418 research outputs found

    ON THE JENSEN-SHANNON DIVERGENCE AND THE VARIATION DISTANCE FOR CATEGORICAL PROBABILITY DISTRIBUTIONS

    Get PDF
    We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence estimate as well as the asymptotic consistency of the minimum Jensen-Shannon divergence estimate. These are key properties for likelihood-free simulator-based inference.Peer reviewe

    ON THE JENSEN-SHANNON DIVERGENCE AND THE VARIATION DISTANCE FOR CATEGORICAL PROBABILITY DISTRIBUTIONS

    Get PDF
    We establish a decomposition of the Jensen-Shannon divergence into a linear combination of a scaled Jeffreys' divergence and a reversed Jensen-Shannon divergence. Upper and lower bounds for the Jensen-Shannon divergence are then found in terms of the squared (total) variation distance. The derivations rely upon the Pinsker inequality and the reverse Pinsker inequality. We use these bounds to prove the asymptotic equivalence of the maximum likelihood estimate and minimum Jensen-Shannon divergence estimate as well as the asymptotic consistency of the minimum Jensen-Shannon divergence estimate. These are key properties for likelihood-free simulator-based inference.Peer reviewe

    Global crop production forecasting data system analysis

    Get PDF
    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources

    The LisbOn KInetics Boltzmann solver

    Get PDF
    LisbOn KInetics Boltzmann (LoKI-B) is an open-source simulation tool available at: https://github.com/IST-Lisbon/LoKIThe LisbOn KInetics Boltzmann (LoKI-B) is an open-source simulation tool (https://github.com/IST-Lisbon/LoKI) that solves a time and space independent form of the two-term electron Boltzmann equation, for non-magnetised non-equilibrium low-temperature plasmas excited by DC/HF electric fields from different gases or gas mixtures. LoKI-B was developed as a response to the need of having an electron Boltzmann solver easily addressing the simulation of the electron kinetics in any complex gas mixture (of atomic/molecular species), describing first and second-kind electron collisions with any target state (electronic, vibrational and rotational), characterized by any user-prescribed population. LoKI-B includes electron-electron collisions, it handles rotational collisions adopting either a discrete formulation or a more convenient continuous approximation, and it accounts for variations in the number of electrons due to non-conservative events by assuming growth models for the electron density. On input, LoKI-B defines the operating work conditions, the distribution of populations for the electronic, vibrational and rotational levels of the atomic/molecular gases considered, and the relevant sets of electron-scattering cross sections obtained from the open-access website LXCat (http://lxcat.net/). On output, it yields the isotropic and the anisotropic parts of the electron distribution function (the former usually termed the electron energy distribution function), the electron swarm parameters, and the electron power absorbed from the electric field and transferred to the different collisional channels. LoKI-B is developed with flexible and upgradable object-oriented programming under MATLAB (R), to benefit from its matrix-based architecture, adopting an ontology that privileges the separation between tool and data. This topical review presents LoKI-B and gives examples of results obtained for different model and real gases, verifying the tool against analytical solutions, benchmarking it against numerical calculationThis work was funded by Portuguese FCT-Fundacao para a Ciencia e a Tecnologia, under projects UID/FIS/50010/2013 and PTDC/FISPLA/1243/2014 (KIT-PLASMEBA)

    Guided Wave Optics

    Get PDF
    Phenomena associated with the propagation and manipulation of light in thin-film dielectric waveguides are presently the object of considerable research effort, directed toward possible applications in communications and information processing. The theory of dielectric waveguide modes is reviewed, and the topics of directional coupling, input-output coupling, modulation, and distributed feedback laser sources are treated on the basis of coupled-mode theory. A summary of experimental results for each of the guided-wave optical phenomena covered by the theory is also presented
    corecore