)

(where PX is the path functor of Section 8.4 and∆ is the diagonal).
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If B =


I∈I B(i) is a coproduct of elementary Stover objects, we set

XSt
{B} :=

∏
I∈I

XSt
{B(i)}. � (9.6)

Remark 9.7. IfX is any fibrantA-mapping algebra based on theminimal small sCA-variant sCmin
A , wemay use (9.5) and (9.6)

to define themapping spaces of the corresponding A-mapping algebraXSt based on sCSt
A . Of course, this does not determine

the action of sCSt
A on XSt.

Lemma 9.8. If an A-mapping algebra X based on sCmin
A is realistic (Section 8.8), so is the corresponding A-mapping algebra XSt

based on sCSt
A .

Proof. Since the right vertical map in (9.5) is a fibration, so is f : XSt
→ Xmin, and (9.5) is a homotopy pullback. Thus if ζ in

(8.6) and θ in (8.7) are weak equivalences for X whenever the maps in (8.9) are, the same is true for XSt. �

Corollary 9.9. Under assumption (9.2), all the mapping spaces of a realistic Stover mapping algebra XSt are determined up to
weak equivalence by the single simplicial set X{A0}.

In the dual case (Section 0.4), when we have homotopy group objects {Wn}
∞

n=1 in C with each Wn = ΩWn+1, it is not
enough to know the single mapping space mapC(X,W1); in this case we need itsΩ∞-structure.

Definition 9.10. Let X be an A-mapping algebra based on a small CA-variant sC ′
A, and B ∈

sC ′
A. For each φ ∈ X{A}0 we call

the pullback Nφ (in S∗)

Nφ
PB

//

��

PX{B}

p

��
φ

inc // X{B}

the space of nullhomotopies for φ. (It will be empty if φ is not nullhomotopic.)
If sC ′

A is any small sCA-variant containing A itself, and Y is any A-mapping algebra based on sC ′
A, the Stover construction

on Y is the Stover object given by

KY :=


A∈A


φ∈Y{A}0

colim

A(φ)

inc
−→ (CA(Φ))Φ∈Nφ0


. (9.11)

This defines a functor K : MSt
A → C.

Proposition 9.12. The composite L := K ◦ MSt
A : C → C is a comonad on C.

Proof. Note thatKY depends only on the 0-simplicesρ0Y := (PY0 → Y0) of the path fibrationρ (Section 8.4). Becauseρ is
a functor, anymap of A-mapping algebrasΨ : Y → Z induces amap of the indexing categories for the colimit (9.11). Again,
this depends only on ρ0Ψ . This in turn induces a map KΨ : KY → KZ. Thus we have defined a functor K0 : ρ0M

St
A → C.

We show that the functor K0 is left adjoint to ρ0MSt
A :

sC → ρ0M
St
A :

Given f : KY → X in C, we define f̂ : ρ0Y → ρ0M
St
AX by sending φ ∈ Y{A}0 to f |A(φ)∈ (M

St
AX){A}0 = map sC(A, X)0,

and similarly forΦ ∈ Y{A}1 with d0Φ = 0 and d1Φ = φ (using (8.5)).
Conversely, given ψ : ρ0Y → ρ0(M

St
AX) in ρ0MSt

A , we define ψ̃ : KY → X using the fact that KY is defined by the
colimit (9.11), so it is enough to define a map of diagrams, given byψ(φ) : A(φ) → X for φ ∈ Y{A}0 andψ(Φ) : CA(Φ) → X
forΦ ∈ (PY{A})0, again using (8.5).

Since we can factor L := K ◦ MSt
A as the composite K0 ◦ (ρ0M

St
A ) of an adjoint pair of functors, the functor L : C → C is a

comonad (cf. [23, Section 4]). �

Remark 9.13. Let X be a fibrant Stover mapping algebra, and assume that each A ∈ A is a strict cogroup object in C. Thus
X{A} is the underlying simplicial set of a simplicial group. Moreover, since the structure maps in (9.5)and (9.6) are all maps
of simplicial groups (see Section 8.4), the same is true of X{B} for B ∈

sCSt
A . (Of course, the composition maps in sCSt

A need
not be homomorphisms, so X is not necessarily enriched in G.)

If K e is the zero-component of K = X{B}, we thus have two canonical short exact sequences of simplicial groups
(respectively, groups):

1 → K e
→ K → π0K → 1 1 → PK0 // K e

1
d0 // K e

0 → 1

s0

dd

This implies that K1 is canonically determined as a set by K0, π0K , and PK0. In other words, ρ0X and π0X together determine
csk1 X up to isomorphism (and of course conversely).
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Definition 9.14. We call L : C → C the Stover comonad on C.
The counit ε : L → Id for L is the ‘‘tautological’’ natural transformation εX : K(MSt

AX) → X , which sends the copy of A
indexed by φ ∈ (MSt

AX){A}0 = HomC (A, X) in (9.11) to X by φ, and similarly for the cones CA(Φ).
The comultiplication µ : L → L2 is induced by the natural inclusion ν : KY → K(MSt

A (KY)), defined for any Stover
mapping algebraY, which sends A(φ) in KY identically to the copy of A in K(MSt

A (KY)) indexed by the inclusion A(φ) ↩→ KY.
The Stover resolution of an object Y ∈ C is the simplicial resolution Q• of Y , where Qn := Ln+1Y for each n ≥ 0 (and the

face and degeneracy maps are induced by η and µ).

Remark 9.15. If we extend K to a simplicial functor K̃ : MSt
A →

sC, it factors through K̄ : ρMSt
A →

sC, so cskn K̄ depends
on cskn ρMSt

A , which is determined in turn by cskn+1 MSt
A .

Proposition 9.16. If sC is a strict E2-model category with spherical objects A, the Stover resolution defines a one-to-one
correspondence between objects Y ∈ C up to A-equivalence (Section 0.1) and weak equivalence of simplicial objects Q• ∈ sC
with πAQ• ≃ BΛ (whereΛ ∼= πAY).

Proof. By [34, Section 3.3], the simplicial object Q• is cofibrant in the resolution model category structure on sC, and by
[46, Section 2], the map ε : Q• → c(Y ) (induced by η) is a weak equivalence. Thus πAQ• ≃ BΛ by (1.3). From (7.2) we see
that ‖mapC(A0,Q•)‖ ≃ mapC(A0, R(Q•)). Applying the Bousfield–Friedlander spectral sequence of [25, Theorem B.5] to the
bisimplicial set M• := mapC(A0,Q•), with

E2
s,t = πsπtM• ⇒ πs+t‖M•‖, (9.17)

we conclude that π∗‖M•‖
∼= Λ, and thus πA(RQ•) ∼= π∗ mapC(A0, R(Q•)) ∼= Λ. This is an isomorphism of ΠA-algebras,

since MSt
AQ• is a simplicial mapping algebra, and so applying ‖ − ‖ to each bisimplicial set MSt

AQ•{A} (A ∈ A) yields a
mapping algebra, which is actually determined by ‖M•‖ = (‖MSt

AQ•‖){A0} by Corollary 9.9. Thus RQ• is A-equivalent to Y .
Functoriality of the Stover construction (and of the spectral sequence) shows that the correspondence of weak A-homotopy
types is one-to-one. �

Remark 9.18. We can now explain how the cardinal κ of Section 9.1 is chosen:

Given aΠA-algebraΛ, the collection of all homotopy types of objects Y ∈ hoC withΛ ∼= πAY is a set (as can be seen by
considering all choices of k-invariants for cofibrant replacements of c(Y ) in sC).

Define κ to be the smallest limit cardinal such that each such homotopy type Y has a Stover resolution in which each of
the sets MSt

A (L
nY ){A}0 and Nφ for φ ∈ MSt

A (L
nY ){A}0 in (9.11), for each A ∈ A and n ≥ 0, has cardinality ≤ κ .

9.19. Extending the Stover comonad
Applying the functor MSt

A to the augmented simplicial object Q• → Y over C yields an augmented simplicial object
MSt

AQ• → MSt
A Y . We can think of this as coming from a monad L on realizable Stover mapping algebras, given by

L(Y) := MSt
A (K̃Y), with counit η := MSt

A (ε) right inverse to the unit ξ : MSt
A Y → MSt

A (K(M
St
A Y )) (sending φ : A → Y to

the inclusion A(φ) ↩→ K(MSt
A Y ))). Because ε was a counit for L, the following square commutes:

LLX
µX //

L(ηX)

��

LX

ηX

��
LX ηX

// X

(9.20)

for X = MSt
A Y (cf. [23, Section 4.1].

We observe that even though the simplicial functor MA does not usually preserve coskeleta (even for A = S1 in S∗), we
deduce from Remark 9.15 that

cskn LX is determined by cskn+1 X (9.21)

because K̃ actually lands in sCSt
A , so L takes values in free Stover mapping algebras (Section 8.12).

Definition 9.22. A fibrant Stover mapping algebra X is called an L-algebra if it is equipped with a splitting ηX : LX → X

for ξ : X → LX, such that (9.20) commutes.

Proposition 9.23. Any realistic Stover mapping algebra Y can be realized, up to A-equivalence.

Proof. Iterating the functorL onY yields an augmented simplicial Stovermapping algebraV• → Y, and sinceL = MSt
A ◦K ,

in fact V• = MSt
AQ•. Here Q• is the simplicial Stover object with Q0 = KY and Qn := KVn−1 for n ≥ 1. The extra face map

dn : Qn → Qn−1 is KLn−1(η) : KLn−1MSt
A KY → KLn−1Y, where η : MSt

A KY → Y is the L-algebra structure map.
Proposition 2.6 of [46] shows that if Q• ∈ sC is the Stover resolution of X ∈ C, then π∗Q• is a freeΠA-algebra resolution

of πAY . The proof does not in fact depend on the existence of X , but only on its mapping algebra Y := Mmin
A X . Here we
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use the fact that Y is realistic. Thus we deduce that the simplicial ΠA-algebra G• := πAQ•
∼= π0V• is a free ΠA-algebra

resolution ofΛ = π0Y. Thus the spectral sequence of (9.17) collapses, showing that RQ• realizesΛ.
Finally, by combining theweak equivalences of Section 8.8with Lemma 9.4, we deduce that ‖V•‖ (the realization functor

applied to each simplicial space V•{B} for B ∈
sCSt

A ) is a Stover mapping algebra, which is weakly equivalent to MSt
A (RQ•),as

well as to the original mapping algebra Y. �

Since every realizable Stover mapping algebra is realistic, this shows:

Corollary 9.24. The correspondence of Proposition 9.16 actually factors through the category of realistic L-algebras, up to weak
equivalence.

10. Realizing mapping algebras

In order to solve the first problem mentioned at the beginning of Section 8, we must reinterpret the inductive approach
to realizing aΠA-algebraΛ described in Section 7 as an inductive process for realizing mapping algebras. For this we need:

Definition 10.1. A map of A-mapping algebras f : X → Y is called an n-equivalence if Pnf is a weak equivalence of A-
mapping algebras. Similarly, a map f : X → Y in C is called an n–A-equivalence if MAf is an n-equivalence of A-mapping
algebras.

An L-algebra X is called a n-realistic L-algebra if:

(a) r (n) : X → PnX is a weak equivalence of A-mapping algebras.
(b) The map ζ in (8.6) is an (n − 1)-equivalence in S∗ whenever the first map in (8.9) is a weak equivalence.
(c) The map θ in (8.7) is an n-equivalence whenever the second map in (8.9) is a weak equivalence.

Remark 10.2. Note that we cannot expect to do better than (b) above, sinceΩPnK is just Pn−1ΩK for any K ∈ S∗. Thus even
under Assumption (9.2), where for a realistic Stover mapping algebra X, the simplicial set X{A0} determines X{B} for any B
in sCSt

A up to weak equivalence, in the n-realistic case X{ΣA0} carries more information thanΩX{A0} does.

We can now refine Corollary 9.24 as follows:

Proposition 10.3. There is a one-to-one correspondence between n-realistic L-algebras X with π0X ∼= Λ ∈ ΠA-Alg and n-th
quasi-Postnikov sections forΛ, up to weak equivalence.

Proof. Let X be an n-realistic L-algebra, so its structure map η = ηX factors through PnLX → X ≃ PnX = cskn+1 X. We
wish to construct the Stover resolution V• → X as in the proof of Proposition 9.23. For all k ≥ 0, the objects Vk := Lk+1X

depend only on ρ0X, which is determined by P0X = csk1 X. Similarly, all the degeneracy and face maps, in all simplicial
dimensions, are determined by V0 ∈

sCSt
A , except for dk : Vk → Vk−1, which is Lkη. By (9.21), this map itself, as an arrow

in CSt
A ⊆ C, depends only on cskk η : cskk V0 → cskk X. Thus η determines the n + 1-st truncation τn+1V• of V•, and thus

PnV•.
Conversely, if we can construct τn+1V• forX, this is equivalent (as in the proof of Proposition 9.23) to constructing τn+1Q•

for the (putative) object Y ∈ C realizing X, with τn+1V• := MSt
A (τn+1Q•). Thus we have an n-th quasi-Postnikov section for

Λ, which we denote by Q ⟨n⟩• ∈ sC (see Definition 7.4). Applying the n-th Postnikov section functor Pn : τn+1sS∗ → sS∗

to each (n + 1)-truncated simplicial set τn+1V•{A} yields the corresponding quasi-Postnikov section V⟨n⟩• ∈ sMSt
A , with

V⟨n⟩• := MSt
A (Q ⟨n⟩•). This is because each Q ⟨n⟩k for k ≥ n + 2 is constructed as a matching object (cf. [35, Section 2.1]),

which is a limit, so it commutes with mapping spaces.
In particular, πAQ ⟨n⟩k ∼= (π0V⟨n⟩k{A})A∈A for all k ≥ 0. Thus from (7.7) we see that

πkπ0V⟨n⟩•{A} = πk(πAQ ⟨n⟩•){A} ∼=


Λ{A} for k = 0
(Ωk+1Λ){A} for k = n + 2,
0 otherwise

(10.4)

for any A ∈ A (and thus, using Lemma 9.4, for any B ∈
sCSt

A ). The Bousfield–Friedlander spectral sequence (9.17) for the
bisimplicial set V⟨n⟩•{A} converges to π∗‖V⟨n⟩•‖, because π0V⟨n⟩•{A} is a simplicial group. Moreover, the first possible
differential is dn+2

: (Ωn+1Λ){A})0 → Λ{A}n+1, so πi‖V⟨n⟩•{A}‖ ∼= Λ{A}i for i ≤ n. By naturality we deduce that the map
of Stover mapping algebras ‖V⟨n⟩•‖ → X is an n-equivalence, so Pn‖V⟨n⟩•‖ ≃ X.

In summary, each of V⟨n⟩• ∈ sMSt
A , Q ⟨n⟩• ∈ sC, and the n-realistic Stover mapping algebra X determines the other

two. �

Remark 10.5. Note that from the quasi-Postnikov section Q ⟨n⟩• ∈ sC we can also recover an object Z⟨n⟩ := R(Q ⟨n⟩•) ∈ C
(using Definition 7.1), and we see that [Σ iA0, Z⟨n⟩]C ∼= πiX{A0} ∼= Λ{Σ iA0} for 0 ≤ i ≤ n, by (7.2), since Q ⟨n⟩• is A-
cofibrant and A is generated by A0 by (9.2).

However, we can do more than this, by Remark 10.2: the inclusion of the subcollection of spherical objects A⟨k⟩ :=

{ΣkA0,Σ
k+1A0, . . . } in A induces a forgetful functor MA → MA⟨k⟩ (which omits the simplicial set X{Ai

0} (0 ≤ i < k) from
X). If we denote this by X → X(k), applying the procedure described in the proof of Proposition 10.3 to the A-mapping
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algebra X(k) (which is still n-realistic) yields a new simplicial object Q ⟨n⟩(k)
•

∈ sC, and Z⟨n⟩(k) := RQ ⟨n⟩(k)
•

now realizes
theΠA-algebraΩkΛ through degree n. Moreover, there is a natural (n − 1)–A-equivalenceΩZ⟨n⟩(k+1)

→ Z⟨n⟩(k) for each
k ≥ 0, induced by the maps ζ of (8.6).

The collection of objects {Z⟨n⟩(k)}∞k=0, equipped with these structure maps, thus form an n-stem, in the sense of [9]. In
the case when C = T∗ and A = {Sk}∞k=1, these behave like the collection {Pn+kX⟨k − 1⟩}∞k=1 of (k − 1)-connected covers of
(n + k)-Postnikov sections of a (putative) space X .

Lemma 10.6. Let X be an n-realistic A-mapping algebra, and let Q ⟨n⟩• be the n-quasi-Postnikov section in sC corresponding to
X under Proposition 10.3, withΛ := π0X. Then there is a natural isomorphism πiX ∼= π#

i (Q ⟨n⟩•) asΛ-modules for all i ≥ 0.

Proof. From (10.4), (7.6), and (9.17), we see that

πkX ∼= π#
k (Q ⟨n⟩•) ∼=


ΩkΛ for k ≤ n
0 otherwise.

To describe the natural identification, note that by Proposition 10.3 we know that X is n-equivalent to ‖V⟨n⟩•‖ =

‖MSt
A (Q ⟨n⟩•)‖. Since we assumed that each A ∈ A was a strict cogroup object in C, K := ‖MSt

A (Q ⟨n⟩•)‖{A} has the natural
structure of a simplicial group. Therefore, an element in πkX{A} may be represented by a Moore k-cycle φ in

ZkK ⊆ Kk = mapC(A,Q ⟨n⟩k)k = HomC(A ⊗ 1[k],Q ⟨n⟩k) ⊆ HomsC(c(A)⊗̂1[k],Q ⟨n⟩•)

(see Section 0.6).
On the other hand, by [35, Proposition 5.8] we can represent an element of π#

k (Q ⟨n⟩•){A} by an element in
HomC(A, ZkQ ⟨n⟩•) — that is by a map f : A → Q ⟨n⟩k such that dif = ∗ for all 0 ≤ i ≤ k. If δk ∈ 1[k]k is the non-
degenerate k-simplex of 1[k], we define φ̂ : A⊗̂1[k] → Q ⟨n⟩• by sending A⊗ {δk} to Q ⟨n⟩k by f , and extend by zero to the
other non-degenerate simplices of 1[k]. �

Definition 10.7. For any A-mapping algebra X, the associated simplicialΠA-algebraΠA(X)• is defined by requiringΠA(X)n
to be the ΠA-algebra induced by the action of π0

sC ′
A on each set of n-simplices X{A}n of X{A} ∈ S∗. Note that ΠA(X)• is

itself an A-mapping algebra, and the quotient map h : X → ΠA(X)• is a map of A-mapping algebras.

For simplicity, let us denote the cofibrant object Q• ∈ sC associated by Proposition 9.23 with a realistic A-mapping
algebra X by Q ⟨∞⟩•.

Lemma 10.8. Assume that X is an n-realistic A-mapping algebra, with 0 ≤ n ≤ ∞, and Q ⟨n⟩• is the object associated with X by
Proposition 9.23 (or Proposition 10.3). There is a natural isomorphism of ΠA(X)• with the simplicial ΠA-algebra πAQ ⟨n⟩•, and
h : X → ΠA(X)• induces the Hurewicz homorphism h# : π#

∗
(Q ⟨n⟩•) → π∗πAQ ⟨n⟩• of (1.3).

Proof. As in the proof of Lemma 10.6, we may replace X by the n-equivalent A-mapping algebra ‖MSt
A (Q ⟨n⟩•)‖, so that any

element inX{A}k may be identified with a map f : A ⊗ 1[k] → Q ⟨n⟩k.
Since Q := Q ⟨n⟩k ∈

sCSt
A , we may identify this with f ∗(IdQ ), for f ∈ (MSt

AQ ){A}, so by definition of h we have
h(f ) = [f ]∗h(IdQ ) = [f ] ∈ [A,Q ]C = (πAQ ⟨n⟩k){A}. This identifies ΠA(X)• with πAQ ⟨n⟩•. From the description of the
Hurewicz homomorphism in [35, Section 5], we see that it coincides with h#. �

Proposition 10.9. If X = X⟨n⟩ is an n-realistic A-mapping algebra with Λ := π0X ∈ ΠA-Alg, the obstruction to extending X

to an (n + 1)-realistic A-mapping algebra X⟨n + 1⟩ (with PnX⟨n + 1⟩ = X⟨n⟩) is the (n + 1)-st k-invariant for ΠA(X)•, i.e.,
k̃n+1 ∈ Hn+3

AQ (Λ;Ωn+1Λ).

Proof. Again, let Q ⟨n⟩• be the n-th quasi-Postnikov section for Λ corresponding to X under Proposition 10.3, with X ≃

Pn‖MSt
A (Q ⟨n⟩•)‖. By Lemma 10.8 and (7.7) we know thatΠA(X)• has only two non-zero homotopy groups: π0ΠA(X)• ∼= Λ

and πn+2ΠA(X)• ∼= Ωn+1Λ.
If the extension X⟨n + 1⟩ exists, the fibration p(n+1)

: X⟨n + 1⟩ → PnX⟨n + 1⟩ ≃ X⟨n⟩ induces p(n+1)
# : ΠA(X⟨n + 1⟩)•

→ ΠA(X⟨n⟩)•, which is the identity on π0X⟨n + 1⟩ = π0X⟨n⟩ ∼= Λ (again by Lemma 10.8).
Since ΠA(X⟨n⟩)• ≃ Pn+1ΠA(X⟨n⟩)•, p

(n+1)
# factors via Pn+1ΠA(X⟨n + 1⟩)• = BΛ, so the structure map p̃(n+2)

: ΠA(X)•

→ Pn+1ΠA(X)• = BΛhas a section s. This is equivalent to the vanishing of the (n+1)-st k-invariant k̃n+1 ∈ Hn+3
AQ (Λ;Ωn+1Λ)

forΠA(X)•.
Conversely, if the k-invariant k̃n+1 forΠA(X)• ∼= πAQ ⟨n⟩• vanishes, then Q ⟨n⟩• extends to an (n+ 1)-st quasi-Postnikov

section Q ⟨n + 1⟩• forΛ, by Theorem 7.5, so we obtain X⟨n + 1⟩ := ‖MSt
A (Q ⟨n + 1⟩•)‖, as required by Proposition 10.3. �

Remark 10.10. Since the quotient map h of Section 10.7 is surjective, and ΠA(X)•{B} has the underlying structure of a
simplicial group for each B ∈

sCSt
A , h is a fibration in MSt

A ⊆ (S∗,O)-Cat . In fact, we may identify the long exact sequence in
π∗ for the fibration hwith the spiral exact sequence (1.3), up to a re-indexing.

If we denote the fiber of h by B′X, we deduce from (7.6) and (7.7) that

πi(B
′X) ∼=


Ω iΛ for 1 ≤ i ≤ n + 1
0 otherwise.
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Looping back the fibration sequence for h, for each A ∈ A we obtain

X{ΣA} = PnX{ΣA}
p(n)
−−→ Pn−1X{ΣA}

ζ ′

−→ ΩX{A} = Pn−1ΩX{A}
k′
−→ E(Ωn+1Λ, n + 1),

where ζ ′ is the weak equivalence of Section 10.1(b), and k′ is the (looped) (n − 1)-th k-invariant for X{ΣA}.
We can think of ζ ′ as the structure map for the n-stem PnX, which is classified by h : X → ΠA(X)•. If we could produce a

map q : ΠA(X)• → E(Ωn+1Λ, n + 2)which is a πn+2-isomorphism, then q ◦ hwould be the n-th k-invariant for X = X⟨n⟩,
which would define an (n + 1)-realistic A-mapping algebra X⟨n + 1⟩, and thus an (n + 1)-quasi-Postnikov section forΛ.

Now the inclusion of the homotopy fiber of q is a map s : BΛ → ΠA(X)• which is a section for p = p(n+2)
: ΠA(X)• →

Pn+1ΠA(X)• = BΛ. Moreover, q is then Pn+2 applied to the pinchmap to of the cofiber of s, so the existence of q is equivalent
to the existence of a section s for p. Both are equivalent as above to the vanishing of the (n + 1)-st k-invariant forΠA(X)•.

Thus we can interpret this k-invariant, in the context of stems, as the obstruction to gluing the n-windows of an n-stem
to produce an (n + 1)-stem.

We can thus summarize the results of this section in the following:

Theorem 10.11. Let C be a strict E2-model category, with spherical objects A satisfying (9.2), and let Λ be a ΠA-algebra.
Proposition 10.9 then provides an inductively defined sequence of (S∗,O)-cohomology classes k̃n ∈ Hn+2

SO (BΛ;ΩnΛ) (n =

1, 2, . . . ) for producing a realistic Stover mapping algebra realizingΛ — which is equivalent to realizingΛ in C. �

Remark 10.12. We now interpret the classes k̃n in the context of the Dwyer–Kan–Smith theory of Section 5. The homotopy
commutative diagram which we are trying to rectify will be indexed by theΛ-pair (D,D+) := ((CSt

A )
+,CSt

A ), defined as in
Example 8.15. As in Section 5.7, identifying the (ordinary) category CSt

A as the zero-simplices of the (simplicially enriched)
sCSt

A and applying degeneracies gives the required simplicial map X̃0 : c(CSt
A ) →

sCSt
A .

However, the obstruction theory of Section 5 does not quite apply in our situation, since to begin with we do not have
given a simplicially enriched category sCX (Section 5.4) extending sCSt

A — sc. a (we hope realistic) Stovermapping algebraX.
Instead, we construct X by induction on its quasi-Postnikov tower (X⟨n⟩)∞n=0 of n-realistic Stover mapping algebras. At the
beginning of the process we can always choose a 0-realistic Stovermapping algebraX⟨0⟩ realizingΛ, as well as an extension
X0 : P0(CSt

A )
+

→ X⟨0⟩ for the given X̃0.
In view of Proposition 10.9, we do not actually need to lift X0 to the successive n-realistic Stover mapping algebras

X⟨n⟩, but only to theirΠA-algebra versionsΠA(X⟨n⟩)• These are Stover mapping algebras, though they are not n-realistic.
Moreover, the Dwyer–Kan–Smith obstructions of Section 5.7 reduce in this case to the k-invariants k̃n, as in the proof of
Proposition 10.9.
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