2,131 research outputs found

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    Characterization and modeling of low-frequency noise in Hf-based high -kappa dielectrics for future cmos applications

    Get PDF
    The International Technology Roadmap for Semiconductors outlines the need for high-K dielectric based gate-oxide Metal Oxide Semiconductor Field Effect Transistors for sub-45 nm technology nodes. Gate oxides of hafnium seem to be the nearest and best alternative for silicon dioxide, when material, thermal and structural properties are considered. Usage of poly-Si as a gate electrode material degrades the performance of the device and hence gate stacks based on metal gate electrodes are gaining high interest. Though a substantial improvement in the performance has been achieved with these changes, reliability issues are a cause of concern. For analog and mixed-signal applications, low-frequency (I /f~ noise is a major reliability factor. Also in recent years. low frequency noise diagnostics has become a powerful tool for device performance and reliability characterization. This dissertation work demonstrates the necessity of gate stack engineering for achieving a low I/f noise performance. Changes in the material and process parameters of the devices, impact the 1/f noise behavior. The impact of 1/f noise on gate technology and processing parameters xvere identified and investigated. The thickness and the quality of the interfacial oxide, the nitridation effects of the layers, high-K oxide, bulk properties of the high-K layer. percentage of hafnium content in the high-K, post deposition anneal (PDA) treatments, effects of gate electrode material (poly-silicon. fully silicided or metal). Gate electrode processing are investigated in detail. The role of additional interfaces and bulk layers of the gate stack is understood. The dependence of low-frequency noise on high and low temperatures was also investigated. A systematic and a deeper understanding of these parameters on 1/f noise behavior are deduced which also forms the basis for improved physics-based 1/f noise modeling. The model considers the effect of the interfacial layer and also temperature, based on tunneling based thermally activated model. The simulation results of improved drain-current noise model agree well with the experimentally calculated values

    New Processes and Technologies to Reduce the Low‐Frequency Noise of Digital and Analog Circuits

    Get PDF
    The chapter is intended to provide the reader with means to reduce low‐frequency noise in Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET). It is demonstrated that low‐resistivity source and drain electrodes can greatly lower the low‐frequency noise level by suppressing their contribution to the total noise. Furthermore, new plasma processes having the advantages to work at low electron temperature can achieve a further reduction, thanks to the fabrication of a better gate oxide and to a reduction of damages generally induced by conventional plasma processes. Reducing the impact of the traps on the carrier flowing inside the channel by burying the channel can also achieve a reduction of the noise level, but unfortunately at the cost of a degradation of the electrical performances. Finally, the noise analysis of the low‐frequency noise in accumulation‐mode MOSFETs showed that these newly developed devices have a lower noise level than conventional structures, which, in addition to their superiority in term of electrical performances, establishes them as a serious platform for the next Complementary Metal-Oxide-Semiconductor Field-Effect-Transistor (CMOS) technology

    III-V and 2D Devices: from MOSFETs to Steep-Slope Transistors

    Get PDF
    With silicon CMOS technology approaching the scaling limit, alternating channel materials and novel device structures have been extensively studied and attracted a lot of attention in solid-state device research. In this dissertation, solid-state electron devices for post-Si CMOS applications are explored including both new materials such as III-V and 2D materials and new device structures such as tunneling field-effect transistors and negative capacitance field-effect transistors. Multiple critical challenges in applying such new materials and new device structures are addressed and the key achievements in this dissertation are summarized as follows: 1) Development of fabrication process technology for ultra-scaled planar and 3D InGaAs MOSFETs. 2) Interface passivation by forming gas anneal on InGaAs gate-all-around MOSFETs. 3) Characterization methods for ultra-scaled MOSFETs, including a correction to subthreshold method and low frequency noise characterization in short channel devices. 4) Development of short channel InGaAs planar and 3D gate-allaround tunneling field-effect transistors. 5) Negative capacitance field-effect transistors with hysteresis-free and bi-directional sub-thermionic subthreshold slope and the integration with various channel materials such as InGaAs and MoS2

    Vertical III-V Nanowires For In-Memory Computing

    Get PDF
    In recent times, deep neural networks (DNNs) have demonstrated great potential in various machine learning applications,such as image classification and object detection for autonomous driving. However, increasing the accuracy of DNNsrequires scaled, faster, and more energy-efficient hardware, which is limited by the von Neumann architecture whereseparate memory and computing units lead to a bottleneck in performance. A promising solution to address the vonNeumann bottleneck is in-memory computing, which can be achieved by integrating non-volatile memory cells such asRRAMs into dense crossbar arrays. On the hardware side, the 1-transistor-1-resistor (1T1R) configuration has been centralto numerous demonstrations of reservoir, in-memory and neuromorphic computing.In this thesis, to achieve a 1T1R cell with a minimal footprint of 4F2, a technology platform has been developed to integrate avertical nanowire GAA MOSFET as a selector device for the RRAM. Firstly, the effect of the geometry (planar to vertical) ofthe ITO/HfO2/TiN RRAM cell was studied where low energy switching (0.49 pJ) and high endurance (106) were achievedin the vertical configuration. Furthermore, InAs was incorporated as the GAA MOSFET selector channel material toleverage the beneficial transport properties of III-V materials desirable for supply voltage scaling. Finally, an approach wasdeveloped wherein InAs is used as the selector channel as well as the RRAM electrode by carefully tuning the InAs nativeoxides. This thesis also presents low-frequency noise characterization of the RRAM cell as well as the MOSFET to furtherunderstand the semiconductor/oxide interface. The vertical 1T1R cell developed in this thesis enables the implementationof Boolean logic operations using a single vertical nanowire while reducing the footprint by 51x when compared to itstraditional CMOS counterpart

    III-V Nanowire MOSFET High-Frequency Technology Platform

    Get PDF
    This thesis addresses the main challenges in using III-V nanowireMOSFETs for high-frequency applications by building a III-Vvertical nanowire MOSFET technology library. The initial devicelayout is designed, based on the assessment of the current III-V verticalnanowire MOSFET with state-of-the-art performance. The layout providesan option to scale device dimensions for the purpose of designing varioushigh-frequency circuits. The nanowire MOSFET device is described using1D transport theory, and modeled with a compact virtual source model.Device assessment is performed at high frequencies, where sidewall spaceroverlaps have been identified and mitigated in subsequent design iterations.In the final stage of the design, the device is simulated with fT > 500 GHz,and fmax > 700 GHz.Alongside the III-V vertical nanowire device technology platform, adedicated and adopted RF and mm-wave back-end-of-line (BEOL) hasbeen developed. Investigation into the transmission line parameters revealsa line attenuation of 0.5 dB/mm at 50 GHz, corresponding to state-ofthe-art values in many mm-wave integrated circuit technologies. Severalkey passive components have been characterized and modeled. The deviceinterface module - an interconnect via stack, is one of the prominentcomponents. Additionally, the approach is used to integrate ferroelectricMOS capacitors, in a unique setting where their ferroelectric behavior iscaptured at RF and mm-wave frequencies.Finally, circuits have been designed. A proof-of-concept circuit, designedand fabricated with III-V lateral nanowire MOSFETs and mm-wave BEOL, validates the accuracy of the BEOL models, and the circuit design. Thedevice scaling is shown to be reflected into circuit performance, in aunique device characterization through an amplifier noise-matched inputstage. Furthermore, vertical-nanowire-MOSFET-based circuits have beendesigned with passive feedback components that resonate with the devicegate-drain capacitance. The concept enables for device unilateralizationand gain boosting. The designed low-noise amplifiers have matching pointsindependent on the MOSFET gate length, based on capacitance balancebetween the intrinsic and extrinsic capacitance contributions, in a verticalgeometry. The proposed technology platform offers flexibility in device andcircuit design and provides novel III-V vertical nanowire MOSFET devicesand circuits as a viable option to future wireless communication systems

    Scalable on-chip multiplexing of silicon single and double quantum dots

    Full text link
    The scalability of the quantum processor technology is elemental factor in reaching fault-tolerant quantum computing. Owing to the maturity of microelectronics, quantum bits (qubits) realized with spins in silicon quantum dots are considered among the most promising technologies for building scalable quantum computers. However, several challenges need to be solved to realize quantum-dot-based quantum processors. In this respect, ultra-low-power on-chip cryogenic classical complementary metal oxide semiconductor (CMOS) electronics for control, read-out, and interfacing of the qubits is an important milestone. We report scalable interfacing of tunable electron and hole quantum dots embedded in a 64-channel cryogenic multiplexer, which has less-than-detectable static power dissipation. Our integrated hybrid quantum-dot CMOS technology provides a plausible route to scalable interfacing of a large number of quantum dot devices, enabling variability analysis and quantum dot qubit geometry optimization, which are prerequisites for building large-scale silicon-based quantum computers. We analyze charge noise and obtain state-of-the-art addition energies and gate lever arms in electron and hole quantum dots. The demonstrated electrostatically-defined quantum dots and cryogenic transistors with sharp turning-on transfer characteristics, made by harnessing a CMOS process that utilizes a conventional doped-Poly-Si/SiO2/Si MOS stack, constitute a promising platform for spin qubits monolithically integrated with cryo-CMOS electronics.Comment: revised manuscrip

    Electrical Characterisation of III-V Nanowire MOSFETs

    Get PDF
    The ever increasing demand for faster and more energy-efficient electricalcomputation and communication presents severe challenges for the semiconductor industry and particularly for the metal-oxidesemiconductorfield-effect transistor (MOSFET), which is the workhorse of modern electronics. III-V materials exhibit higher carrier mobilities than the most commonly used MOSFET material Si so that the realisation of III-V MOSFETs can enable higher operation speeds and lower drive voltages than that which is possible in Si electronics. A lowering of the transistor drive voltage can be further facilitated by employing gate-all-around nanowire geometries or novel operation principles. However, III-V materials bring about their own challenges related to material quality and to the quality of the gate oxide on top of a III-V MOSFET channel.This thesis presents detailed electrical characterisations of two types of (vertical) III-V nanowire transistors: MOSFETs based on conventional thermionic emission; and Tunnel FETs, which utilise quantum-mechanical tunnelling instead to control the device current and reach inverse subthreshold slopes below the thermal limit of 60 mV/decade. Transistor characterisations span over fourteen orders of magnitude in frequency/time constants and temperatures from 11 K to 370 K.The first part of the thesis focusses on the characterisation of electrically active material defects (‘traps’) related to the gate stack. Low-frequency noise measurements yielded border trap densities of 10^18 to 10^20 cm^-3 eV^-1 and hysteresis measurements yielded effective trap densities – projected to theoxide/semiconductor interface – of 2x10^12 to 3x10^13 cm^-2 eV^-1. Random telegraph noise measurements revealed that individual oxide traps can locally shift the channel energy bands by a few millielectronvolts and that such defects can be located at energies from inside the semiconductor band gap all the way into the conduction band.Small-signal radio frequency (RF) measurements revealed that parts of the wide oxide trap distribution can still interact with carriers in the MOSFET channel at gigahertz frequencies. This causes frequency hystereses in the small-signal transconductance and capacitances and can decrease the RF gains by a few decibels. A comprehensive small-signal model was developed, which takes into account these dispersions, and the model was applied to guide improvements of the physical structure of vertical RF MOSFETs. This resulted in values for the cutoff frequency fT and the maximum oscillation frequency fmax of about 150 GHz in vertical III-V nanowire MOSFETs.Bias temperature instability measurements and the integration of (lateral) III-V nanowire MOSFETs in a back end of line process were carried out as complements to the main focus of this thesis. The results of this thesis provide a broad perspective of the properties of gate oxide traps and of the RF performance of III-V nanowire transistors and can act as guidelines for further improvement and finally the integration of III-V nanowire MOSFETs in circuits
    corecore