473 research outputs found

    Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing

    Get PDF
    Chemical components of organic aerosol (OA) selectively absorb light at short wavelengths. In this study, the prevalence, sources, and optical importance of this so called brown carbon (BrC) aerosol component are investigated throughout the North American continental tropospheric column during a summer of extensive biomass burning. Spectrophotometric absorption measurements on extracts of bulk aerosol samples collected from an aircraft over the central USA were analyzed to directly quantify BrC abundance. BrC was found to be prevalent throughout the 1 to 12 km altitude measurement range, with dramatic enhancements in biomass-burning plumes. BrC to black carbon (BC) ratios, under background tropospheric conditions, increased with altitude, consistent with a corresponding increase in the absorption Ångström exponent (AAE) determined from a three-wavelength particle soot absorption photometer (PSAP). The sum of inferred BC absorption and measured BrC absorption at 365 nm was within 3 % of the measured PSAP absorption for background conditions and 22 % for biomass burning. A radiative transfer model showed that BrC absorption reduced top-of atmosphere (TOA) aerosol forcing by ∼ 20 % in the background troposphere. Extensive radiative model simulations applying this study background tropospheric conditions provided a look-up chart for determining radiative forcing efficiencies of BrC as a function of a surface-measured BrC : BC ratio and single scattering albedo (SSA). The chart is a first attempt to provide a tool for better assessment of brown carbon’s forcing effect when one is limited to only surface data. These results indicate that BrC is an important contributor to direct aerosol radiative forcing

    Numerical modelling of pulverised coal combustion

    Get PDF
    First Online: 30 September 2017Many thermal power generation plants rely on combustion of pulverised coal carried out in large furnaces. Design and improvement of these furnaces can be effectively assisted by using numerical modelling with Computational Fluid Dynamics (CFD) techniques to develop a detailed picture of the conditions within the furnace, and the effect of operating conditions, coal type, and furnace design on those conditions. The equations governing CFD models of pulverised coal combustion are described, with a focus on sub-models needed for devolatilisation, combustion and heat transfer. The use of the models is discussed with reference to examples of CFD modelling of brown coal fired furnaces in the Latrobe Valley in Australia and black coal fired furnaces described in the literature. Extensions to the CFD models that are required to tackle specific industrial and environmental issues are also described. These issues include control of NOx and SOx emissions and the effect of slagging and fouling on furnace and boiler operation.Zhao F. Tian, Peter J. Witt, Mark P. Schwarz, and William Yan

    From air quality to climate: Impact of aerosol sources on optical properties at urban, regional and continental levels in the north-western Mediterranean

    Get PDF
    Further research is needed to reduce the existing uncertainties on the effect that specific aerosol sources have on radiative forcing, thus supporting the assessment of future mitigation strategies which should be focused on both air quality and climate, and not acting separately. This study presents a new approach aimed at quantifying the mass scattering and absorption efficiencies (MSE and MAE) of different aerosol sources at urban (Barcelona-BCN), regional (Montseny-MSY) and remote (Montsec-MSA) background sites in the northwestern (NW) Mediterranean. An analysis of source apportionment to the measured scattering and absorption coefficients was performed by means of a multilinear regression (MLR) model during 2010–2014 at BCN and MSY and during 2011–2014 at MSA. The source contributions to PM10 mass, identified by means of the Positive Matrix Factorization (PMF) model, were used as dependent variables in the MLR model in order to take into account the internal mixing state of atmospheric aerosols. Seven aerosol sources were obtained at MSA and MSY and 8 sources at BCN. Mineral, Aged marine, Ammonium sulfate, Ammonium nitrate and V-Ni bearing sources were common at the three sites. Traffic, Industrial/metallurgy and Road-resuspension were isolated at BCN, whereas Industrial/Traffic and Aged organics were solely identified at MSY and MSA. The highest MSE were found for Ammonium sulfate (4.5 and 10.7 m2 g−1), Ammonium nitrate (8.8 and 7.8 m2 g−1) and V-Ni (8 and 3.5 m2 g−1) at MSY and MSA respectively, dominating the scattering throughout the year with marked seasonal trends. V-Ni bearing, originated mainly from shipping emissions, simultaneously contributed to both scattering and absorption being the second most efficient absorptive source in BCN (0.9 m2 g−1). The Traffic source at BCN and the equivalent Industrial/Traffic at MSY and MSA mainly governed the light absorption and exhibited the highest MAE (1.7, 0.9 and 0.2 m2 g−1, respectively). Sources predominantly composed by fine and relatively dark particles such as Industrial/Traffic, Aged organics and V-Ni were simultaneously characterized with low single scattering albedo (SSA) and high scattering Angstrom exponent (SAE). Conversely, Mineral and Aged marine showed the highest SAE and the lowest SSA, being scattering the dominant process in the light extinction. The good agreement between modeled and measured optical properties allowed for the reconstruction of scattering, absorption and SSA time series by means of the PMF-MLR technique for the period 2004–2014 at MSY. Significant decreasing trends were found for the modeled scattering and absorption (−4.6 and −4.1 % y−1) coefficients. Interestingly, the observed reduction in the SSA (−0.11 % y−1) might suggests a less effectiveness of the air quality strategies focused on reducing pollutants containing black carbon (BC) particles, which highly contribute to light absorption and thus climate warming.This work was supported by the MINECO (Spanish Ministry of Economy and Competitiveness) and FEDER funds under the PRISMA project (CGL2012-39623-C02/00), by the MAGRAMA (Spanish Ministry of Agriculture, Food and Environment) and by the Generalitat de Catalunya (AGAUR 2014 SGR33 and the DGQA). This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654109. Marco Pandolfi is funded by a Ramón y Cajal Fellowship (RYC-2013-14036) awarded by the MINECO. The authors would like to express their gratitude to D. C. Carslaw and K. Ropkins for providing the OpenAir software used in this paper (Carslaw and Ropkins, 2012; Carslaw, 2012).Peer reviewe

    Large eddy simulation of coal combustion

    Get PDF
    In this work an in-house code for large-eddy simulations of coal combustion is developed and tested, with a special focus on the issue of modelling radiative heat transfer effects inside a furnace. An Eulerian-Lagrangian approach is used to describe the continuous gas phase and the discrete particle phase, with a two-way coupling between the two phases (implemented by another group member). The radiative transfer equation is solved using the discrete ordinates method, testing several different angular and spatial discretisation schemes. The spectral properties of the participating media are approximated with different grey gas models of varying complexity and accuracy. The accuracy of the radiative solver is initially assessed on simple idealised static cases in both two- and three-dimensions, and validated against benchmark data found in literature. The code is then integrated, parallelised and optimised with the LES flow and combustion solver, and used to simulate a large 2.4 MW coal combustion furnace. The results of the simulations are compared quantitatively against experimental data in terms of velocity, temperature, species distribution and solid particle analysis, showing a good agreement overall. A parametric study is then also performed on the variables and parameters of the radiation solver, showing great sensitivity on the outcome of the simulations in certain cases, further highlighting the importance of accurate radiation modelling for closed coal combustion furnaces.Open Acces

    A study of erosion phenomena in coal fired furnace using CFD modelling

    Get PDF
    In pulverised coal fired boilers, entrained fly ash particles in the flue gas often leads to erosive wear on metal surfaces along the flow field. This can have a significant effect on the operational life of various sections of boiler (in particular regenerative heat exchanger tubes). In this work, CFD based code FLUENT is used in conjunction with erosion model developed by other researchers for a large-scale furnace to identify the areas likely to be subjected to erosion under various operating conditions.Eulerian- Lagrangian approach is considered to analyse continuum phase and particle tracking for the coal particle. Flow field has been thoroughly examined in terms of velocity, particle and temperature profiles along the gas flow path. The data obtained on particle velocities and trajectories have been utilised to predict the extent of erosion in selected areas of boiler components. Predictions have been found to be in good agreement with the published data as well as plant observations for velocities ranging from 15 to 32 m/s showing a deviation of approximately 4.9 % with 20° impact angle.The results obtained from the present work for understanding erosion pattern in boilers are not only of practical significance but also provides platform for the development of an erosion tool which could assist power utilities in avoiding unnecessary shutdowns and penalties associated with the replacement of boiler components

    From forests to the remote ocean to smoke plumes: aerosol microphysics in diverse environments

    Get PDF
    2020 Spring.Includes bibliographical references.To view the abstract, please see the full text of the document
    • …
    corecore