13,564 research outputs found

    Recovering non-local dependencies for Chinese

    Get PDF
    To date, work on Non-Local Dependencies (NLDs) has focused almost exclusively on English and it is an open research question how well these approaches migrate to other languages. This paper surveys non-local dependency constructions in Chinese as represented in the Penn Chinese Treebank (CTB) and provides an approach for generating proper predicate-argument-modifier structures including NLDs from surface contextfree phrase structure trees. Our approach recovers non-local dependencies at the level of Lexical-Functional Grammar f-structures, using automatically acquired subcategorisation frames and f-structure paths linking antecedents and traces in NLDs. Currently our algorithm achieves 92.2% f-score for trace insertion and 84.3% for antecedent recovery evaluating on gold-standard CTB trees, and 64.7% and 54.7%, respectively, on CTBtrained state-of-the-art parser output trees

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Active Coverage for PAC Reinforcement Learning

    Full text link
    Collecting and leveraging data with good coverage properties plays a crucial role in different aspects of reinforcement learning (RL), including reward-free exploration and offline learning. However, the notion of "good coverage" really depends on the application at hand, as data suitable for one context may not be so for another. In this paper, we formalize the problem of active coverage in episodic Markov decision processes (MDPs), where the goal is to interact with the environment so as to fulfill given sampling requirements. This framework is sufficiently flexible to specify any desired coverage property, making it applicable to any problem that involves online exploration. Our main contribution is an instance-dependent lower bound on the sample complexity of active coverage and a simple game-theoretic algorithm, CovGame, that nearly matches it. We then show that CovGame can be used as a building block to solve different PAC RL tasks. In particular, we obtain a simple algorithm for PAC reward-free exploration with an instance-dependent sample complexity that, in certain MDPs which are "easy to explore", is lower than the minimax one. By further coupling this exploration algorithm with a new technique to do implicit eliminations in policy space, we obtain a computationally-efficient algorithm for best-policy identification whose instance-dependent sample complexity scales with gaps between policy values.Comment: Accepted at COLT 202

    System Identification with Time-Aware Neural Sequence Models

    Full text link
    Established recurrent neural networks are well-suited to solve a wide variety of prediction tasks involving discrete sequences. However, they do not perform as well in the task of dynamical system identification, when dealing with observations from continuous variables that are unevenly sampled in time, for example due to missing observations. We show how such neural sequence models can be adapted to deal with variable step sizes in a natural way. In particular, we introduce a time-aware and stationary extension of existing models (including the Gated Recurrent Unit) that allows them to deal with unevenly sampled system observations by adapting to the observation times, while facilitating higher-order temporal behavior. We discuss the properties and demonstrate the validity of the proposed approach, based on samples from two industrial input/output processes.Comment: 34th AAAI Conference on Artificial Intelligence (AAAI 2020

    Towards Instance-Optimality in Online PAC Reinforcement Learning

    Full text link
    Several recent works have proposed instance-dependent upper bounds on the number of episodes needed to identify, with probability 1δ1-\delta, an ε\varepsilon-optimal policy in finite-horizon tabular Markov Decision Processes (MDPs). These upper bounds feature various complexity measures for the MDP, which are defined based on different notions of sub-optimality gaps. However, as of now, no lower bound has been established to assess the optimality of any of these complexity measures, except for the special case of MDPs with deterministic transitions. In this paper, we propose the first instance-dependent lower bound on the sample complexity required for the PAC identification of a near-optimal policy in any tabular episodic MDP. Additionally, we demonstrate that the sample complexity of the PEDEL algorithm of \cite{Wagenmaker22linearMDP} closely approaches this lower bound. Considering the intractability of PEDEL, we formulate an open question regarding the possibility of achieving our lower bound using a computationally-efficient algorithm
    corecore