9 research outputs found

    Proactive Risk Navigation System for Real-World Urban Intersections

    Full text link
    We consider the problem of intelligently navigating through complex traffic. Urban situations are defined by the underlying map structure and special regulatory objects of e.g. a stop line or crosswalk. Thereon dynamic vehicles (cars, bicycles, etc.) move forward, while trying to keep accident risks low. Especially at intersections, the combination and interaction of traffic elements is diverse and human drivers need to focus on specific elements which are critical for their behavior. To support the analysis, we present in this paper the so-called Risk Navigation System (RNS). RNS leverages a graph-based local dynamic map with Time-To-X indicators for extracting upcoming sharp curves, intersection zones and possible vehicle-to-object collision points. In real car recordings, recommended velocity profiles to avoid risks are visualized within a 2D environment. By focusing on communicating not only the positional but also the temporal relation, RNS potentially helps to enhance awareness and prediction capabilities of the user

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account

    Entwicklung einer funktionalen Referenzarchitektur für Assistenzsysteme zur energetischen Optimierung des Fahrzeugbetriebs

    Get PDF
    Gegenstand der Arbeit ist die Entwicklung einer funktionalen Referenzarchitektur für Assistenzsysteme zur energetischen Optimierung des Fahrzeugbetriebs. Dabei steht die Fragestellung im Vordergrund, wie die funktionale Referenzarchitektur beschaffen sein kann, um ein breite Anwendbarkeit sowie Robustheit gegenüber Änderungen aufzuweisen. Der Anwendungsbereich der Referenzarchitektur umfasst dabei Systeme, die mittels Vorausschau die verfügbaren Freiheitsgrade im Fahrzugbetrieb so steuern, dass die Fahraufgabe kostenminimal absolviert werden kann. Der hergeleitete Architekturentwurf sieht eine grundsätzliche Systemstrukturierung in drei Ebenen vor, in die die Funktionen zur vorausschaubasierten Planung von energieeffizienten Routen, Fahrweisen und Betriebsweisen bzw. Betriebsstrategien verortet werden. Während die Missionsebene (oberste Ebene) die Optimierungsfunktionen für einen fernen Vorausschauhorizont aufnimmt, werden die Optimierungsfunktionen für die nahen und mittleren Horizonte der Verhaltensebene (unterste Ebene) zugeordnet. Die Koordination bzw. Arbitierung der Optimierungsfunktionen der untersten Ebene erfolgt mittels einer vorausschaubasierten Planung in der mittleren Koordinationsebene, kombiniert mit einer ergebnisorientierten und nachgelagerten Arbitierung der Optimierungsergebnisse. Anhand einer qualitativen Architekturbewertung wird dargelegt, wie die verwendeten Architekturprinzipien und -ansätze die Erfüllung der geforderten Qualitätsmerkmale Funktionalität, Änderbarkeit und Testbarkeit unterstützen. Als Ergebnis dieser Arbeit liegt erstmalig eine Referenzarchitektur für Systeme zur energetischen Optimierung des Fahrzeugbetriebs vor, die auf eine breite Anwendbarkeit abzielt und explizit das Qualitätsmerkmal der Änderbarkeit adressiert. Die Referenzarchitektur fasst dabei für den betrachteten Anwendungsbereich geeignete Konzepte, Entscheidungen und Lösungen zusammen und zeigt den Erkenntnisweg, der zum Ergebnis geführt hat, explizit auf

    Situation-based Risk Evaluation and Behavior Planning

    Get PDF
    The presented dissertation addresses the problem of risk evaluation and behavior planning for future intelligent Advanced Driver Assistance Systems (ADAS). For this purpose, a novel framework for situation-based risk evaluation and behavior planning, targeting highly automated driving, is presented. After properly sensing the current scene, including the current road topology and other traffic participants, the proposed framework first estimates and predicts the future behavior of all involved entities comprising a situation classification and trajectory prediction step. This is then followed by the generation of the own future behavior in a behavior planning step which is based on an evaluation of possible ego behavior alternatives in terms of risk and utility considerations. The future behavior is planned in a way to find a tradeoff between the expected future risk and utility. Inner-city traffic scenarios in particular are usually complex and of high uncertainty, considering measurements as well as behavioral decisions. To reduce the complexity, similar behavior alternatives are clustered and represented by prototypical behavior patterns using so-called situations. A novel situation classification approach is proposed to estimate how good a situation matches with the actual behaviors. This approach is based on a comparison of the prototypically predicted trajectories of the considered situations with the actual measured trajectories. For this purpose a novel measure for spatio-temporal trajectory similarity, based on the evaluation of longitudinal and lateral spatio-temporal distance, is derived. The situation classification system is used to detect incorrect and critical traffic behaviors, especially in scenarios with a disregard of right-of-way. Evaluating the system using real-world crash cases reveals that it is able to warn the driver reliably of an upcoming crash, with sufficient time to initiate a suitable evasive behavior. For the prediction of situation-dependent prototypical scene evolution patterns, the interaction-aware Foresighted Driver Model (FDM) is applied in a forward simulation of a sensed scene under different situation-dependent behavioral assumptions. The proposed FDM is a novel, time continuous driver model for the simulation and prediction of freeway and urban traffic. Based on the general risk evaluation and behavior planning framework developed in this thesis, the driver model equations are introduced from the assumption that a driver tries to balance predictive risk (e.g. due to possible collisions along its route) with utility (e.g. the time required to travel, smoothness of ride, etc.). For this purpose, a computationally inexpensive, approximate risk model targeting only risk maxima and a gradient descent-based behavior generation is applied. It is shown, how such a model can be used to simulate and predict driving behavior with a similar performance compared to full behavior planning models. The FDM is applicable to a wide range of different scenarios, e.g. intersection or highway-accessing scenarios, with the consideration of an arbitrary number of traffic entities. Thus, the FDM generalizes and reaches beyond state-of-the-art driver models. Complex traffic situations require the estimation of future behavior alternatives in terms of predictive risks. Risk assessment has to be driven from the knowledge that the acting scene entity requires to evaluate the own future behavior. Based on the predicted future dynamics of traffic scene entities, an approach is presented, where a continuous, probabilistic model for future risk is used to build so-called predictive risk maps. These maps indicate how risky a certain ego behavior will be at different future times, so that they can be used to directly plan the best possible future behavior. The behavior in complex scenarios differs strongly, depending on the actually occurring situation. However, sensory measurements of the ego- and other involved entities' states as well as the prediction of possible future states are generally of high uncertainty. As a consequence, the current driving situation can only be approximated. Additionally, a situation can change very quickly, e.g. if a traffic participant suddenly changes its behavior. In this thesis an approach is proposed, how to plan a safe, but still efficient future behavior under consideration of multiple possible situations with different occurrence probabilities. In several traffic scenarios comprising simulated as well as recorded real-world data, it is shown that the approach generates an efficient behavior for situations which are likely to occur, while generating a plan B to safely deal with improbable but risky situations

    Ein Beitrag zur taktischen Verhaltensplanung für Fahrstreifenwechsel bei automatisierten Fahrzeugen

    Get PDF
    Automated driving within one lane is a fascinating experience. Yet, it is even more interesting to go a step ahead: Making automated lane changes without human driver interaction. This thesis presents a concept and implementation demonstrated in "Jack", the Audi A7 piloted driving concept vehicle. Given that automated driving is in the media every other day already, why is it still such a big issue to do tactical behavior planning for automated vehicles? It is one of the core areas where it is surprisingly obvious why humans are currently so much smarter than machines: Tactical driving behavior planning is a social task that requires cooperation, intention recognition, and complex situation assessment. Without complex cognitive capabilities in today's automated vehicles, it is core of this thesis to find simple algorithms that pretend intelligence in behavior planning. In fact, such behavior planning in automated driving is a constant trade-off between utility and risk: The vehicle has to balance value dimensions such as safety, legality, mobility, and additional aspects like creating user and third party satisfaction. This thesis provides a framework to boil down such abstract dimensions into a working implementation. Several of the foundations for this thesis were developed as part of the Stadtpilot project at TU Braunschweig. While there has been plenty of research on concepts being tested in perfect, simulated worlds only, the approaches in this thesis have been implemented and evaluated in real world traffic with uncertain and imperfect sensor data. The implementation has been tested, tweaked, and used in "Jack" for more than 50,000 km of automated driving in everyday traffic.Automatisiertes Fahren innerhalb eines Fahrstreifens ist eine faszinierende Erfahrung. Noch spannender ist es jedoch noch einen Schritt weiter zu gehen: Auch Fahrstreifenwechsel automatisiert auszuführen, ohne Interaktion mit einem Menschen als Fahrer. In dieser Dissertation wird hierfür ein Konzept und dessen Umsetzung in „Jack“ präsentiert, dem Audi A7 piloted driving concept Fahrzeug. Automatisiertes Fahren ist aktuell in den Medien in aller Munde. Warum ist es dennoch eine große Herausforderung taktische Verhaltensplanung für automatisierte Fahrzeuge wirklich umzusetzen? Es ist einer der Kernbereiche, in denen offensichtlich wird, warum Menschen aktuell Maschinen im Straßenverkehr noch weitaus überlegen sind: Taktische Verhaltensplanung ist eine soziale Aufgabe, welche Kooperation, das Erkennen von Absichten und der Bewertung komplexer Situationen bedarf. Mangels wirklicher kognitiver Fähigkeiten in den heutigen automatisierten Fahrzeugen ist es Kern dieser Dissertation Algorithmen zu finden, welche zumindest den Eindruck intelligenter Verhaltensplanung erzeugen. Eine solche Verhaltensplanung ist ein permanentes Abwägen von Nutzen und Risiken. Das Fahrzeug muss permanent Entscheidungen im Spannungsfeld zwischen Sicherheit, Legalität, Mobilität und weiten Aspekten wie Nutzerzufriedenheit und Zufriedenheit Dritter treffen. In dieser Dissertation wird ein Konzept entwickelt, um solche abstrakten Entscheidungsdimensionen in ein implementierbares Konzept herunterzubrechen. Viele Grundlagen dafür wurden im Rahmen des Stadtpilot Projekts der TU Braunschweig erarbeitet. In vorausgehenden Arbeiten wurden bereits viele Ansätze entwickelt und auf Basis von perfekten, simulierten Daten evaluiert. Der in dieser Arbeit präsentierte Ansatz ist in der Lage mit unsicherheits- und fehlerbehafteten Messdaten umzugehen. Der Ansatz aus dieser Dissertation wurde in dem automatisiert fahrenden Fahrzeug „Jack“ implementiert und bereits über 50.000 km im normalen Straßenverkehr genutzt und getestet
    corecore